Lecture 10: Chapter 5, Section 2 Relationships
 (Two Categorical Variables)

口Two-Way Tables
aSummarizing and Displaying
-Comparing Proportions or Counts
םConfounding Variables

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing
\square Single variables: 1 cat,1 quan (discussed Lectures 5-8)
- Relationships between 2 variables:
- Categorical and quantitative (discussed in Lecture 9)
- Two categorical
- Two quantitative
- Probability
- Statistical Inference

Single Categorical Variables (Review)

\square Display:

- Pie Chart
- Bar Graph
- Summarize:
- Count or Proportion or Percentage Add categorical explanatory variable \rightarrow display and summary of categorical responses are extensions of those used for single categorical variables.

Example: Two Single Categorical Variables

- Background: Data on students' gender and lenswear (contacts, glasses, or none) in two-way table:

	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

- Question: What parts of the table convey info about the individual variables gender and lenswear?
\square Response:
is about gender.
is about lenswear.

Example: Relationship between Categorical

Variables

- Background: Data on students' gender and lenswear (contacts, glasses, or none) in two-way table:

	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

\square Question: What part of the table conveys info about the relationship between gender and lenswear?

- Response: is about relationship.

Summarizing and Displaying Categorical Relationships

\square Identify variables' roles (explanatory, response)

- Use rows for explanatory, columns for response
- Compare proportions or percentages in response of interest (conditional proportions or percentages) for various explanatory groups.
- Display with bar graph:
- Explanatory groups identified on horizontal axis
- Conditional percentages or proportions in response(s) of interest graphed vertically

Definition

\square A conditional percentage or proportion tells the percentage or proportion in the response of interest, given that an individual falls in a particular explanatory group.

Example: Comparing Counts vs. Proportions

\square Background: Data on students' gender and lenswear (contacts, glasses, or none) in two-way table:

	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

\square Question: Since 129 females and 85 males wore no lenses, should we report that fewer males wore no lenses?
\square Response:

- proportion of females with no lenswear:
- proportion of males with no lenswear:

Example: Displaying Categorical Relationship

- Background: Counts and conditional percentages produced with software:

Rows:	Gender contacts	Columns: glasses	Lenswear none	All
female	121	32	129	282
	42.91	11.35	45.74	100.00
male	42	37	85	164
	25.61	22.56	51.83	100.00
All	163	69	214	446

\square Question: How can we display this information?
\square Response:

\square contacts
\square glasses
\square none

Caution: If we made lenswear explanatory, we'd compare $129 / 214=60 \%$ with no lenses female, $85 / 214=40 \%$ with no lenses male, etc. Why is this not useful?

Cengage Learning

Example: Interpreting Results

\square Background: Counts and conditional percentages produced with software:

| Rows: Gender | Columns: Lenswear | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | contacts | glasses | none | All |
| female | 121 | 32 | 129 | 282 |
| | 42.91 | 11.35 | 45.74 | 100.00 |
| | | | | |
| male | 42 | 37 | 85 | 164 |
| | 25.61 | 22.56 | 51.83 | 100.00 |
| | | | | |
| All | 163 | 69 | 214 | 446 |

- Questions: Are you convinced that, in general, - all females wear contacts more than males do?
- all males are more likely to wear no lenses?
\square Responses: Consider how different sample percentages are:
- Contacts:
- No lenses

Looking Ahead: Inference will let us judge if sample differences are large enough to suggest a general trend. For now, we can guess that the first difference is "real", due to different priorities for importance of appearance.

Example: Comparing Proportions

- Background: An experiment considered if wasp larvae were less likely to attack an embryo if it was a brother:

	Attacked	Not attacked	Total
Brother	16	15	31
Unrelated	24	7	31
Total	40	22	62

\square Question: What are the relevant proportions to compare?
\square Response:

- Brother:
were attacked
- Unrelated: were attacked
$\rightarrow \quad$ likely to attack a brother wasp

Another Comparison in Considering Categorical Relationships

- Instead of considering how different are the proportions in a two-way table, we may consider how different the counts are from what we'd expect if the "explanatory" and "response" variables were in fact unrelated.

