Lecture 12: more Chapter 5, Section 3 Relationships between Two Quantitative Variables; Regression

םEquation of Regression Line; Residuals
-Effect of Explanatory/Response Roles
םUnusual Observations
\square Sample vs. Population
口Time Series; Additional Variables

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing
- Single variables: 1 cat,1 quan (discussed Lectures 5-8)
- Relationships between 2 variables:
- Categorical and quantitative (discussed in Lecture 9)
- Two categorical (discussed in Lecture 10)
- Two quantitative
- Probability
- Statistical Inference

Review

- Relationship between 2 quantitative variables
- Display with scatterplot
- Summarize:
- Form: linear or curved
\square Direction: positive or negative
\square Strength: strong, moderate, weak
If form is linear, correlation r tells direction and strength.
Also, equation of least squares regression line lets us predict a response \widehat{y} for any explanatory value x.

Least Squares Regression Line

Summarize linear relationship between explanatory (x) and response (y) values with line $\hat{y}=b_{0}+b_{1} x$ that minimizes sum of squared prediction errors (called residuals).
\square Slope: predicted change in response y for every unit increase in explanatory value x
\square Intercept: where best-fitting line crosses y-axis (predicted response for $x=0$?)

Example: Least Squares Regression Line

- Background: Car-buyer used software to regress price on age for 14 used Grand Am's.

$$
\begin{aligned}
& \text { The regression equation is } \\
& \text { Price = } 14690-1288 \text { Age }
\end{aligned}
$$

\square Question: What do the slope $(-1,288)$ and intercept $(14,690)$ tell us?
\square Response:

- Slope: For each additional year in age, predict price
- Intercept: Best-fitting line

Example: Extrapolation

- Background: Car-buyer used software to regress price on age for 14 used Grand Am's.

> The regression equation is
> Price $=14690-1288$ Age

- Question: Should we predict a new Grand Am to cost \$14,690-\$1,288(0)=\$14,690?
\square Response:

Definition

- Extrapolation: using the regression line to predict responses for explanatory values outside the range of those used to construct the line.

Example: More Extrapolation

- Background: A regression of 17 male students’ weights (lbs.) on heights (inches) yields the equation

$$
\widehat{y}=-438+8.7 x
$$

\square Question: What weight does the line predict for a 20-inch-long infant?
\square Response:

Expressions for slope and intercept

Consider slope and intercept of the least squares regression line $\widehat{y}=b_{0}+b_{1} x$
\square Slope: $b_{1}=r \frac{s_{y}}{s_{x}}$ so if x increases by a standard deviation, predict y to increase by r standard deviations

ㅁ Intercept: $b_{0}=\bar{y}-b_{1} \bar{x}$ so when $x=\bar{x}$ predict $\widehat{y}=b_{0}+b_{1} \bar{x}=\left(\bar{y}-b_{1} \bar{x}\right)+b_{1} \bar{x}=\bar{y}$
\rightarrow the line passes through the point of averages (\bar{x}, \bar{y})

Example: Individual Summaries on Scatterplot

- Background: Car-buyer plotted price vs. age for 14 used Grand Ams [(4, 13,000), $(8,4,000)$, etc.]

- Question: Guess the means and sds of age and price?
\square Response: Age has approx. mean yrs, sd yrs; price has approx. mean \$ sd \$

Definitions

\square Residual: error in using regression line $\widehat{y}=b_{0}+b_{1} x$ to predict y given x. It equals the vertical distance observed minus predicted which can be written $y_{i}-\widehat{y}_{i}$
$\square \quad \boldsymbol{s}$: denotes typical residual size, calculated as

$$
s=\sqrt{\frac{\left(y_{1}-\widehat{y}_{1}\right)^{2}+\cdots+\left(y_{n}-\widehat{y}_{n}\right)^{2}}{n-2}}
$$

Note: s just "averages" out the residuals $y_{i}-\widehat{y}_{i}$

Example: Considering Residuals

\square Background: Car-buyer regressed price on age for 14 used Grand Ams [(4, 13,000), (8, 4,000), etc.].
The regression equation is

price $=14686-1290$ age	
S = 2175	R-Sq $=78.5 \%$

\square Question: What does $s=2,175$ tell us?
\square Response: Regression line predictions not perfect:

- $x=4 \rightarrow$ predict $\widehat{y}=$ actual $y=13,000 \rightarrow$ prediction error $=$
- $x=8 \rightarrow$ predict $\widehat{y}=$ actual $y=4,000 \rightarrow$ prediction error $=$
- Typical size of 14 prediction errors is

Example: Considering Residuals

- Typical size of 14 prediction errors is $s=2,175$ (dollars): Some points' vertical distance from line more, some less; 2,175 is typical distance.

Example: Residuals and their Typical Size s

\square Background: For a sample of schools, regressed

- average Math SAT on average Verbal SAT
- average Math SAT on \% of teachers w. advanced degrees

Regression Plot
Math $=96.8098+0.832673$ Verbal

Regression Plot
Math $=478.038+0.796632$ \%AdvDegrees

A Closer Look: If output reports R-sq, take its square root (+ or - depending on slope) to find r.

- Question: How are $s=7.08$ (left) and $s=26.2$ (right) consistent with the values of the correlation r ?
$\square \quad$ Response: On left $r=\sqrt{R s q}=\sqrt{0.939}=0.97$; relation is and typical error size is (only 7.08).

