Lecture 30: Chapter 11, Section 3 Categorical \& Quantitative Variable Inference in Several-Sample Design

-Compare and Contrast Several- and 2-sample \square Variation Among Means or Within Groups
םF Statistic as Ratio of Variation
םRole of Sample Size

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
$\square 1$ categorical (discussed in Lectures 21-23)
- 1 quantitative (discussed in Lectures 24-27)
- cat and quan: paired, 2-sample, several-sample
- 2 categorical
- 2 quantitative

Inference Methods for $\mathrm{C} \rightarrow \mathrm{Q}$ (Review)

- Paired: reduces to 1 -sample t
- Focused on mean of differences
- Two-Sample: 2-sample t (similar to 1 -sample t)
- Focused on difference between means
- Several-Sample: need new distribution (F)
\square Focus on difference among means

Display \& Summary, Several Samples (Review)

\square Display: Side-by-side boxplots:

- One boxplot for each categorical group
- All share same quantitative scale
- Summarize: Compare
- Five Number Summaries (looking at boxplots)
- Means and Standard Deviations

Looking Ahead: Inference for population relationship focuses on means and standard deviations.

Notation

	Sizes	Means	s.d.s
Sample	$I=$ no. of groups compared $n_{1}, n_{2}, \cdots, n_{I}$ sum to N	$\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{I}$ (overall $\left.\bar{x}\right)$	$s_{1}, s_{2}, \cdots, s_{I}$
Population		$\mu_{1}, \mu_{2}, \cdots, \mu_{I}$	$\sigma_{1}, \sigma_{2}, \cdots, \sigma_{I}$

Two- vs. Several-Sample Inference

- Similar: test statistic standardizes difference among sample means, taking sample sizes and standard deviations into account
- Different: several-sample test statistic (F)
focuses on
- Squared differences of means in numerator
\square Squared standard deviations (variances) in denominator
Procedure called ANOVA (ANalysis Of VAriance)

Two- vs. Several-Sample Inference

- Similar: test statistic standardizes difference among sample means, taking sample sizes and standard deviations into account.
For 2 groups of equal sizes and $\sigma_{1}=\sigma_{2}, F=t^{2}$ and conclusions (including P-value) are the same.

t and F Distributions

- Left: sampled 100 values from a t distribution
- Right: squared the 100 values from t distribution Squaring makes F non-negative, right-skewed (makes extreme values even more extreme; for example, 3 becomes 9)

Two- vs. Several-Sample Statistics

Similar: test statistic standardizes how different sample means are, taking sample sizes and standard deviations into account

$$
\begin{gathered}
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \\
F=\frac{\left[n_{1}\left(\bar{x}_{1}-\bar{x}\right)^{2}+n_{2}\left(\bar{x}_{2}-\bar{x}\right)^{2}+\cdots+n_{I}\left(\bar{x}_{I}-\bar{x}\right)^{2}\right] /(I-1)}{\left[\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\cdots+\left(n_{I}-1\right) s_{I}^{2}\right] /(N-I)}
\end{gathered}
$$

Two- vs. Several-Sample Statistics

- How different are sample means?
- How spread out are the distributions?
- How large are the samples?

$$
\begin{gathered}
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \\
F=\frac{\left[n_{1}\left(\bar{x}_{1}-\bar{x}\right)^{2}+n_{2}\left(\bar{x}_{2}-\bar{x}\right)^{2}+\cdots+n_{I}\left(\bar{x}_{I}-\bar{x}\right)^{2}\right] /(I-1)}{\left[\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\cdots+\left(n_{I}-1\right) s_{I}^{2}\right] /(N-I)}
\end{gathered}
$$

What Makes t or F Statistics Large

- Large diff among sample means (in numerator)
- Small spreads (in denominator)
- Large sample sizes (denominator of denominator)

$$
\begin{gathered}
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \\
F=\frac{\left[n_{1}\left(\bar{x}_{1}-\bar{x}\right)^{2}+n_{2}\left(\bar{x}_{2}-\bar{x}\right)^{2}+\cdots+n_{I}\left(\bar{x}_{I}-\bar{x}\right)^{2}\right] /(I-1)}{\left[\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\cdots+\left(n_{I}-1\right) s_{I}^{2}\right] /(N-I)}
\end{gathered}
$$

Example: Sample S.D.s' Effect on P-Value

- Background: Boxplots with $\bar{x}_{1}=3, \bar{x}_{2}=4, \bar{x}_{3}=5$ could appear as on left or right, depending on s.d.s.