Example: Expected Counts

- Background: Experiment considered if wasp larvae were less likely to attack embryo if it was a brother:

	Attacked	Not attacked	Total
Brother	16	15	31
Unrelated	24	7	31
Total	40	22	62

- Question: What counts would we expect to see, if being a brother had no effect on likelihood of attack?
\square Response: Overall 40/62 attacked \rightarrow expect

brothers,
$\overline{\text { remaining }}$

Example: Comparing Counts

\square Background: Tables of observed and expected counts in wasp aggression experiment:

Obs	A	NA	T
B	16	15	31
U	24	7	31
T	40	22	62

Exp	A	NA	T
B	20	11	31
U	20	11	31
T	40	22	62

\square Question: How do the counts compare?
\square Response:

> Looking Ahead: Inference (Part 4) will help decide if these differences are large enough to provide evidence that kinship and aggression are related.

Example: Expected Counts in Lenswear Table

- Background: Data on students' gender and lenswear (contacts, glasses, or none) in two-way table:

	C	G	N	Total
F	121	32	129	282
M	42	37	85	164
Total	163	69	214	446

- Question: What counts would we expect to wear glasses, if there were no relationship between gender and lenswear?
\square Response: Altogether, 69/446 wore glasses. If there were no relationship, we'd expect
females and males with glasses.

Example: Observed vs. Expected Counts

- Background:If gender and lenswear were unrelated, we'd expect 44 females and 25 males with glasses.

	C	G	N	Total
F	121	32	129	282
M	42	37	85	164
Total	163	69	214	446

- Question: How different are the observed and expected counts of females and males with glasses?
\square Response: Considerably
females and males wore glasses, compared to what would be expected if there were no relationship.

Confounding Variable in Categorical Relationships

- If data in two-way table arise from an observational study, consider possibility of confounding variables.

Looking Back: Sampling and Design issues should always be considered before reporting summaries of single variables or relationships.

Example: Confounding Variables

- Background: Survey results for full-time students:

	On Campus	Off Campus	Total	Rate On Campus
Undecided	124	81	205	$124 / 205=60 \%$
Decided	96	129	225	$96 / 225=43 \%$

- Question: Is there a relationship between whether or not major is decided and living on or off campus?
\square Response:

Example: Handling Confounding Variables

- Background: Year at school may be confounding variable in relationship between major decided or not and living situation.
\square Question: How should we handle the data?
\square Response:

Underclassmen	On Campus	Off Campus	Total	Rate On Campus
Undecided	117	55	172	$117 / 172=68 \%$
Decided	82	37	119	$82 / 119=69 \%$
Upperclassmen	On Campus	Off Campus	Total	Rate On Campus
Undecided	7	26	33	$7 / 33=21 \%$
Decided	14	92	106	$14 / 106=13 \%$

©2011 Brooks/Cole,
Cengage Learning

- \quad om ${ }^{\circ}$ Underclassmen (1st\&2nd yr): pronortions on campus are for those with major decided or not. Upperclassmen (3rd \&4th yr): proportions are

Simpson's Paradox

If the nature of a relationship changes, depending on whether groups are combined or kept separate, we call this phenomenon "Simpson's Paradox".

Example: Considering Confounding Variables

\square Background: Suppose that boys, like Bart, tend to eat a lot of sugar and they also tend to be hyperactive. Girls, like Lisa, tend not to eat much sugar and they are less likely to be hyperactive.

- Question: Why would the data lead to a misperception that sugar causes hyperactivity?
\square Response:

Lecture Summary

(Categorical Relationships)

- Two-Way Tables
- Individual variables in margins
- Relationship inside table
\square Summarize: Compare (conditional) proportions.
- Display: Bar graph
\square Interpreting Results: How different are proportions?
\square Comparing Observed and Expected Counts
- Confounding Variables