Example: Residuals and their Typical Size s

\square Background: For a sample of schools, regressed

- average Math SAT on average Verbal SAT Smaller $s \rightarrow$ better predictions
- average Math SAT on $\%$ of teachers w . advanced degrees

Regression Plot Math $=96.8098+0.832673$ Verbal

Regression Plot
Math $=478.038+0.796632$ \%AdvDegrees

- Question: How are $s=7.08$ (left) and $s=26.2$ (right) consistent with the values of the correlation r ?
- Response: On right $r=$ relation is and typical error size is

Example: Typical Residual Size s close to sy or 0

- Background: Scatterplots show relationships...
- Price per kilogram vs. price per lb. for groceries
- Students' final exam score vs. (number) order handed in

 Regression
line approx.
same as line
at average
y-value.
\square Questions: Which has $s=0$? Which has s close to s_{y} ?
\square Responses: Plot on left has $s=$ no prediction erors. Plot on right: s close to (Regressing on x doesn't help; regression line is approximately horizontal.)

Example: Typical Residual Size s close to sy

- Background: 2008-9 Football Season Scores

Regression Analysis: Steelers versus Opponents
The regression equation is
Steelers $=23.5-0.053$ Opponents
S = 9.931
Descriptive Statistics: Steelers

Variable	N	Mean	Median	TrMean	StDev	SE Mean
Steelers	19	22.74	23.00	22.82	9.66	2.22
Variable	Minimum	Maximum	Q1	Q3		
Steelers	6.00	38.00	14.00	31.00		

Question: Since $s=9.931$ and $S_{y}=9.66$ are very close, do you expect $|r|$ close to 0 or 1 ?
Response: r must be close to

Explanatory/Response Roles in Regression

Our choice of roles, explanatory or response, does not affect the value of the correlation r, but it does affect the regression line.

Example: Regression Line when Roles are

Switched

- Background: Compare regression of y on x (left) and regression of x on y (right) for same 4 points:

Regression of x on y

- Question: Ďo we get the same line regressing y on x as we do regressing x on y ?
\square Response: The lines are very different.
- Regressing y on x :
- Regressing x on y :

Definitions

\square Outlier: (in regression) point with unusually large residual
\square Influential observation: point with high degree of influence on regression line.

Example: Outliers and Influential Observations

- Background: Exploring relationship between orders for new planes and fleet size. $(r=+0.69)$

\square Question: Are Southwest and JetBlue outliers or influential?
\square Response:
- Southwest:
(omit it \rightarrow slope changes a lot)

Example: Outliers and Influential Observations

- Background: Exploring relationship between orders for new planes and fleet size. $(r=+0.69)$

Unusual Observations

Obs	FleetSiz	PlanesOr	Fit	SE Fit	Residual	St Resid
6	400	397.0	398.1	127.1	-1.1	-0.04 X
7	60	373.0	115.2	51.7	257.8	2.16 R

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.
\square Question: How does Minitab classify Southwest and JetBlue?
\square Response:

- Southwest:
- JetBlue:
(marked in Minitab)
(marked in Minitab)

Influential observations tend to be extreme in horizontal direction.

Definitions

\square Slope β_{1} : how much response y changes in general (for entire population) for every unit increase in explanatory variable x
\square Intercept β_{0} : where the line that best fits all explanatory/response points (for entire population) crosses the y-axis

Looking Back: Greek letters often refer to population parameters.

Line for Sample vs. Population

\square Sample: line best fitting sampled points: predicted response is

$$
\widehat{y}=b_{0}+b_{1} x
$$

\square Population: line best fitting all points in population from which given points were sampled: mean response is

$$
\mu_{y}=\beta_{0}+\beta_{1} x
$$

A larger sample helps provide more evidence of a relationship between two quantitative variables in the general population.

Example: Role of Sample Size

- Background: Relationship between ages of students' mothers and fathers both have $r=+0.78$, but sample size is over 400 (on left) or just 5 (on right):

- Question: Which plot provides more evidence of strong positive relationship in population?
\square Response: Plot on
Can believe configuration on occurred by chance.

Time Series

If explanatory variable is time, plot one response for each time value and "connect the dots" to look for general trend over time, also peaks and troughs.

Example: Time Series

\square Background: Time series plot shows average daily births each month in year 2000 in the U.S.:

\square Question: Where do you see a peak or a trough? Response: Trough in peak in

Example: Time Series

- Background: Time series plot of average daily births in U.S.

\square Questions: How can we explain why there are...
- Conceptions in U.S.: fewer in July, more in December?
- Conceptions in Europe: more in summer, fewer in winter?
\square Response:
A Closer Look: Statistical methods can't always explain
"why", but at least they help understand "what" is going on.

Additional Variables in Regression

- Confounding Variable: Combining two groups that differ with respect to a variable that is related to both explanatory and response variables can affect the nature of their relationship.
- Multiple Regression: More advanced treatments consider impact of not just one but two or more quantitative explanatory variables on a quantitative response.

Example: Additional Variables

- Background: A regression of phone time (in minutes the day before) and weight shows a negative relationship.

- Questions: Do heavy people talk on the phone less? Do light people talk more?
- Response: separately for
is confounding variable \rightarrow regress
\rightarrow no relationship

Example: Multiple Regression

\square Background: We used a car's age to predict its price.
\square Question: What additional quantitative variable would help predict a car's price?
\square Response:

Lecture Summary (Regression)

\square Equation of regression line

- Interpreting slope and intercept
- Extrapolation
- Residuals: typical size is s
\square Line affected by explanatory/response roles
- Outliers and influential observations
- Line for sample or population; role of sample size
\square Time series
- Additional variables

