Lecture 17: Chapter 7, Section 3 Continuous Random Variables; Normal Distribution

■Relevance of Normal Distribution
-Continuous Random Variables
-68-95-99.7 Rule for Normal R.V.s
\square Standardizing/Unstandardizing
\square Probabilities for Standard/Non-standard Normal R.V.s

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability
- Finding Probabilities (discussed in Lectures 13-14)
\square Random Variables (introduced in Lecture 15)
- Binomial (discussed in Lecture 16)

```
- Sampling Distributions
```

- Statistical Inference

Role of Normal Distribution in Inference

- Goal: Perform inference about unknown population proportion, based on sample proportion
- Strategy: Determine behavior of sample proportion in random samples with known population proportion
- Key Result: Sample proportion follows normal curve for large enough samples.
Looking Ahead: Similar approach will be taken with means.

Discrete vs. Continuous Distributions

- Binomial Count X
- discrete (distinct possible values like numbers 1, 2, 3, ...)
- Sample Proportion $\widehat{p}=\frac{X}{n}$
- also discrete (distinct values like count)
- Normal Approx. to Sample Proportion
- continuous (follows normal curve)

ㅁ Mean p, standard deviation $\sqrt{\frac{p(1-p)}{n}}$

Sample Proportions Approx. Normal (Review)

- Proportion of tails in $n=16$ coinflips $(p=0.5)$ has $\mu=0.5, \sigma=\sqrt{\frac{0.5(1-0.5)}{16}}=0.125$, shape approx normal - Proportion of lefties ($p=0.1$) in $n=100$ people has

$$
\mu=0.1, \sigma=\sqrt{\frac{0.1(1-0.1)}{100}}=0.03 \text {, shape approx normal }
$$

Example: Variable Types

\square Background: Variables in survey excerpt:

age	breakfast?	comp	credits	\cdots
19.67	no	120	15	
20.08	no	120	16	
19.08	yes	40	14	
\ldots	\ldots	\ldots	\cdots	

- Question: Identify type (cat, discrete quan, continuous quan)
- Age? Breakfast? Comp (daily min. on computer)? Credits?
\square Response:
- Age:
- Breakfast:
- Comp (daily time in min. on computer
- Credits:

Probability Histogram for Discrete R.V.

Histogram for male shoe size X represents probability by area of bars

- $\mathrm{P}(X \leq 9)$ (on left)
- $\mathrm{P}(X<9)$ (on right)

For discrete R.V., strict inequality or not matters.

Definition

Density curve: smooth curve showing prob. dist. of continuous R.V. Area under curve shows prob. that R.V. takes value in given interval.
Looking Ahead: Most commonly used density curve is normal z but to perform inference we also use $\boldsymbol{t}, \boldsymbol{F}$, and chi-square curves.

©2011 Brooks/Cole,

Elementary Statistics: Looking at the Big Picture

Density Curve for Continuous R.V.

Density curve for male foot length X represents probability by area under curve.

$$
P(X \leq 9)=P(X<9)
$$

Continuous RV: strict inequality or not doesn't matter. A Closer Look: Shoe sizes are discrete; foot lengths are continuous.

68-95-99.7 Rule for Normal Data (Review)

Values of a normal data set have

- 68% within 1 standard deviation of mean
- 95% within 2 standard deviations of mean
- 99.7% within 3 standard deviations of mean

68-95-99.7 Rule for Normal Distributions

68-95-99.7 Rule: Normal Random Variable

Sample at random from normal population; for sampled value X (a R.V.), probability is

- 68% that X is within 1 standard deviation of mean
- 95% that X is within 2 standard deviations of mean
- 99.7% that X is within 3 standard deviations of mean

68-95-99.7 Rule: Normal Random Variable

Looking Back: We use Greek letters to denote population mean and standard deviation. mean $=\mu$, standard deviation $=\sigma$

Example: 68-95-99.7 Rule for Normal R.V.

\square Background: IQ for randomly chosen adult is normal R.V. X with $\mu=100, \sigma=15$.

- Question: What does Rule tell us about distribution of X ?
- Response: We can sketch distribution of X :

Example: Finding Probabilities with Rule

- Background: IQ for randomly chosen adult is normal R.V. X with $\mu=100, \sigma=15$.
- Question: Prob. of IQ between 70 and $130=$?
- Response:

Example: Finding Probabilities with Rule

- Background: IQ for randomly chosen adult is normal R.V. X with $\mu=100, \sigma=15$.
\square Question: Prob. of IQ less than $70=$?
\square Response:

Example: Finding Probabilities with Rule

- Background: IQ for randomly chosen adult is normal R.V. X with $\mu=100, \sigma=15$.
- Question: Prob. of IQ less than $100=$?
\square Response:

Example: Finding Values of X with Rule

- Background: IQ for randomly chosen adult is normal R.V. X with $\mu=100, \sigma=15$.
- Question: Prob. is 0.997 that IQ is between...?
\square Response:

Example: Finding Values of X with Rule

- Background: IQ for randomly chosen adult is normal R.V. X with $\mu=100, \sigma=15$.
\square Question: Prob. is 0.025 that IQ is above...?
\square Response:

Example: Using Rule to Evaluate Probabilities

- Background: Foot length of randomly chosen adult male is normal R.V. X with $\mu=11, \sigma=1.5$ (in.)
\square Question: How unusual is foot less than 6.5 inches?
\square Response:

Example: Using Rule to Estimate Probabilities

- Background: Foot length of randomly chosen adult male is normal R.V. X with $\mu=11, \sigma=1.5$ (in.)
\square Question: How unusual is foot more than 13 inches?
\square Response:

Definition (Review)

$\square \boldsymbol{z}$-score, or standardized value, tells how many standard deviations below or above the mean the original value is:

$$
z=\frac{\text { value-mean }}{\text { standard deviation }}
$$

- Notation for Population: $z=\frac{x-\mu}{\sigma}$
- $z>0$ for x above mean
- $z<0$ for x below mean

ㅁ Unstandardize: $x=\mu+z \sigma$

Standardizing Values of Normal R.V.s

Standardizing to z lets us avoid sketching a different curve for every normal problem: we can always refer to same standard normal (z) curve:

Example: Standardized Value of Normal R.V.

