Lecture 17: Chapter 7, Section 3 Continuous Random Variables; Normal Distribution

Relevance of Normal Distribution
Continuous Random Variables
68-95-99.7 Rule for Normal R.V.s
Standardizing/Unstandardizing
Probabilities for Standard/Non-standard Normal R.V.s

Looking Back: Review

4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability
 - □ Finding Probabilities (discussed in Lectures 13-14)
 - □ Random Variables (introduced in Lecture 15)
 - Binomial (discussed in Lecture 16)

Normal

□ Sampling Distributions

Statistical Inference

Role of Normal Distribution in Inference

- Goal: Perform inference about unknown population proportion, based on sample proportion
- Strategy: Determine behavior of sample proportion in random samples with known population proportion
- **Key Result:** Sample proportion follows normal curve for large enough samples.

Looking Ahead: Similar approach will be taken with means.

Discrete vs. Continuous Distributions

Binomial Count X

- discrete (distinct possible values like numbers 1, 2, 3, ...)
- **Sample Proportion** $\hat{p} = \frac{X}{n}$
 - also discrete (distinct values like count)
- **Normal Approx. to Sample Proportion**
 - □ **continuous** (follows normal curve)
 - $\square Mean p, standard deviation$

Sample Proportions Approx. Normal (Review)

Proportion of tails in n=16 coinflips (p=0.5) has $\mu = 0.5, \sigma = \sqrt{\frac{0.5(1-0.5)}{16}} = 0.125$, shape approx normal Proportion of lefties (p=0.1) in n=100 people has $\mu = 0.1, \sigma = \sqrt{\frac{0.1(1-0.1)}{100}} = 0.03$, shape approx normal 0.10 -Appapalitik 0.10-biological distribution of the second 0.05 -0.05-0.00 0.00 0.07 0.10 0.13 0.16 0.040.19 0.25 0.375 0.50 0.625 0.75 \hat{p} = Sample proportion left-handed \hat{p} = Sample proportion of tails ©2011 Brooks/Cole, Elementary Statistics: Looking at the Big Picture L17.5 Cengage Learning

Example: Variable Types

Background: Variables in survey excerpt:

0		.	_	
age	breakfast?	comp	credits	• • •
19.67	no	120	15	
20.08	no	120	16	
19.08	yes	40	14	
•••	• • •	•••	•••	

- **Question:** Identify type (cat, discrete quan, continuous quan)
 - Age? Breakfast? Comp (daily min. on computer)? Credits?
- **Response:**
 - Age:
 - Breakfast:
 - Comp (daily time in min. on computer):
 - Credits:

Probability Histogram for Discrete R.V.

Histogram for male shoe size X represents probability by area of bars

- P($X \le 9$) (on left)
- P(X < 9) (on right)

For discrete R.V., strict inequality or not matters.

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

Definition

Density curve: smooth curve showing prob. dist. of continuous R.V. Area under curve shows prob. that R.V. takes value in given interval.

Looking Ahead: Most commonly used density curve is normal z. *but to perform inference we also use t, F, and chi-square curves.*

Elementary Statistics: Looking at the Big Picture

Density Curve for Continuous R.V.

Density curve for male foot length *X* represents probability by area under curve.

$P(X \le 9) = P(X < 9)$

Continuous RV: strict inequality or not doesn't matter. *A Closer Look: Shoe sizes are discrete; foot lengths are continuous.*

68-95-99.7 Rule for Normal Data (Review)

Values of a normal data set have

- \square 68% within 1 standard deviation of mean
- \square 95% within 2 standard deviations of mean
- □ 99.7% within 3 standard deviations of mean 68-95-99.7 Rule for Normal Distributions

68-95-99.7 Rule: Normal Random Variable

Sample at **random** from normal **population**; for sampled value *X* (a R.V.), probability is

- \square 68% that *X* is within 1 standard deviation of mean
- \square 95% that *X* is within 2 standard deviations of mean
- \square 99.7% that *X* is within 3 standard deviations of mean

L17.14

68-95-99.7 Rule: Normal Random Variable

Looking Back: We use Greek letters to denote population mean and standard deviation. mean = μ , standard deviation = σ

Example: 68-95-99.7 Rule for Normal R.V.

- **Background**: IQ for randomly chosen adult is normal R.V. X with $\mu = 100$, $\sigma = 15$.
- **Question:** What does Rule tell us about distribution of X?
- **Response:** We can sketch distribution of X:

Example: Finding Probabilities with Rule

- **Background**: IQ for randomly chosen adult is normal R.V. X with $\mu = 100$, $\sigma = 15$.
- **Question:** Prob. of IQ between 70 and 130 = ?
- **Response:**

Example: Finding Probabilities with Rule

- **Background**: IQ for randomly chosen adult is normal R.V. X with $\mu = 100$, $\sigma = 15$.
- **Question:** Prob. of IQ less than 70 = ?
- **Response:**

Example: Finding Probabilities with Rule

- **Background**: IQ for randomly chosen adult is normal R.V. X with $\mu = 100$, $\sigma = 15$.
- **Question:** Prob. of IQ less than 100 = ?
- **Response:**

Example: Finding Values of X with Rule

- **Background**: IQ for randomly chosen adult is normal R.V. X with $\mu = 100$, $\sigma = 15$.
- **Question:** Prob. is 0.997 that IQ is between...?
- **Response:**

