Lecture 27: Chapter 10, Sections 2-3 Inference for Quantitative Variable Hypothesis Test with t

■Compare z and $t ; t$ Test with Software aHow Large is "Large" t?
$\square t$ Test with Small n
םWhat Leads to Rejecting Ho; Errors, Multiple Tests \square Relating Confidence Interval and Test Results

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
$\square \quad 1$ categorical (discussed in Lectures 21-23)
$\square \quad 1$ quantitative: $z \mathrm{CI}, z$ test, $t \mathrm{CI}, t$ test
\square categorical and quantitative
- 2 categorical
- 2 quantitative

Standardizing Sample Mean to t (Review)

For random sample of size n from population with mean μ, standard deviation σ, sample mean \bar{X} has

- mean μ
- s.d. $\frac{\sigma}{\sqrt{n}}$ (may have to substitute s for σ)
- shape approximately normal for large enough n \rightarrow For σ unknown and n small, $\frac{\bar{x}-\mu}{s / \sqrt{n}}=t$
- t (like z) centered at 0 , symmetric, bell-shaped
- t has $n-1 \mathrm{df}$ (spread depends on n)

Inference Based on z or t (Review)

By Hand	σ known	σ unknown
small sample $(n<30)$	$\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=z$	$\frac{x-\mu}{s-\sqrt{n}}=t$
Iarge sample $(n \geq 30)$	$\frac{x-\mu}{\sigma / \sqrt{n}}=z$	$\frac{x-\mu}{s-\sqrt{n}} \approx z^{*}$

With software,

 simply use tif sigma is unknown.Distribution of t is "heavy tailed" for small n.

Comparing z and t Distributions

How different are the z and t distributions?
Unless n is very small, distributions are similar;
cut-offs for various tail probabilities quite close.
Compared values of z and $t(\mathrm{df}=18)$.

Example: t Test (with Software)

- Background: Random sample of shoe sizes for 9 college males: $11.5,12.0,11.0,15.0,11.5,10.0,9.0,10.0,11.0$
\square Question: Can we believe mean shoe size of all college males is 11 ?
\square Response: Use software: enter values, specify proposed mean 11 and "not-equal" alternative.
One-Sample T: Shoe
Test of mu = 11 vs mu not $=11$

Variable	N \quad Mean	StDev	SE Mean	
Shoe	9	11.222	1.698	0.566
Variable		95.0% CI		T
Shoe	$(\quad 9.917, \quad 12.527)$	0.39	0.705	

Note: small sample is OK because shoe sizes are normal.
Is t large? $\quad P$-value small?
Believe population mean $=11$?

How Large is "Large" for t Statistic

Excerpts from t table \rightarrow

- May call values near 2 borderline for $\mathrm{df}>10$
- May call values near 3 borderline for $\mathrm{df}<5$

Confidence Level

	90%	95%	98%	
$\boldsymbol{z}($ infinite $\boldsymbol{n})$	1.645	1.960 or 2	2.326	2.576
$\boldsymbol{t}: \boldsymbol{d} \boldsymbol{f}=\mathbf{1 9}(\boldsymbol{n}=\mathbf{2 0})$	1.73	2.09	2.54	2.86
$\boldsymbol{t}: \boldsymbol{d} \boldsymbol{f}=\mathbf{1 1}(\boldsymbol{n}=\mathbf{1 2)}$	1.80	2.20	2.72	3.11
$\boldsymbol{t}: \boldsymbol{d} \boldsymbol{f}=\mathbf{3}(\boldsymbol{n}=\mathbf{4})$	2.35	3.18	4.54	5.84

Use of t with Very Small Samples

Can assume shape of \bar{X} for random samples of any size n is approximately normal if graph of sample data appears normal.
Normal population $\rightarrow \frac{\bar{x}-\mu}{s / \sqrt{n}}$ is exactly t

