Lecture 32: Chapter 12, Sections 1-2 Two Categorical Variables Chi-Square

םFormulating Hypotheses to Test Relationship
口Test based on Proportions or on Counts
-Chi-square Test
םConfidence Intervals

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
$\square \quad 1$ categorical (discussed in Lectures 21-23)
- 1 quantitative (discussed in Lectures 24-27)
- cat and quan: paired, 2-sample, several-sample (Lectures 28-31)

$\square 2$ categorical

- 2 quantitative

Inference for Relationship (Review)

- H_{0} and H_{a} about variables: not related or related
- Applies to all three $\mathrm{C} \rightarrow \mathrm{Q}, \mathrm{C} \rightarrow \mathrm{C}, \mathrm{Q} \rightarrow \mathrm{Q}$
- H_{0} and H_{a} about parameters: equality or not
- $\mathrm{C} \rightarrow \mathrm{Q}:$ pop means equal?
- $\mathrm{C} \rightarrow \mathrm{C}:$ pop proportions equal?
- $\mathrm{Q} \rightarrow \mathrm{Q}$: pop slope equals zero?

Example: 2 Categorical Variables: Hypotheses

- Background: We are interested in whether or not smoking plays a role in alcoholism.
- Question: How would H_{0} and H_{a} be written
- in terms of variables?
- in terms of parameters?
- Response:
- in terms of variables
- H_{0} : smoking and alcoholism
- H_{a} : smoking and alcoholism

The word "not" appears in Ho about variables, in Ha about parameters. related related

- in terms of parameters
$\square H_{0}$: Pop proportions alcoholic
for smokers, non-smokers
- H_{a} Pop. proportions alcoholic for smokers, non-smokers

Example: Summarizing with Proportions

\square Background: Research Question: Does smoking play a role in alcoholism?
\square Question: What statistics from this table should we examine to answer the research question?
\square Response: Compare proportions for

	Alcoholic	Not Alcoholic	Total
Smoker	30	200	230
Nonsmoker	10	760	770
Total	40	960	1,000

Example: Test Statistic for Proportions

- Background: One approach to the question of whether smoking and alcoholism are related is to compare proportions.

	Alcoholic	Not Alcoholic	Total	
Smoker	30	200	230	$\hat{p}_{1}=\frac{30}{230}=0.130$
Nonsmoker	10	760	770	$\hat{p}_{2}=\frac{10}{770}=0.013$
Total	40	960	1,000	

- Question: What would be the next step, if we've summarized the situation with the difference between sample proportions 0.130-0.013?
\square Response: \qquad the difference between sample proportions 0.130-0.013.
Stan. diff. is normal for large n :

z Inference for 2 Proportions: Pros \& Cons

Advantage:

Can test against one-sided alternative.
Disadvantage:
2-by-2 table: comparing proportions straightforward
Larger table: comparing proportions complicated,
can't just standardize one difference $\widehat{p}_{1}-\widehat{p}_{2}$

Another Comparison in Considering Categorical

 Relationships (Review)- Instead of considering how different are the proportions in a two-way table, we may consider how different the counts are from what we'd expect if the "explanatory" and "response" variables were in fact unrelated.
- Compared observed, expected counts in wasp study:

Obs	A	NA	T
B	16	15	31
U	24	7	31
T	40	22	62

Exp	A	NA	T
B	20	11	31
U	20	11	31
T	40	22	62

Inference Based on Counts

To test hypotheses about relationship in r-by-c table, compare counts observed to counts expected if H_{0} (equal proportions in response of interest) were true.

Example: Table of Expected Counts

- Background: Data on smoking and alcoholism:

	Alcoholic	Not Alcoholic	Total
Smoker	30	200	230
Nonsmoker	10	760	770
Total	40	960	1,000

\square Question: What counts are expected if H_{0} is true?

- Response: Overall proportion alcoholic is

If proportions alcoholic were same for S and NS , expect

- $\quad(40 / 1,000)(230)=\quad$ smokers to be alcoholic
- $\quad(40 / 1,000)(770)=$ non-smokers to be alcoholic; also
- $\quad(960 / 1,000)(230)=\quad$ smokers not alcoholic
- $\quad(960 / 1,000)(770)=$ non-smokers not alcoholic

Example: Table of Expected Counts

- Background: If proportions alcoholic were same for S and NS, expect
- $\quad(40 / 1,000)(230)=9.2$ smokers to be alcoholic
- $\quad(40 / 1,000)(770)=30.8$ non-smokers to be alcoholic; also
- $\quad(960 / 1,000)(230)=220.8$ smokers not alcoholic
- $\quad(960 / 1,000)(770)=739.2$ non-smokers not alcoholic
- Question: Where do they appear in table of expected counts?