\square Question: For which scenario does the difference among means appear more significant?
\square Response: Difference among means appears more significant on

Example: Sample S.D.s' Effect on P-Value

- Background: Boxplots with $\bar{x}_{1}=3, \bar{x}_{2}=4, \bar{x}_{3}=5$ could appear as on left or right, depending on s.d.s.

- Question: For which scenario are we more likely to reject hypothesis of equal population means?
\square Response: Scenario on
smaller s.d.s \rightarrow larger F stat \rightarrow smaller P-val \rightarrow likelier to reject H_{0}, conclude

Measuring Variation Among and Within

$F=\frac{\left[n_{1}\left(\bar{x}_{1}-\bar{x}\right)^{2}+n_{2}\left(\bar{x}_{2}-\bar{x}\right)^{2}+\cdots+n_{I}\left(\bar{x}_{I}-\bar{x}\right)^{2}\right] /(I-1)}{\left[\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\cdots+\left(n_{I}-1\right) s_{I}^{2}\right] /(N-I)}$

- Numerator: variation among groups
- How different are $\bar{x}_{1}, \cdots, \bar{x}_{I}$ from one another?
\square Denominator: variation within groups
- How spread out are samples? (sds $\left.s_{1}, \cdots, s_{I}\right)$

Numerator of F (Difference Among Means)

\square SSG: Sum of Squared diffs among Groups

$$
S S G=5(3-4)^{2}+5(4-4)^{2}+5(5-4)^{2}=10
$$

\square DFG: Degrees of Freedom for Groups

$$
D F G=I-1=\xi-1=2
$$

- MSG: Mean Squared diffs among Groups

$$
M S G=\frac{S S G}{D F G}=\frac{10}{2}=5
$$

$$
\boldsymbol{I}=\boldsymbol{3}\left\{\begin{array}{|c|c|c|}
\hline n_{1}=5 & \bar{x}_{1}=3 & s_{1}=1.58 \\
n_{2}=5 & \bar{x}_{2}=4 & s_{2}=1.58 \\
n_{3}=5 & \bar{x}_{3}=5 & s_{3}=1.58 \\
\hline N=15 & \bar{x}=4 & \\
\hline N
\end{array}\right.
$$

Numerator of F (Difference Among Means)

Note: numerator of F is the same for both scenarios because the difference among means is the same.

Denominator of F (Spread Within Groups)

\square SSE: Sum of Squared Error within Groups $S S E=(5-1) 1.58^{2}+(5-1) 1.58^{2}+(5-1) 1.58^{2}=30$
\square DFE: Degrees \&f Freedom for Error

$$
D F E=N-I \Rightarrow 15-3=12
$$

- MSE: Mean Squared Error within Groups

$$
M S E=\frac{S S E}{D F E}=\frac{30}{12}=2.5
$$

$$
\boldsymbol{I}=\mathbf{3}\left\{\begin{array}{|c|c|c|}
\hline n_{1}=5 & \bar{x}_{1}=3 & s_{1}=1.58 \\
n_{2}=5 & \bar{x}_{2}=4 & s_{2}=1.58 \\
n_{3}=5 & \bar{x}_{3}=5 & s_{3}=1.58 \\
\hline N=15 & \bar{x}=4 & \\
\hline
\end{array}\right.
$$

monthly earnings (in $\$ 1000 s$) for 3 racial/ethnic groups (hypothetical)

Denominator of F (Spread Within Groups)

\square Note: denominator of F is smaller for the scenario on the right, because of less spread.

- Because the numerators are the same, F (the quotient) is considerably larger on the right.

The F Statistic

$$
\begin{aligned}
F= & \frac{\left[n_{1}\left(\bar{x}_{1}-\bar{x}\right)^{2}+n_{2}\left(\bar{x}_{2}-\bar{x}\right)^{2}+\cdots+n_{I}\left(\bar{x}_{I}-\bar{x}\right)^{2}\right] /(I-1)}{\left[\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\cdots+\left(n_{I}-1\right) s_{I}^{2}\right] /(N-I)} \\
= & \frac{M S G}{M S E}=\frac{5}{2.5}=2 \quad \text { Is } 2 \text { large??? } \\
& \quad \begin{array}{l}
\text { measures difference among sample means } \\
\text { (relative to spreads and sample sizes) }
\end{array} \\
& \text { If } F \text { is large reject } H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \\
& \text { Conclude population means differ. }
\end{aligned}
$$

Example: Size of Standardized Statistics

$\square \quad$ Background: Say standardized statistic is 2.

