Lecture 10: Chapter 5, Section 2 Relationships (Two Categorical Variables)

Two-Way Tables
Summarizing and Displaying
Comparing Proportions or Counts
Confounding Variables

Looking Back: Review

4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing
 - □ Single variables: 1 cat,1 quan (discussed Lectures 5-8)
 - □ Relationships between 2 variables:
 - Categorical and quantitative (discussed in Lecture 9)

Two categorical

- Two quantitative
- Probability
- Statistical Inference

Single Categorical Variables (Review)

- **Display:**
 - Pie Chart
 - Bar Graph
- **Summarize**:

■ Count or Proportion or Percentage
 Add categorical explanatory variable →
 display and summary of categorical responses
 are extensions of those used for single
 categorical variables.

Example: Two Single Categorical Variables

Background: Data on students' gender and lenswear (contacts, glasses, or none) in two-way table:

	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

- □ **Question:** What parts of the table convey info about the individual variables gender and lenswear?
- **Response:**

is about gender.

is about lenswear.

Example: *Relationship between Categorical Variables*

Background: Data on students' gender and lenswear (contacts, glasses, or none) in two-way table:

	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

Question: What part of the table conveys info about the *relationship* between gender and lenswear?

Response:

is about relationship.

Summarizing and Displaying Categorical Relationships

- □ Identify variables' roles (explanatory, response)
- □ Use rows for explanatory, columns for response
- Compare proportions or percentages in response of interest (conditional proportions or percentages) for various explanatory groups.
- □ Display with bar graph:
 - Explanatory groups identified on horizontal axis
 - Conditional percentages or proportions in response(s) of interest graphed vertically

Definition

A conditional percentage or proportion tells the percentage or proportion in the response of interest, given that an individual falls in a particular explanatory group.

Example: Comparing Counts vs. Proportions

■ **Background**: Data on students' gender and lenswear (contacts, glasses, or none) in two-way table:

	Contacts	Glasses	None	Total
Female	121	32	129	282
Male	42	37	85	164
Total	163	69	214	446

- □ **Question:** Since 129 females and 85 males wore no lenses, should we report that fewer males wore no lenses?
- **Response:**
 - **proportion** of females with no lenswear:
 - **proportion** of males with no lenswear:

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 5.26 p.162

L10.11

Example: *Displaying Categorical Relationship*

■ Background: Counts and conditional percentages produced with software: Rows: Gender Columns: Lenswear contacts glasses none All

ender	COLUMNS.	Lenswear	
contacts	glasses	none	All
121	32	129	282
42.91	11.35	45.74	100.00
42	37	85	164
25.61	22.56	51.83	100.00
163	69	214	446
	contacts 121 42.91 42 25.61	contacts glasses 121 32 42.91 11.35 42 37 25.61 22.56	contactsglassesnone1213212942.9111.3545.7442378525.6122.5651.83

Question: How can we display this information?

Example: Interpreting Results

■ Background: Counts and conditional percentages produced with software: Rows: Gender Columns: Lenswear contacts glasses none All

female	contacts 121 42.91	glasses 32 11.35	none 129 45.74	All 282 100.00
male	42.91 42 25.61	37 22.56	85 51.83	100.00 164 100.00
All	163	69	214	446

- **Questions:** Are you convinced that, in general,
 - all females wear contacts more than males do?
 - all males are more likely to wear no lenses?
- **Responses:** Consider *how* different sample percentages are:
 - Contacts:
 - No lenses:

Looking Ahead: Inference will let us judge if sample differences are large enough to suggest a general trend. For now, we can guess that the first difference is "real", due to different priorities for importance of appearance.

Example: Comparing Proportions

■ **Background**: An experiment considered if wasp larvae were less likely to attack an embryo if it was a brother:

	Attacked	Not attacked	Total
Brother	16	15	31
Unrelated	24	7	31
Total	40	22	62

- **Question:** What are the relevant proportions to compare?
- **Response:**
 - Brother: _______ were attacked
 - Unrelated: ______ were attacked
 - likely to attack a brother wasp

Another Comparison in Considering Categorical Relationships

Instead of considering how different are the *proportions* in a two-way table, we may consider how different the *counts* are from what we'd expect if the "explanatory" and "response" variables were in fact unrelated.