Response:

	Alcoholic	Not Alcoholic	Total	Note:
Smoker			230	9.2/230 $=$
Nonsmoker			770	30.8/770 =
Total	40	960	1,000	40/1,000

Example: Table of Expected Counts

	Alcoholic	Not Alcoholic	Total
Smoker	9.2	220.8	230
Non-smoker	30.8	739.2	770
Total	40	960	1000

$\square \quad$ Note: Each expected count is Column total \times Row total Expect:

- $\quad(40)(230) / 1,000=9.2$ smokers to be alcoholic
- $\quad(40)(770) / 1,000=30.8$ non-smokers to be alcoholic; also
- $\quad(960)(230) / 1,000=220.8$ smokers not alcoholic
- $\quad(960)(770) / 1,000=739.2$ non-smokers not alcoholic

Chi-Square Statistic

- Components to compare observed and expected counts, one table cell at a time:

$$
\text { component }=\frac{(\text { observed }- \text { expected) })^{2}}{\text { expected }}
$$

Components are individual standardized squared differences.

- Chi-square test statistic χ^{2} combines all components by summing them up:

$$
\text { chi-square }=\text { sum of } \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
$$

Chi-square is sum of standardized squared differences.

Example: Chi-Square Statistic

- Background: Observed and Expected Tables:

Obs	A	NA	Total
S	30	200	230
NS	10	760	770
Total	40	960	1000

Exp	A	NA	Total
S	9.2	220.8	230
NS	30.8	739.2	770
Total	40	960	1000

$\square \quad$ Question: What is the chi-square statistic?
$\square \quad$ Response: Find chi-square $=$ sum of $\frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}$

Example: Assessing Chi-Square Statistic

- Background: We found chi-square $=64$.
- Question: Is the chi-square statistic (64) large?
\square Response:

Chi-Square Distribution

chi-square $=$ sum of $\frac{(\text { observed }- \text { expected) })^{2}}{\text { expected }}$ follows a predictable pattern (assuming H_{0} is true) known as
chi-square distribution with $\mathrm{df}=(r-1) \times(c-1)$

- $r=$ number of rows (possible explanatory values)
- $c=$ number of columns (possible response values) Properties of chi-square:
- Non-negative (based on squares)
- Mean=df [=1 for smallest (2×2) table]
- Spread depends on df
- Skewed right

Chi-Square Density Curve

For chi-square with $1 \mathrm{df}, P\left(\chi^{2} \geq 3.84\right)=0.05$
\rightarrow If $\chi^{2}>3.84, P$-value <0.05
Properties of chi-square:
Non-negative

- Mean = df $\mathrm{df}=1$ for smallest [2×2] table

Example: Assessing Chi-Square (Continued)

- Background: In testing for relationship between smoking and alcoholism in 2×2 table, found $\chi^{2}=64$
- Question: Is there evidence of a relationship in general between smoking and alcoholism (not just in the sample)?
\square Response: For df=(2-1)×(2-1)=1, chi-square considered "large" if greater than 3.84 \rightarrow chi-square $=64$ large? $\quad P$-value small?
Evidence of a relationship between smoking and alcoholism?

Inference for 2 Categorical Variables; z or χ^{2}

For 2×2 table, $z^{2}=\chi^{2}$

- z statistic (comparing proportions) \rightarrow combined tail probability $=0.05$ for $z=1.96$
- chi-square statistic (comparing counts) \rightarrow right-tail prob $=0.05$ for $\chi^{2}=1.96{ }^{2}=3.84$

Example: Relating Chi-Square \& z

- Background: We found chi-square $=64$ for the 2-by-2 table relating smoking and alcoholism.
\square Question: What would be the z statistic for a test comparing proportions alcoholic for smokers vs. non-smokers?
\square Response:

Assessing Size of Test Statistics (Summary)

When test statistic is "large":

- z: greater than 1.96 (about 2)
- t : depends on df; greater than about 2 or 3
- F : depends on DFG, DFE
- χ^{2} depends on $\mathrm{df}=(r-1) \times(c-1)$;
greater than 3.84 (about 4) if $\mathrm{df}=1$

Explanatory/Response: 2 Categorical Variables

Roles impact what summaries to report Roles do not impact χ^{2} statistic or P-value

Example: Summaries Impacted by Roles

- Background: Compared proportions alcoholic (resp) for smokers and non-smokers (expl).