Example: t Test with Small n

- Background: Random sample of 4 Math SATs (570, 580, 640, 760) have mean 637.5, s.d. 87.3.
\square Question: Do they represent population with mean greater than 500? (Use cut-off alpha=0.05.)
$\square \quad$ Response: n is small but t procedure is OK because SATs are normal:
One-Sample T: MathSAT
Test of $\mathrm{mu}=500 \mathrm{vs} \mathrm{mu}>500$
Variable N Mean StDev SE Mean
$\begin{array}{lllll}\text { MathSAT } & 4 & 637.5 & 87.3 & 43.7\end{array}$
Variable 95.0\% Lower Bound T P

MathSAT	534.7	3.15	0.026

P-value $=$
Using cutoff 0.05 , small enough to reject H_{0} ?
Conclude population mean >500 ?

Example: t Test with Small n, 2-Sided Alternative

- Background: Random sample of 4 Math SATs (570, 580, 640, 760) have mean 637.5, s.d. 87.3.
- Question: Do they represent population with mean different from 500? (Use cut-off alpha=0.05.)
- Response: Now use \neq alternative:

One-Sample T: MathSAT
Test of mu $=500$ vs mu not $=500$

Variable	N	Mean	StDev	SE Mean
MathSAT	4	637.5	87.3	43.7
Variable		$95.0 \% \mathrm{CI}$		T
M		P		

$\begin{array}{lllll}\text { MathSAT } & (498.6, ~ 776.4) & 3.15 & 0.051\end{array}$
P-value $=$
Using cutoff 0.05 , small enough to reject H_{0} ?
Conclude population mean $\neq 500$?
A Closer Look: t near 3 can be considered borderline for very small n.

One-sided vs. Two-sided Results

- Tested $H_{o}: \mu=500$ vs. $H_{a}: \mu>500$ P-value $=0.026 \rightarrow$ rejected H_{0}
- Tested $H_{o}: \mu=500$ vs. $H_{a}: \mu \neq 500$ P-value $=0.051 \rightarrow$ did not reject H_{0}
Suspecting mean >500 got us significance

Example: Concerns about 2-Sided Test

- Background: Random sample of 4 Math SATs (570, 580, 640, 760) have mean 637.5, s.d. 87.3. The t test failed to reject $H_{0}: \mu=500$ vs. 2-sided H_{a} because P-value $=0.051$.
- Question: Should we believe 500 is a plausible value for the population mean?
\square Response: Several concerns:
- If these were students admitted to university, should have used ">" alternative.
- $n=4$ very small \rightarrow vulnerable to Type \qquad Error
- MUST we stick to 0.05 as cut-off for small P-value?
- Maybe could have found out σ and done test instead.
- Does $\mu=500$ seem plausible when smallest value is 570 ?

Factors That Lead to Rejecting H_{0}

Statistically significant data produce P-value small enough to reject $H_{0} . \quad t$ plays a role:

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{\left(\bar{x}-\mu_{0}\right) \sqrt{n}}{s}
$$

Reject H_{0} if P-value small; if $|t|$ large; if...

- Sample mean far from μ_{O}
- Sample size n large
- Standard deviation s small

Factors That Lead to Not Rejecting H_{0}

$$
t=\frac{\bar{x}-\mu_{\mathrm{O}}}{s / \sqrt{n}}=\frac{\left(\bar{x}-\mu_{0}\right) \sqrt{n}}{s}
$$

Can't reject H_{0} if P-value not small; if $|t|$ not large; if...

- Sample mean close to μ_{O}
- Sample size n small
- Standard deviation s large

Types I and II Error

- Small n can lead to Type II Error (Fail to reject false H_{0}) (Sampled only 4 SATs.)
- Multiple tests can lead to Type I Error (Reject true H_{0})...

