Lecture 6: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries)

\square Summarize with Shape, Center, Spread
םDisplays: Stemplots, Histograms
םFive Number Summary, Outliers, Boxplots

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing
- Single variables: 1 cat. (Lecture 5), 1 quantitative
- Relationships between 2 variables
- Probability
- Statistical Inference

Example: Issues to Consider

- Background: Intro stat students' earnings (in \$1000s) previous year: $12,3,7,1, \ldots$ [survey was anonymous].
- Questions:
- What population do the data represent?
- Were responses unbiased?
\square Responses:
- All students at that university, if sample was representative in terms of
- Probably unbiased because

Looking Back: These are data production issues.
©2011 Brooks/Cole,
Cengage Learning

Example: More Issues to Consider

- Background: Intro stat students' earnings (in \$1000s) previous year: $12,3,7,1, \ldots$ [survey was anonymous].
- Questions:
- How do we summarize the data?
- Sample average was $\$ 3776$. Can we conclude population average was less than $\$ 5000$?
\square Responses:
- Mean and other summaries are the focus of this part.

Looking Ahead: This is an inference question, to be addressed in Part Four.

Definitions

\square Distribution: tells all possible values of a variable and how frequently they occur
Summarize distribution of a quantitative variable by telling shape, center, spread.
\square Shape: tells which values tend to be more or less common
\square Center: measure of what is typical in the distribution of a quantitative variable
\square Spread: measure of how much the distribution's values vary

Definitions

- Symmetric distribution: balanced on either side of center
- Skewed distribution: unbalanced (lopsided)
- Skewed left: has a few relatively low values
- Skewed right: has a few relatively high values
\square Outliers: values noticeably far from the rest
\square Unimodal: single-peaked
\square Bimodal: two-peaked
- Uniform: all values equally common (flat shape)
- Normal: a particular symmetric bell-shape

Displays of a Quantitative Variable

Displays help see the shape of the distribution.

- Stemplot
- Advantage: most detail
- Disadvantage: impractical for large data sets
- Histogram
- Advantage: works well for any size data set
- Disadvantage: some detail lost
\square Boxplot
- Advantage: shows outliers, makes comparisons $\mathrm{C} \rightarrow \mathrm{Q}$
- Disadvantage: much detail lost

Definition

- Stemplot: vertical list of stems, each followed by horizontal list of one-digit leaves stems 1-digit leaves

Example: Constructing a Stemplot

- Background: Masses (in 1000 kg) of 20 dinosaurs:

\square Question: Display with stemplot; what does it tell us about the shape?

Example: Constructing a Stemplot

- Background: Masses (in 1000 kg) of 20 dinosaurs:

\square Response:
Do not skip the 4 stem: why?
Long tail \rightarrow skewed.

1 peak \rightarrow
Most below 2000 kg , a few unusually heavy.

Modifications to Stemplots

\square Too few stems? Split...

- Split in 2: $1^{\text {st }}$ stem gets leaves $0-4,2^{\text {nd }}$ gets 5-9
- Split in 5: $1^{\text {st }}$ stem gets leaves $0-1,2^{\text {nd }}$ gets $2-3$, etc.
- Split in 10: $1^{\text {st }}$ gets $0, \ldots, 10^{\text {th }}$ gets 9 .
\square Too many stems? Truncate last digit(s).

Example: Splitting Stems

- Background: Credits taken by 14 "other" students: $\begin{array}{lllllllllllll}4 & 7 & 11 & 11 & 11 & 13 & 13 & 14 & 14 & 15 & 17 & 17 & 17\end{array} 18$
- Questions: What shape do we guess for non-traditional (other) students? How to construct stemplot to make shape clear?
\square Responses:
- Expect shape skewed due to
- Stemplot: 1st attempt has too few stems

0|4 7
1|111334457778 so split 2 ways:

Example: Truncating Digits

\square Background: Minutes spent on computer day before

$$
\begin{array}{crrrrrrrrr}
0 & 10 & 20 & 30 & 30 & 30 & 30 & 45 & 45 & 60 \\
60 & 60 & 67 & 90 & 100 & 120 & 200 & 240 & 300 & 420
\end{array}
$$

\square Question: How to construct stemplot to make shape clear?
\square Response: Stems 0 to 42 too many: truncate last digit, work with 100's (stems) and 10's (leaves):
Skewed \quad most times
less than 100 minutes, but a
few had unusually long times.

