Lecture 35: Chapter 13, Section 2 Two Quantitative Variables Interval Estimates

םPI for Individual Response, Cl for Mean Response -Explanatory Value Close to or Far from Mean \square Approximating Intervals by Hand םWidth of PI vs. CI
\square Guidelines for Regression Inference

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
$\square \quad 1$ categorical (discussed in Lectures 21-23)
- 1 quantitative (discussed in Lectures 24-27)
- cat and quan: paired, 2-sample, several-sample (Lectures 28-31)
- 2 categorical (discussed in Lectures 32-33)
$\square \quad 2$ quantitative

Correlation and Regression (Review)

\square Relationship between 2 quantitative variables

- Display with scatterplot
- Summarize:
- Form: linear or curved
- Direction: positive or negative
\square Strength: strong, moderate, weak
If form is linear, correlation r tells direction and strength.
Also, equation of least squares regression line lets us predict a response \widehat{y} for any explanatory value x.

Population Model; Parameters and Estimates

Summarize linear relationship between sampled x and y values with line $\widehat{y}=b_{0}+b_{1} x$ minimizing sum of squared residuals $y_{i}-\widehat{y}_{i}$. Typical residual size is

$$
s=\sqrt{\frac{\left(y_{1}-\widehat{y}_{1}\right)^{2}+\cdots+\left(y_{n}-\widehat{y}_{n}\right)^{2}}{n-2}}
$$

Model for population relationship is $\mu_{y}=\beta_{o}+\beta_{1} x$ and responses vary normally with standard deviation σ

- Use b_{O} to estimate β_{O}
\square Use b_{1} to estimate β_{1}
- Use S to estimate σ
Looking Back: Our hypothesis test focused on slope.

Regression Null Hypothesis (Review)

- $H_{o}: \beta_{1}=0$
\rightarrow no population relationship between x and y Test statistic $t=\frac{b_{1}-0}{S E_{b_{1}}}$
P-value is probability of t this extreme, if H_{0} true (where t has $n-2 \mathrm{df}$)

Confidence Interval for Slope (Review)

Confidence interval for β_{1} is

$$
b_{1} \pm \text { multiplier }\left(S E_{b_{1}}\right)
$$

where multiplier is from t dist. with $n-2 \mathrm{df}$.
If n is large, 95% confidence interval is

$$
b_{1} \pm 2\left(S E_{b_{1}}\right)
$$

If CI does not contain 0 , reject H_{0}, conclude x and y are related.

Interval Estimates in Regression

Seek Prediction and Confidence Intervals for

- Individual response to given x value (PI)
- For large n, approx. 95% PI: $\widehat{y} \pm 2 s$
- Mean response to subpopulation with given x value (CI)
- For large n, approx. 95% CI: $\widehat{y} \pm 2 \frac{s}{\sqrt{n}}$ Both intervals centered at predicted y-value \widehat{y}. These approximations may be poor if n is small or if given x value is far from average x value.

Example: Reviewing Data in Scatterplot

- Background: Property owner feels reassessed value $\$ 40,000$ of his 4,000 sq.ft. lot is too high. For random sample of 29 local lots, means are $5,619 \mathrm{sq} . \mathrm{ft}$. for size, $\$ 34,624$ for value. Regression equation $\hat{y}=1,551+5.885 x, r=+0.927, s=\$ 6,682$.
\square Question: Where would his property appear on scatterplot?
\square Response:

Example: An Interval Estimate

- Background: Property owner feels reassessed value $\$ 40,000$ of his 4,000 sq.ft. lot is too high. For random sample of 29 local lots, means are $5,619 \mathrm{sq} . \mathrm{ft}$. for size, $\$ 34,624$ for value. Regression equation $\hat{y}=1,551+5.885 x, r=+0.927, s=\$ 6,682$.
- Questions: What range of values are within two standard errors of the predicted value for 4,000 sq.ft.? Does $\$ 40,000$ seem too high?
- Responses: Predict $\hat{y}=$

Approximate range of plausible values for individual 4,000 sq.ft. lot is

Example: Interval Estimate on Scatterplot

- Background: A homeowner's 4,000 sq.ft. lot is assessed at $\$ 40,000$. Predicted value is $\$ 25,091$ and predicted range of values is (\$11,727, \$38,455).
\square Question: Where do the prediction and range of values appear on the scatterplot?
\square Response:

Prediction Interval vs. Confidence Interval

- Prediction interval corresponds to 68-95-99.7 Rule for data: where an individual is likely to be.
- PI is wider: individuals vary a great deal
- Confidence interval is inference about mean: range of plausible values for mean of sub-population.
- CI is narrower: can estimate mean with more precision
- Both PI and CI in regression utilize info about x to be more precise about $y(\mathrm{PI})$ or mean $y(\mathrm{CI})$.