- Background: Typical nightly hours slept by college students normal; $\mu=7, \sigma=1.5$
- Question: How many standard deviations below or above mean is 9 hours?
- Response: Standardize to $z=$
(9 is
standard deviations above mean)

Example: Standardizing/Unstandardizing

 Normal R.V.- Background: Typical nightly hours slept by college students normal; $\mu=7, \sigma=1.5$.
- Questions:
- What is standardized value for sleep time 4.5 hours?
- If standardized sleep time is +2.5 , how many hours is it?
\square Responses:
- $z=$

■

Interpreting z-scores (Review)

This table classifies ranges of z-scores informally, in terms of being unusual or not.

Size of z	Unusual?
$\|z\|$ greater than 3	extremely unusual
$\|z\|$ between 2 and 3	very unusual
$\|z\|$ between 1.75 and 2	unusual
$\|z\|$ between 1.5 and 1.75	maybe unusual (depends on circumstances)
$\|z\|$ between 1 and 1.5	somewhat low/high, but not unusual
$\|z\|$ less than 1	quite common

> Looking Ahead: Inference conclusions will hinge on whether or not a standardized score can be considered "unusual".

Example: Characterizing Normal Values Based on z-Scores

- Background: Typical nightly hours slept by college students normal; $\mu=7, \sigma=1.5$.
\square Questions: How unusual is a sleep time of 4.5 hours $(z=-1.67)$? 10.75 hours $(z=+2.5)$?
\square Responses:
- Sleep time of 4.5 hours $(z=-1.67)$:
- Sleep time of 10.75 hours $(z=+2.5)$:

Size of z	Unusual?	
$\|z\|$ greater than 3	extremely unusual	
$\|z\|$ between 2 and 3	very unusual	
$\|z\|$ between 1.75 and 2	unusual	
$\|z\|$ between 1.5 and 1.75	maybe unusual (depends on circumstances)	
$\|z\|$ between 1 and 1.5 \|z	less than 1	somewhat low/high, but not unusual
less than	e common	

Normal Probability Problems

- Estimate probability given z
- Probability close to 0 or 1 for extreme z
- Estimate z given probability
- Estimate probability given non-standard x
- Estimate non-standard x given probability

Example: Estimating Probability Given z

- Background: Sketch of 68-95-99.7 Rule for Z

- Question: Estimate $\mathbf{P}(\boldsymbol{Z}<-1.47)$?
\square Response:

Example: Estimating Probability Given z

- Background: Sketch of 68-95-99.7 Rule for Z

\square Question: Estimate $\mathbf{P}(\mathbb{Z}>+0.75)$?
\square Response:

Example: Estimating Probability Given z

ㅁ Background: Sketch of 68-95-99.7 Rule for Z

- Question: Estimate $\mathbf{P}(\mathbf{Z}<+2.8)$?
\square Response:

Example: Probabilities for Extreme z

- Background: Sketch of 68-95-99.7 Rule for Z

\square Question: What are the following (approximately)?
a. $\mathrm{P}(\mathrm{Z}<-14.5)$ b. $\mathrm{P}(\mathrm{Z}<+13)$
c. $P(Z>+23.5)$ d. $P(Z>-12.1)$
\square Response:
a.
\square b.
c.
d.

Example: Estimating z Given Probability

- Background: Sketch of 68-95-99.7 Rule for Z

- Question: Prob. is 0.01 that $Z<$ what value?
\square Response:

Example: Estimating z Given Probability

- Background: Sketch of 68-95-99.7 Rule for Z

\square Question: Prob. is 0.15 that $Z>$ what value?
- Response:

Example: Estimating Probability Given x

\square Background: Hrs. slept X normal; $\mu=7, \sigma=1.5$.

- Question: Estimate $\mathbf{P}\left(X^{\prime}>9\right)$?
\square Response:

Example: Estimating Probability Given x

\square Background: Hrs. slept X normal; $\mu=7, \sigma=1.5$.

\square Question: Estimate $\mathbf{P}\left(\mathbf{6}^{z}<\boldsymbol{X}<\mathbf{8}\right) ?$? $\begin{aligned} & \text { A Closer Look: } \text { are the quartiles of the } z \text { curve. }\end{aligned}$
\square Response:

Example: Estimating x Given Probability

\square Background: Hrs. slept X normal; $\mu=7, \sigma=1.5$.

\square Question: 0.04 is $\mathrm{P}(X<$?)
\square Response:

Example: Estimating x Given Probability

\square Background: Hrs. slept X normal; $\mu=7, \sigma=1.5$.

- Question: 0.20 is $\mathrm{P}(X>$? $)$
\square Response:

Strategies for Normal Probability Problems

- Estimate probability given non-standard x
- Standardize to z
- Estimate probability using Rule
- Estimate non-standard x given probability
- Estimate z
- Unstandardize to x

Lecture Summary

(Normal Random Variables)
\square Relevance of normal distribution

- Continuous random variables; density curves
- 68-95-99.7 Rule for normal R.V.s
- Standardizing/unstandardizing
- Probability problems
- Find probability given z
- Find z given probability
- Find probability given x
- Find x given probability