Example: Multiple Tests

- Background: Suppose all Verbal SATs have mean 500. Sample $n=20$ scores each in 100 schools, each time test $H_{o}: \mu=500$ vs. $H_{a}: \mu<500$.
- Question: If we reject H_{0} in 4 of those schools, can we conclude that mean Verbal SAT in those 4 schools is significantly lower than 500 ?
- Response: If we set 0.05 as cut-off for small P value then long-run probability of committing Type I Error (rejecting true H_{0}) is
Even if all 100 schools actually have mean 500 , by chance alone some samples will produce a sample mean low enough to reject $H_{0} \quad \%$ of the time.

Confidence Interval and Hypothesis Test Results

- Confidence Interval: range of plausible values
- Hypothesis Test: decides if a value is plausible Informally,
- If μ_{o} is in confidence interval, don't reject $H_{o}: \mu=\mu_{o}$
- If μ_{o} is outside confidence interval, reject $H_{o}: \mu=\mu_{o}$

Example: Relating Confidence Interval to Test

- Background: Consider these confidence intervals:
- 95% CI for pop mean earnings $(3171,4381)$
- 95% CI for pop mean shoe size $(9.9,12.5)$
- 95% CI for pop mean Math SAT $(498.6,776.4)$
- Question: What to conclude about hypotheses...?
- $H_{o}: \mu=5000$ vs. $H_{a}: \mu<5000$
- $H_{o}: \mu=11$ vs. $H_{a}: \mu \neq 11$
- $H_{o}: \mu=500$ vs. $H_{a}: \mu \neq 500$
- Response: Check if proposed mean is in interval:
- Reject H_{0} ?
- Reject H_{0} ? \qquad
- Reject H_{0} ?

Examples: Reviewing z and t Tests (\#1-\#4)

- Background: Sample mean and standard deviation of amount students spent on textbooks in a semester is being used to test if the mean for all students exceeds $\$ 500$. The null hypothesis will be rejected if the P-value is less than 0.01 .) We want to draw conclusions about mean credits taken by all students at a particular college.
Looking Back: If the sample is biased, or n is too small to guarantee \bar{X} to be approximately normal, neither z nor t is appropriate. Otherwise, use a if population standard deviation is known or n is large. Use tif population standard deviation is unknown and n is small.

Cengage Learning

Example: Reviewing z and t Tests (\#1)

- Background: Sample mean and s.d. of textbook costs are used to test if $\mu>500$ (reject H_{0} if P-value <0.01). Refer to z (on left) or t for 8 df (on right) or neither.

- Question: What do we conclude if a representative sample of $\mathbf{9}$ students have $t=+2.5$? There is an outlier in the data set.
- Response:

Example: Reviewing z and t Tests (\#2)

- Background: Sample mean and s.d. of textbook costs are used to test if $\mu>500$ (reject H_{0} if P-value <0.01). Refer to z (on left) or t for 8 df (on right) or neither.

- Question: What do we conclude if a representative sample of $\mathbf{9}$ students have $t=+2.5$? The data set appears normal.
- Response:

Example: Reviewing z and t Tests (\#3)

- Background: Sample mean and s.d. of textbook costs are used to test if $\mu>500$ (reject H_{0} if P-value <0.01). Refer to z (on left) or t for 8 df (on right) or neither.

- Question: What do we conclude if a representative sample of $\mathbf{9 0}$ students have $t=+2.5$? There is an outlier in the data set.
- Response:

Example: Reviewing z and t Tests (\#4)

\square Background: Sample mean and s.d. of textbook costs are used to test if $\mu>500$ (reject H_{0} if P-value <0.01). Refer to z (on left) or t for 8 df (on right) or neither.

- Question: What do we conclude if a sample of 90 biology majors have $t=+2.5$? The data set appears normal.

- Response:

Lecture Summary

(Inference for Means: t Hypothesis Test)
\square Comparing z and t distributions

- t test with software
- How large is "large" t ?
- t test with small n (one-sided or two-sided alternative)
- Factors that lead to rejecting null hypothesis
- Type I or II Error; multiple tests
\square Relating confidence interval and test results
- Examples for review