Example: Prediction or Confidence Interval

- Background: Property owner feels reassessed value \$40,000 of his 4,000 sq.ft. lot is too high. Based on a random sample of 29 local lots, software was used to produce interval estimates when size equals 4,000 sq.ft.

Predicted Values for New Observations

\square Questions: What is the "Fit" value reporting? Which interval is relevant for the property owner's purposes: CI or PI?

- Responses: Fit is

The is relevant: he wants to show that his individual lot is over-assessed.

Practice: 13.18b p. 658

Examples: Series of Estimation Problems

- Based on sample of male weights, estimate
- weight of individual male $\}$ No regression
- mean weight of all males \int needed.
- Based on sample of male hts and weights, estimate
- weight of individual male, 71 inches tall
- mean weight of all 71-inch-tall males
- weight of individual male, 76 inches tall
- mean weight of all 76-inch-tall males

Examples use data from sample of college males.

Example: Estimate Individual Wt, No Ht Info

\square Background: A sample of male weights have mean 170.8, standard deviation 33.1. Shape of distribution is close to normal.

- Question: What interval should contain the weight of an individual male?
- Response: Need to know distribution of weights is approximately normal to apply 68-95-99.7 Rule:
Approx. 95\% of individual male weights in interval

Example: Estimate Mean Wt, No Ht Info

- Background: A sample of 162 male weights have mean 170.8, standard deviation 33.1.
$\square \quad$ Questions:
- What interval should contain the mean weight of all males?
- How does it compare to this interval for an individual male's weight? 170.8 ± 2 (33.1) $=(104.6,237.0)$
\square Responses:
- Need to know to construct approximate 95\% confidence interval for mean:
- Interval for mean involves division by square root of \boldsymbol{n} $\rightarrow \quad$ than interval for individual

Examples: Series of Estimation Problems

- Based on sample of male weights, estimate
- weight of individual male
- mean weight of all males
\square Based on sample of male heights and weights, est
- weight of individual male, 71 inches tall
- mean weight of all 71-inch-tall males
- weight of individual male, 76 inches tall
- mean weight of all 76-inch-tall males

Examples: Series of Estimation Problems

The next 4 examples make use of regression on

 height to produce interval estimates for weight.

Example: Predict Individual Wt, Given Av. Ht

- Background: Male hts: mean about 71 in . Wts: s.d. 33.1 lbs . Regression of wt on ht has $r=+0.45, p=0.000$. Regression line is $\widehat{y}=-188+5.08 x$ and $s=29.6 \mathrm{lbs}$.
- Questions: How much heavier is a sampled male, for each additional inch in height? Why is $s<s y$? What interval should contain the weight of an individual 71-inch-tall male? (Got interval estimates for $x=71$.)

| New Obs | Fit | SE Fit | 95.0% CI | 95.0% PI |
| :--- | ---: | ---: | :---: | :---: | :---: |
| 1 | 172.83 | 2.35 | $(168.20,177.47)$ | $(114.20,231.47)$ |

- Responses:

For each additional inch, sampled male weighs lbs more.

- $s<s_{y}$ because wts vary \qquad about line than about mean.
- Look at for $x=71$:

Example: Approx. Individual Wt, Given Av. Ht

- Background: Male hts: mean about 71 in. Wts: s.d. 33.1 lbs . Regression of wt on ht has $r=+0.45, p=0.000$. Regression line is $\widehat{y}=-188+5.08 x$ and $s=29.6 \mathrm{lbs}$. Got interval estimates for wt when ht=71:

New Obs	Fit	SE Fit	95.0% CI	95.0% PI		
1		172.83	2.35	$(168.20,177.47)$	$(114.20$,	$231.47)$

- How do we approximate interval estimate for wt. of an individual 71-inch-tall male by hand?
- Is our approximate close to the true interval?
\square Responses:
- Predict y for $x=71$:

Approx. PI=

- Close?

Example: Est Mean Wt, Given Average Ht

- Background: Male hts: mean about 71 in. Wts: s.d. 33.1 lbs . Regression of wt on ht has $r=+0.45, p=0.000$. Regression line is $\widehat{y}=-188+5.08 x$ and $s=29.6 \mathrm{lbs}$.
- Questions:
- What interval should contain mean weight of all 71-inchtall males?

Fit SE
$172.83 \quad 2.35$ (How do we approximate the interval by hand? Is it close?
\square Response:

- Software \rightarrow for $x=71$
- Predict y for $x=71: \widehat{y}=-188+5.08(71)=172.7$

Approx.
Close?