Definition

- Histogram: to display quantitative values...

1. Divide range of data into intervals of equal width.
2. Find count or percent or proportion in each.
3. Use horizontal axis for range of data values, vertical axis for count/percent/proportion in each.

Example: Constructing a Histogram

\square Background: Prices of 12 used upright pianos:
1004505006506951100120012001600210022002300

- Question: Construct a histogram for the data; what does it tell us about the shape?
- Response:

We opted to put 500 as left endpoint of $2 n d$ interval; be consistent (a price of 1000 would go in 3rd interval, not 2nd).

Definitions

- Median: a measure of center:
- the middle for odd number of values
- average of middle two for even number of values
\square Quartiles: measures of spread:
- $1^{\text {st }}$ Quartile (Q1) has one-fourth of data values at or below it (middle of smaller half)
- $3^{\text {rd }}$ Quartile (Q3) has three-fourths of data values at or below it (middle of larger half)
(By hand, for odd number of values, omit median to find quartiles.)

Definitions

\square Percentile: value at or below which a given percentage of a distribution's values fall A Closer Look: Q1 is $25^{\text {th }}$ percentile, Q3 is $75^{\text {th }}$ percentile.
\square Range: difference between maximum and minimum values
\square Interquartile range: tells spread of middle half of data values, written $\mathrm{IQR}=\mathrm{Q} 3-\mathrm{Q} 1$

Ways to Measure Center and Spread

- Five Number Summary:

1. Minimum
2. Q1
3. Median
4. Q3
5. Maximum

- Mean and Standard Deviation
(more useful but less straightforward to find)

Example: Finding 5 Number Summary and IQR

- Background: Credits taken by 14 non-traditional students: $\begin{array}{llllllllllll}4 & 7 & 11 & 11 & 11 & 13 & 13 & 14 & 14 & 15 & 17 & 17\end{array} 1718$
$\square \quad$ Question: What are Five Number Summary, range, and IQR?
- Response:

1. Minimum:
2. Q 1 :
3. Median:
4. Q3:
5. Maximum:

Range:
IQR:

Definition

The 1.5-Times-IQR Rule identifies outliers:

- below Q1-1.5(IQR) considered low outlier
- above Q3+1.5(IQR) considered high outlier
1.5-Times-IQR Rule to Identify Outliers

Definition

A boxplot displays median, quartiles, and extreme values, with special treatment for outliers:

1. Bottom whisker to minimum non-outlier
2. Bottom of box at Q1
3. Line through box at median
4. Top of box at Q3
5. Top whisker to maximum non-outlier

Outliers denoted "*".

Example: Identifying Outliers

- Background: Credits taken by 14 non-traditional students had 5 No. Summary: 4, 11, 13.5, 17, 18
$\square \quad$ Questions: Are there outliers?
- Responses: Q1= Q3=
- $\mathrm{IQR}=$
- $1.5 \times \mathrm{IQR}=$
- $\mathrm{Q} 1-1.5(\mathrm{IQR})=$
- $\mathrm{Q} 3+1.5(\mathrm{IQR})=$

Low outliers?
High outliers?

Example: Constructing Boxplot

- Background: Credits taken by 14 non-traditional students had 5 No. Summary: 4, 11, 13.5, 17, 18
$\square \quad$ Question: How is the boxplot constructed?
\square Response: Maximum $=18 \rightarrow$
$\mathrm{Q} 3=17$

Median $=13.5 \rightarrow$

Minimum 4 \rightarrow between 11 and 17, shape is left-skewed

$$
\mathrm{Q} 3=17 \rightarrow
$$

Lecture Summary

(Quantitative Displays, Begin Summaries)

- Display: stemplot, histogram
- Shape: Symmetric or skewed? Unimodal? Normal?
\square Center and Spread
- median and range, IQR
- identify outliers
- display with boxplot