Example: Finding Values of X with Rule

- **Background**: IQ for randomly chosen adult is normal R.V. X with $\mu = 100$, $\sigma = 15$.
- **Question:** Prob. is 0.025 that IQ is above...?
- **Response:**

Example: Using Rule to Evaluate Probabilities

- **Background**: Foot length of randomly chosen adult male is normal R.V. X with $\mu = 11$, $\sigma = 1.5$ (in.)
- **Question:** How unusual is foot less than 6.5 inches?
- **Response:**

Example: Using Rule to Estimate Probabilities

- **Background**: Foot length of randomly chosen adult male is normal R.V. X with $\mu = 11$, $\sigma = 1.5$ (in.)
- **Question:** How unusual is foot more than 13 inches?
- **Response:**

Definition (Review)

z-score, or standardized value, tells how many standard deviations below or above the mean the original value is:

$$z = \frac{value-mean}{standard deviation}$$

- □ Notation for Population: $z = \frac{x-\mu}{\sigma}$
 - z > 0 for x above mean
 - z < 0 for x below mean
- \square Unstandardize: $x = \mu + z\sigma$

Standardizing Values of Normal R.V.s

Standardizing to z lets us avoid sketching a different curve for every normal problem: we can always refer to same standard normal (z) curve:

Example: *Standardized Value of Normal R.V.*

- **Background**: Typical nightly hours slept by college students normal; $\mu = 7$, $\sigma = 1.5$
- Question: How many standard deviations below or above mean is 9 hours?
- **Response:** Standardize to z =(9 is standard deviations above mean)

Example: *Standardizing/Unstandardizing Normal R.V.*

Background: Typical nightly hours slept by college students normal; $\mu = 7$, $\sigma = 1.5$.

Questions:

- What is standardized value for sleep time 4.5 hours?
- If standardized sleep time is +2.5, how many hours is it?

Responses:

Interpreting *z*-scores (*Review*)

This table classifies ranges of *z*-scores informally, in terms of being unusual or not.

Size of z	Unusual?
z greater than 3	extremely unusual
z between 2 and 3	very unusual
z between 1.75 and 2	unusual
z between 1.5 and 1.75	maybe unusual (depends on circumstances)
z between 1 and 1.5	somewhat low/high, but not unusual
z less than 1	quite common

Looking Ahead: Inference conclusions will hinge on whether or not a standardized score can be considered "unusual".

Example: Characterizing Normal Values Based on z-Scores

- **Background**: Typical nightly hours slept by college students normal; $\mu = 7$, $\sigma = 1.5$.
- **Questions:** How unusual is a sleep time of 4.5 hours (z = -1.67)? 10.75 hours (z = +2.5)?
- **Responses:**
 - Sleep time of 4.5 hours (z = -1.67):

= Sleep time of 10.75 notifs (2 +2.5).				
Size of z	Unusual?			
z greater than 3	extremely unusual			
z between 2 and 3	very unusual			
z between 1.75 and 2	unusual			
z between 1.5 and 1.75	maybe unusual (depends on circumstances)			
z between 1 and 1.5	somewhat low/high, but not unusual			
z less than 1	quite common			
Elementary Statistics. Looking at the big Picture Practice: 7.51 p 332				

Sleep time of 10.75 hours (7 = +2.5).

Normal Probability Problems

- Estimate probability given *z*
 - **D** Probability close to 0 or 1 for extreme z
- Estimate *z* given probability
- Estimate probability given non-standard x
- Estimate non-standard *x* given probability

Example: *Estimating Probability Given z*

Background: Sketch of 68-95-99.7 Rule for Z

L17.43

Example: *Estimating Probability Given z*

Background: Sketch of 68-95-99.7 Rule for Z

©2011 Brooks/Cole, Cengage Learning

Example: *Estimating Probability Given z*

Background: Sketch of 68-95-99.7 Rule for Z

Example: *Probabilities for Extreme z*

Background: Sketch of 68-95-99.7 Rule for Z

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture Practice: 7.54 p.332

L17.50

Example: *Estimating z Given Probability*

Background: Sketch of 68-95-99.7 Rule for Z

Example: *Estimating z Given Probability*

Background: Sketch of 68-95-99.7 Rule for Z

Example: *Estimating Probability Given x*

Background: Hrs. slept X normal; $\mu = 7$, $\sigma = 1.5$.

Example: *Estimating Probability Given x*

Background: Hrs. slept X normal; $\mu = 7$, $\sigma = 1.5$.

©2011 Brooks/Cole, Cengage Learning

Example: *Estimating x Given Probability*

Background: Hrs. slept X normal; $\mu = 7$, $\sigma = 1.5$.

Example: *Estimating x Given Probability*

Background: Hrs. slept X normal; $\mu = 7$, $\sigma = 1.5$.

©2011 Brooks/Cole, Cengage Learning

Strategies for Normal Probability Problems

- Estimate probability given non-standard *x*
 - $\Box \quad \text{Standardize to } z$
 - Estimate probability using Rule
- Estimate non-standard *x* given probability
 - \Box Estimate z
 - \Box Unstandardize to *x*

Lecture Summary

(Normal Random Variables)

- Relevance of normal distribution
- Continuous random variables; density curves
- □ 68-95-99.7 Rule for normal R.V.s
- □ Standardizing/unstandardizing
- Probability problems
 - Find probability given z
 - Find *z* given probability
 - Find probability given *x*
 - Find *x* given probability