- Question: Is 2 large...
- For z ?
- For t ?
- For F ?
\square Response:
- $z=2$ large?
(combined tail probs 0.05)
- $t=2$ large? depends on
- $F=2$ large?
depends on \qquad
(based on total sample size N and number of groups I)

F and its Degrees of Freedom

Family of F curves all non-neg, right-skewed.
Spreads vary, depending on $\mathrm{DFG}=I-1$ in numerator, $\mathrm{DFE}=N-I$ in denominator.

Example: Degrees of Freedom for F

$\square \quad$ Background: Consider these F distributions

- F with $I=5, N=390$
- F with $\mathrm{DFG}=2$, $\mathrm{DFE}=12$ [written $F(2,12)$]
- Questions:
- What are degrees of freedom if $I=5, N=390$?
- What are I and N if $\mathrm{DFG}=2, \mathrm{DFE}=12$?
- Responses:
- $\mathrm{I}=5, \mathrm{~N}=390 \rightarrow$
DFG $=$
DFE $=$
- $\mathrm{DFG}=2, \mathrm{DFE}=12 \rightarrow$

Example: Assessing Size of F Statistic

ㅁ Background: $F=3$ for $\mathrm{DFG}=4, \mathrm{DFE}=385$:

- Questions: Is $F=3$ large? Will we reject a claim that the 5 population means are equal?
- Responses: P-val $=0.0185 \rightarrow$ Very little area past $F=3 \rightarrow$
F is

Example: Assessing F for Different DF

- Background: $F=3$ for $\mathrm{DFG}=2, \mathrm{DFE}=12$

- Questions: Is $F=3$ large?

What would we conclude if $F=2$ for $\mathrm{DFG}=2, \mathrm{DFE}=12$?
ㅁ Responses: P-val $=0.0878 \rightarrow F=3$ is
P-val for $F=2$ must be
Reject H_{0} ?
\qquad Conclude population means may be equal?

The F Statistic (Review)

$$
\begin{aligned}
F & =\frac{\left[n_{1}\left(\bar{x}_{1}-\bar{x}\right)^{2}+n_{2}\left(\bar{x}_{2}-\bar{x}\right)^{2}+\cdots+n_{I}\left(\bar{x}_{I}-\bar{x}\right)^{2}\right] /(I-1)}{\left[\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\cdots+\left(n_{I}-1\right) s_{I}^{2}\right] /(N-I)} \\
& =\frac{M S G}{M S E}=\frac{5}{2.5}=2 \quad \text { Is 2 large for } D F G=2, D F E=12 ?
\end{aligned}
$$

measures difference among sample means
(relative to spreads and sample sizes)
If F is large reject $H_{o}: \mu_{1}=\mu_{2}=\mu_{3}$
Conclude population means differ.

Example: Drawing Conclusions Based on F

- Background: Earnings for 5 sampled individuals from three racial/ethnic groups had means 3, 4, 5 (in thousands of dollars). ANOVA procedure resulted in $F=2$, which in this case is not large.
\square Question: What do we conclude about mean earnings for populations in the three racial/ethnic groups?
\square Response: Since F is not large, sample means differ significantly from one another.
Conclude population mean earnings

Example: Role of n in ANOVA Test

- Background: Earnings for $\mathbf{1 2}$ (instead of 5) sampled individuals from three racial/ethnic groups had means 3, 4, 5 (in thousands of dollars). ANOVA procedure resulted in $F=4.8$, and a P-value of 0.015 .
- Question: What do we conclude about mean earnings for populations in the three racial/ethnic groups?
- Response: Conclude population mean earnings for the three groups are
samples help provide more evidence against Ho.

Mean of F

Since t has s.d. $=$ typical distance of values from 0 $=$ approximately 1 , and F is similar to squaring t distribution, mean of F is approximately 1 .

1.0-

Example: Test Relationship/Parameters (Review)

- Background: Research question: "For all students at a university, are Math SATs related to what year they're in?"
- Question: How can the question be reformulated in terms of relevant parameters (means) instead of in terms of whether or not the variables are related?
\square Response:

Example: Testing Relationship or Parameters

- Background: Research question: "Do mean earnings differ significantly for three racial/ethnic groups?"
- Question: How can the question be reformulated in terms of relevant variables instead of in terms of whether or not the means are equal?
- Response:

Lecture Summary

(Inference for Cat \& Quan: ANOVA)

- Several-sample vs. 2-sample design
- Notation
- Compare and contrast t and F statistics
- What makes t or F large?
- Variation among means or within groups; F as ratio of variations
- How large is "large" F ?
- F degrees of freedom
- F distribution
- Role of sample size