Example: *Expected Counts*

■ **Background**: Experiment considered if wasp larvae were less likely to attack embryo if it was a brother:

	Attacked	Not attacked	Total
Brother	16	15	31
Unrelated	24	7	31
Total	40	22	62

- □ **Question:** What counts would we expect to see, if being a brother had no effect on likelihood of attack?
- **Response:** Overall 40/62 attacked \rightarrow expect

brothers,

unrelated to be attacked; expect remaining brothers and unrelated not to be attacked. ©2011 Brooks/Cole, Cengage Learning Lear

Example: Comparing Counts

Background: Tables of observed and expected counts in wasp aggression experiment:

Obs	А	NA	Т
В	16	15	31
U	24	7	31
Т	40	22	62

Exp	А	NA	Т
В	20	11	31
U	20	11	31
Т	40	22	62

- **Question:** How do the counts compare?
- **Response:**

Looking Ahead: Inference (Part 4) will help decide if these differences are large enough to provide evidence that kinship and aggression are related.

Example: *Expected Counts in Lenswear Table*

Background: Data on students' gender and lenswear (contacts, glasses, or none) in two-way table:

	С	G	N	Total
F	121	32	129	282
Μ	42	37	85	164
Total	163	69	214	446

- □ **Question:** What counts would we expect to wear glasses, if there were no relationship between gender and lenswear?

males with glasses.

Example: Observed vs. Expected Counts

Background: If gender and lenswear were unrelated, we'd expect 44 females and 25 males with glasses.

	С	G	N	Total
F	121	32	129	282
Μ	42	37	85	164
Total	163	69	214	446

- □ **Question:** How different are the observed and expected counts of females and males with glasses?
- Response: Considerably ______ females and ______ males wore glasses, compared to what would be expected if there were no relationship.

©2011 Brooks/Cole, Cengage Learning

Confounding Variable in Categorical Relationships

□ If data in two-way table arise from an observational study, consider possibility of confounding variables.

Looking Back: Sampling and Design issues should always be considered before reporting summaries of single variables or relationships.

Example: Confounding Variables

Background: Survey results for full-time students:

	On Campus	Off Campus	Total	Rate On Campus
Undecided	124	81	205	124/205=60%
Decided	96	129	225	96/225=43%

- Question: Is there a relationship between whether or not major is decided and living on or off campus?
- **Response:**

©2011 Brooks/Cole, Cengage Learning L10.31

Example: Handling Confounding Variables

- **Background**: Year at school may be confounding variable in relationship between major decided or not and living situation.
- **Question:** How should we handle the data?

Response:

L				
Underclassmen	On Campus	Off Campus	Total	Rate On Campus
Undecided	117	55	172	117/172=68%
Decided	82	37	119	82/119=69%
Upperclassmen	On Campus	Off Campus	Total	Rate On Campus
Undecided	7	26	33	7/33=21%
Decided	14	92	106	14/106=13%

for those with major decided or not. Upperclassmen (3rd &4th yr):

proportions are

L10.33

Simpson's Paradox

If the nature of a relationship changes, depending on whether groups are combined or kept separate, we call this phenomenon "Simpson's Paradox".

Example: Considering Confounding Variables

- Background: Suppose that boys, like Bart, tend to eat a lot of sugar and they also tend to be hyperactive. Girls, like Lisa, tend not to eat much sugar and they are less likely to be hyperactive.
- □ **Question:** Why would the data lead to a misperception that sugar causes hyperactivity?
- **Response:**

Lecture Summary

(Categorical Relationships)

Two-Way Tables

- Individual variables in margins
- Relationship inside table
- **Summarize:** Compare (conditional) proportions.
- **Display:** Bar graph
- □ Interpreting Results: How different are proportions?
- Comparing Observed and Expected Counts
- Confounding Variables