Example: Estimate Wt, Given Tall vs. Av. Ht

- Background: Regression of male wt on ht produced equation $\hat{y}=-188+5.08 x$ For height 71 inches, estimated weight is
$\hat{y}=-188+5.08(71)=172.7$
- Question: How much heavier will our estimate be for height 76 inches?
- Response: Since lbs for each additional inch; more lbs for 76, which is 5 additional inches:
Instead of weight about 173, estimate weight about

Example: Est Individual Wt, Given Tall Ht

\square Background: Regression of male weight on height has r $=+0.45, p=0.000 \rightarrow$ strong evidence of moderate positive relationship. Reg. line $\widehat{y}=-188+5.08 x$ and $s=29.6 \mathrm{lbs}$. Got interval estimates for $x=76$.

- for $x=76$
- Predicted wt (fit) about lbs more for $x=76$ than for 71:
(5 more lbs per additional inch).

Example: Approx. Individual Wt for Tall Ht

- Background: Regression of male weight on height has $r=+0.45, p=0.000 \rightarrow$ strong evidence of moderate positive relationship. Reg. line $\hat{y}=-188+5.08 x$ and $s=29.6 \mathrm{lbs}$. Got interval estimates for $x=76$.

| New Obs | Fit | SE Fit | 95.0% CI | $95.0 \% \mathrm{PI}$ |
| :--- | ---: | ---: | :---: | :---: | :---: |
| 1 | 198.21 | 4.88 | $(188.58,207.84)$ | $(138.97,257.45)$ |

- Questions:
- How do we approximate the prediction interval by hand?
- Is it close to the true interval?
\square Responses:
- Predict y for $x=76$:

Approx. PI=

- Close?

Example: Est Mean Wt, Given Tall Ht

- Background: Regression of 162 male wts on hts has r $=+0.45, p=0.000 \rightarrow$ strong evidence of moderate positive relationship. Reg. line $\widehat{y}=-188+5.08 x$ and $s=29.6 \mathrm{lbs}$. Got interval estimates for $x=76$.

| New Obs | Fit | SE Fit | 95.0% CI | $95.0 \% \mathrm{PI}$ |
| :--- | ---: | ---: | :---: | :---: | :---: |
| 1 | 198.21 | 4.88 | $(188.58,207.84)$ | $(138.97,257.45)$ |

- Questions:

What interval should contain mean wt of all 76-in males?

- How do we approximate the interval by hand? Is it close?
\square Responses:
- Refer to
- Predict y for $x=76: \widehat{y}=-188+5.08(76)=198.1$

Close?

Examples: PI and CI for Wt ; $\mathrm{Ht}=71$ or 76

Interval Estimates in Regression (Review)

Seek interval estimates for

- Individual response to given x value (PI)
- For large n, approx. 95% PI: $\widehat{y} \pm 2 s$
- Mean response to subpopulation with given x value (CD)
- For large n, approx. 95% CI: $\widehat{y} \pm 2 \frac{s}{\sqrt{n}}$
- Intervals approximately correct only for x values close to mean; otherwise wider
- Especially CI much wider for x far from mean

PI and CI for x Close to or Far From Mean

Summary of Example Intervals

Example: A Prediction Interval Application

- Background: A news report stated that Michael Jackson was a fairly healthy 50 -year-old before he died of an overdose. "His 136 pounds were in the acceptable range for a 5 -foot- 9 man..."
\square Question: Based on the regression equation $\widehat{y}=-188+5.08 x$ and $s=29.6 \mathrm{lbs}$, would we agree that 136 lbs. is not an unusually low weight?
$\square \quad$ Response: For $x=69$, predict $y=$
Our PI is ; his weight 136

[^0]
Example: A Prediction Interval Application

A Closer Look: Our PI is a bit misleading because the distribution of weights is actually somewhat right-skewed, not normal. More of the spread reported in $s=29.6$ comes about from unusually heavy men, and less from unusually light men.

Guidelines for Regression Inference

- Relationship must be linear
- Need random sample of independent observations
- Sample size must be large enough to offset nonnormality
- Need population at least 10 times sample size
- Constant spread about regression line
- Outliers/influential observations may impact results
- Confounding variables should be separated out

Lecture Summary

(Inference for Quan \rightarrow Quan; PI and CI)
\square Interval estimates in regression: PI or CI

- Non-regression PI (individual) and CI (mean)
- Regression PI and CI for x value near mean or far
- Approximating intervals by hand
- Width of PI vs. CI
- Guidelines for regression inference

[^0]: A Closer Look: Our PI is a bit misleading because the distribution of weights is actually somewhat right-skewed, not normal. More of the spread reported in $s=29.6$ comes about from unusually heavy men, and less from unusually light men.

