Lecture 28: Chapter 11, Section 1 Categorical & Quantitative Variable Inference in Paired Design

□Inference for Relationships: 2 Approaches
□ Cat→Quan Relationship: 3 Designs
□Inference for Paired Design
□Paired vs. Ordinary, *t* vs. *z*

Looking Back: Review

4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
 - □ 1 categorical (discussed in Lectures 21-23)
 - □ 1 quantitative (discussed in Lectures 24-27)
 - □ cat and quan: paired, 2-sample, several-sample
 - □ 2 categorical
 - □ 2 quantitative

Inference for Relationships: Two Approaches

- H_0 and H_a about variables: not related or related □ Applies to all three C→Q, C→C, Q→Q
- H_0 and H_a about parameters: equality or not
 - \Box C \rightarrow Q: pop means equal? (mean diff=0? for paired)
 - $\Box \quad C \rightarrow C: \text{ pop proportions equal}?$
 - $\Box \quad Q \rightarrow Q: \text{ pop slope equals zero}?$

Either way, often do test before confidence interval.

- 1. Are variables related?
- 2. If so, quantify: how different are the parameters?

Example: $C \rightarrow Q$ *Test Relationship or Parameters*

- Background: Research question: "For all students at a university, are their Math SATs related to what year they're in?"
- □ **Question:** How can we formulate this in terms of parameters?
- **Response:**

Looking Ahead: This is a several-sample design, to be discussed after paired and two-sample.

Inference Methods for Cat \rightarrow Quan Relationship

- Paired: reduces to 1-sample *t* (already covered)
- Two-Sample: 2-sample *t* (similar to 1-sample *t*)
- Several-Sample: need new distribution (*F*)

Example: *Paired vs. Two-Sample Data*

- Background: Research Question: "Are 'age of parent' and 'sex of parent' related for population of students at a university?"
- □ **Question:** How can this data set be used to answer the research question?
- **Response:**

DadAge	MomAge
55	55
51	45
58	54
47	49
•••	•••

Elementary Statistics: Looking at the Big Picture Practice: 11.4a p.526

Example: *Paired vs. Two-Sample Summary*

Background: Research Question: "Are 'age of parent' and 'sex of parent' related for population of students at a university?"

Question: Which output has enough info to do inference? Descriptive Statistics: DadAge, MomAge

		-	-			
Variable	Ν	N*	Mean	Median	TrMean	StDev
DadAge	431	15	50.831	50.000	50.491	6.167
MomAge	441	5	48.406	48.000	48.166	5.511
Descriptive	Statistics:	AgeDiff				
Descriptive Variable	Statistics: N	AgeDiff N*	Mean	Median	TrMean	StDev

Response:

Looking Ahead: We will standardize with the StDev of the differences, which cannot be found from the individual StDevs because of dependence.

Example: Consider Summaries in Paired Design

Background: To see if 'age of parent' and 'sex of parent' are related for population of students at a university, took sampled DadAge minus MomAge.

Descriptive Statistics: AgeDiffVariableNN*MeanMedianTrMeanStDevAgeDiff431152.4482.0002.1713.877

- **Question:** Which parent tended to be older in the sample?
- **Response:**

Example: *Display in Paired Design*

- Background: To see if 'age of parent' and 'sex of parent' are related for population of students at a university, took sampled DadAge minus MomAge.
- **Question:** How do we display the data?
- **Response:**

Example: Display in Paired Design

Background: Histogram of age differences:

- **Question:** What does the histogram show?
- **Response:** Age differences have
 - Center: around _____ (dads tend to be about _____ yrs older)
 - Spread: most diffs within _____ yrs or mean)
 - (a few dads much older than wife)

©2011 Brooks/Cole, Cengage Learning

Shape:

Notation in Paired Study

- Differences have
 - \square Sample mean \overline{x}_d
 - **D** Population mean μ_d
 - \Box Sample standard deviation S_d
 - \square Population standard deviation σ_d

Test Statistic in Paired Study

Start with ordinary 1-sample statistic $t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$

Substitute \bar{x}_d , s_d for ordinary summaries \bar{x} , s

Substitute 0 for μ_0 (H_0 will claim $\mu_d = 0$)

Result is paired t statistic:
$$t = \frac{\bar{x}_d - 0}{s_d / \sqrt{n}}$$

Example: Paired t Test

Background: Paired test on students' parents' ages:

Paired T for	DadAge -	MomAge			
	Ν	Mean	StDev	SE Mean	
DadAge	431	50.831	6.167	0.297	
MomAge	431	48.383	5.258	0.253	
Difference	431	2.448	3.877	0.187	
95% CI for m	ean diffe	rence: (2.	081, 2.815	5)	
T-Test of me	an differ	ence = 0 (vs not = C): T-Value = 13.11	P-Value = 0.000

- **Question:** What does output tell about formal test?
- **Response:** Testing
 - Unbiased? _____ n=431 large? _____ Pop≥10(431)? _____
 - $\overline{x}_d =$ ____, t =____ Large? ____
 - *P*-value = _____ Small? _____
 - Conclude pop mean diff =0? _____Sex and age related? _____

©2011 Brooks/Cole, Cengage Learning

Example: One- or Two-Sided H_a in Paired Test

Background: Paired test on students' parents' ages:

Paired T for	DadAge -	MomAge				
	Ν	Mean	StDev	SE Mean		
DadAge	431	50.831	6.167	0.297		
MomAge	431	48.383	5.258	0.253		
Difference	431	2.448	3.877	0.187		
95% CI for me	an diffe	rence: (2.0)81, 2.815	5)		
T-Test of mea	n differ	ence = 0 (τ	vs not = 0): T-Value = :	13.11	P-Value = 0.000

Response: Replace H_a : $\mu_d \neq 0$ with

- P-value would be
- Conclude fathers in general are older?