	Alcoholic	Not Alcoholic	Total	$\begin{aligned} & \widehat{p}_{1}=\frac{30}{200}=0.130 \\ & \widehat{p}_{2}=\frac{10}{770}=0.013 \end{aligned}$
Smoker	30	200	230	
Nonsmoker	10	760	770	
Total	40	960	1,000	
$\frac{30}{40}=0.75$		$\frac{200}{960}=0.21$		

- Question: What summaries would be appropriate if alcoholism is explanatory variable?
- Response: Compare proportions for
(expl).

Example: Comparative Summaries

- Background: Calculated proportions for table:

	Alcoholic	Not Alcoholic	Total	$\begin{aligned} & \hat{p}_{1}=\frac{30}{230}=0.130 \\ & \hat{p}_{2}=\frac{10}{770}=0.013 \end{aligned}$
Smoker	30	200	230	
Nonsmoker	10	760	770	
Total	40	960	1,000	
	30 $=0.75$	$\frac{200}{960}=0.21$		

- Question: How can we express the higher risk of alcoholism for smokers and the higher risk of smoking for alcoholics?
- Response: Smokers are times as likely to be alcoholics compared to non-smokers. Alcoholics are times as likely to be smokers compared to non-alcoholics.

Guidelines for Use of Chi-Square Procedure

- Need random samples taken independently from several populations.
- Confounding variables should be separated out.
- Sample sizes must be large enough to offset nonnormality of distributions.
- Need populations at least 10 times sample sizes.

Rule of Thumb for Sample Size in Chi-Square

- Sample sizes must be large enough to offset nonnormality of distributions.
Require expected counts all at least 5 in 2×2 table (Requirement adjusted for larger tables.)

> Looking Back: Chi-square statistic follows chi-square distribution only if individual counts vary normally. Our requirement is extension of requirement for single categorical variables $n p \geq 10, n(1-p) \geq 10$ with 10 replaced by 5 because of summing several components.

Example: Role of Sample Size

\square Background: Suppose counts in smoking and alcohol two-way table were $1 / 10^{\text {th }}$ the originals:

	Alcoholic	Not Alcoholic	Total
Smoker	3	20	23
Nonsmoker	1	76	77
Total	4	96	100

- Question: Find chi-square; what do we conclude?
\square Response: Observed counts $1 / 10^{\text {th }} \rightarrow$ expected counts $1 / 10^{\text {th }} \rightarrow$ chi-square instead of 64 .
But the statistic does not follow χ^{2} distribution because expected counts ($0.92,22.08,3.08,73.92$) are ; individual distributions are not normal.

Confidence Intervals for 2 Categorical Variables

Evidence of relationship \rightarrow to what extent does explanatory variable affect response?
Focus on proportions: 2 approaches

- Compare confidence intervals for population proportion in response of interest (one interval for each explanatory group)
- Set up confidence interval for difference between population proportions in response of interest, $1^{\text {st }}$ group minus $2^{\text {nd }}$ group

Example: Confidence Intervals for 2 Proportions

- Background: Individual CI's are constructed:
- Non-smokers 95% CI for pop prop p alcoholic $(0.005,0.021)$
- Smokers 95% CI for pop prop p alcoholic ($0.09,0.17$)
\square Question: What do the intervals suggest about relationship between smoking and alcoholism?
\square Response: Overlap?
Relationship between smoking and alcoholism?

Example: Difference between 2 Proportions (CI)

- Background: 95\% CI for difference between population proportions alcoholic, smokers minus non-smokers is ($0.088,0.146$)
- Question: What does the interval suggest about relationship between smoking and alcoholism?
- Response: Entire interval suggests smokers significantly more likely to be alcoholic \rightarrow there \qquad a relationship.

Lecture Summary

(Inference for Cat \rightarrow Cat; Chi-Square)

\square Hypotheses in terms of variables or parameters
\square Inference based on proportions or counts
\square Chi-square test

- Table of expected counts
- Chi-square statistic, chi-square distribution
- Relating z and chi-square for 2×2 table
- Relative size of chi-square statistic
- Explanatory/response roles in chi-square test
\square Guidelines for use of chi-square
\square Role of sample size
\square Confidence intervals for 2 categorical variables