Example: Paired vs. Ordinary t vs. z

- **Background**: Paired test on 431 students' parents' ages resulted in paired *t*-statistic +13.11.
- **Question:** What does this tell us about the *P*-value?
- **Response:**

Paired *t* same as ordinary *t* distribution

 \rightarrow Ordinary *t* basically same as *z* for large *n*

 \rightarrow 13.11 sds above mean unusual? $\rightarrow P$ -val = ____

 \rightarrow Evidence that mean age diff is non-zero in pop.?

Note: for extreme *t* statistics, software not needed to estimate *P*-value.

Confidence Interval in Paired Design

Confidence interval for μ_d is

$$\overline{x}_d \pm \text{multiplier} rac{s_d}{\sqrt{n}}$$

Multiplier from *t* distribution with *n*-1 df
Multiplier smaller for lower confidence
Multiplier smaller for larger df
If *n* is small, diffs need to be approx. normal.
(Same guidelines as for 1-sample *t*)

Guidelines: Sample Mean Diff Approx. Normal

- Can assume shape of \bar{X}_d for random samples of *n* pairs is approximately normal if
- Graph of sample diffs appears normal; or
- Graph of sample diffs fairly symmetric and *n* at least 15; or
- Graph of sample diffs moderately skewed and *n* at least 30; or
- Graph of sample diffs very skewed and *n* much larger than 30

Example: Paired Confidence Interval

- **Background**: Sample of 431 students' parents' age differences have mean +2.45, s.d. 3.88.
- **Question:** What is a 95% confidence interval for population mean age difference?
- **Response:** Since *n* is so large, *t* multiplier for 95% confidence. (Also, skewed hist. OK.)

Example: Checking Conditions for Paired t

Background: Mileages for 5 cars, each tested in city and on highway (suspect higher on highway).

L28.33

Example: Paired Test and Confidence Interval

Background: Mileages for 5 cars, each tested in city and on highway (suspect higher on highway).

Paired T for City - Highway

	Ν	Mean	StDev	SE Mean			
City	5	26.40	5.73	2.56			
Highway	5	31.80	5.76	2.58			
Difference	5	-5.400	1.949	0.872			
95% upper bound	for m	ean differe	ence: -3.5	541			_
T-Test of mean of	differ	ence = 0 (τ	/s < 0):]	-Value = -6.	19	P-Value = 0.002	
95% CI for me	an di	fference:	(-7.82)) , - 2.980)			

- **Question:** What does the output tell us?
- **Response:**
 - $\bullet P-val=0.002 \rightarrow$
 - C.I. \rightarrow hway av about _____ to ____ mpg better in pop of cars

Example: Paired Confidence Interval by Hand

- **Background**: Mileage differences for 5 cars, city minus highway, had mean -5.40, s.d. 1.95.
- Question: What else is needed to set up a 95% confidence interval by hand for population mean difference?

Note: *n* very small \rightarrow *t* multiplier closer to 3 than to 2.

Example: Relating Test and Confidence Interval

Background: Mileages for 5 cars, each tested in city and on highway (suspect higher on highway).

Paired T for City - Highway

Mean StDev SE Mean Ν 26.40 City 5 5.73 2.565 31.80 5.76 Highway 2.585 Difference -5.4001,949 0.872 95% upper bound for mean difference: -3.541 T-Test of mean difference = 0 (vs < 0): T-Value = -6.19 P-Value = 0.002 95% CI for mean difference: (-7.820, -2.980) **Question:** How is *P*-value consistent with C.I.? **Response:** Small *P*-value \rightarrow conclude H_a : pop mean of diffs Confidence interval shows only numbers are plausible values for mean of diffs (entire C.I. Elementary Statistics: Looking at the Big Picture Practice: 11.58d p.576 L28.39 ©2011 Brooks/Cole, Cengage Learning

Example: Switching Columns in Paired Design

- **Background**: Mileages for 5 cars, each tested in city and on highwav (suspect higher on highwav).
- Paired T for City Highway

	Ν	Mean	StDev	SE Mean	
City	5	26.40	5.73	2.56	
Highway	5	31.80	5.76	2.58	
Difference	5	-5.400	1.949	0.872	
95% upper bound	for m	ean differe	ence: -3.5	541	
T-Test of mean	differ	ence = 0 (τ	/s < 0): 1	-Value = -6.19	P-Value = 0.002
95% CI for me	ean di	fference:	(-7.820), -2.980)	
Question	n: Wh	at would c	change if	we took high	way minus city?
□ Respons	e: Sin	nce we sus	spect high	ner on highwa	ıy,
Chan	ge to I	Highway-(City and	sign in H_a ch	anges to
Samp	le me	an of diffs	would b	e and	<i>t</i> =
P-val	ue stil	1 0.002, re	ject H_0 -	>	
©2011 Brooks/Cole, Cengage Learning	idence	interval v Elementary Sta	vould be tistics: Looking at t	ne Big Picture	L28.41

Lecture Summary

(Inference for Cat \rightarrow Quan; Paired)

- □ Inference for relationships
 - Focus on variables
 - Focus on parameters
- \Box cat \rightarrow quan relationship: paired, 2- or several-sample
- □ Inference for paired design
 - Output
 - Display
 - Notation
 - Test statistic
 - Form of alternative
- $\square Paired t vs. ordinary t vs. z$
- □ Paired confidence interval vs. hypothesis test