Lecture 32: Chapter 12, Sections 1-2 Two Categorical Variables Chi-Square

Formulating Hypotheses to Test Relationship
Test based on Proportions or on Counts
Chi-square Test
Confidence Intervals

Looking Back: Review

4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
 - □ 1 categorical (discussed in Lectures 21-23)
 - □ 1 quantitative (discussed in Lectures 24-27)
 - □ cat and quan: paired, 2-sample, several-sample (Lectures 28-31)

□ 2 categorical

□ 2 quantitative

Inference for Relationship (Review)

- H_0 and H_a about variables: not related or related □ Applies to all three C→Q, C→C, Q→Q
- H_0 and H_a about parameters: equality or not
 - \Box C \rightarrow Q: pop means equal?

 $\Box \quad C \rightarrow C: \text{ pop proportions equal?}$

 $\Box \quad Q \rightarrow Q: \text{ pop slope equals zero?}$

Example: 2 Categorical Variables: Hypotheses

- **Background**: We are interested in whether or not smoking plays a role in alcoholism.
- **Question:** How would H_0 and H_a be written
 - in terms of variables?
 - in terms of parameters?
- **Response:**
 - in terms of variables

- The word "not" appears in Ho about variables, in Ha about parameters.
- H_0 : smoking and alcoholism _____ related
- \square H_a : smoking and alcoholism_____ related
- in terms of parameters

 - $\begin{array}{c} \square & H_0 \\ \square & H_a \end{array} \begin{array}{c} \text{Pop proportions alcoholic} & \text{for smokers, non-smokers} \\ \Pi & H_a \end{array} \begin{array}{c} \text{Pop. proportions alcoholic} & \text{for smokers, non-smokers} \end{array} \right.$

Example: Summarizing with Proportions

- Background: Research Question: Does smoking play a role in alcoholism?
- Question: What statistics from this table should we examine to answer the research question?
- Response: Compare proportions (response)
 for (explanatory).

	Alcoholic Not Alcoholic		Total
Smoker	30	200	230
Nonsmoker	10	760	770
Total	40	960	1,000

Example: Test Statistic for Proportions

Background: One approach to the question of whether smoking and alcoholism are related is to compare proportions.

	Alcoholic	Not Alcoholic	Total	30
Smoker	30	200	230	$\hat{p}_1 = \frac{30}{230} = 0.130$
Nonsmoker	10	760	770	$\hat{p}_2 = \frac{10}{770} = 0.013$
Total	40	960	1,000	12 //0

- Question: What would be the next step, if we've summarized the situation with the difference between sample proportions 0.130-0.013?
- **Response:** the difference between sample proportions 0.130-0.013.

Stan. diff. is normal for large *n*: _

z Inference for 2 Proportions: Pros & Cons

Advantage:

Can test against *one-sided* alternative.

- Disadvantage:
- 2-by-2 table: comparing proportions straightforward Larger table: comparing proportions complicated, can't just standardize one difference $\hat{p}_1 - \hat{p}_2$

Another Comparison in Considering Categorical Relationships *(Review)*

- Instead of considering how different are the *proportions* in a two-way table, we may consider how different the *counts* are from what we'd expect if the "explanatory" and "response" variables were in fact unrelated.
- □ Compared observed, expected counts in wasp study:

Obs	А	NA	Т
В	16	15	31
U	24	7	31
Т	40	22	62

Exp	А	NA	Т
В	20	11	31
U	20	11	31
Т	40	22	62

©2011 Brooks/Cole, Cengage Learning Elementary Statistics: Looking at the Big Picture

Inference Based on Counts

To test hypotheses about relationship in *r*-by-*c* table, compare counts observed to counts expected if H_0 (equal proportions in response of interest) were true.

Example: Table of Expected Counts

Background: Data on smoking and alcoholism:
 Alcoholic Not Alcoholic Total
 Smoker 30 200 230

Smoker	30	200	230
Nonsmoker	10	760	770
Total	40	960	1,000

- **Question:** What counts are expected if H_0 is true?
- **Response:** Overall proportion alcoholic is

If proportions alcoholic were same for S and NS, expect

- (40/1,000)(230) = smokers to be alcoholic
- (40/1,000)(770)= non-smokers to be alcoholic; also
- $(960/1,000)(230) = \underline{\qquad} \text{ smokers not alcoholic}$
- (960/1,000)(770) = non-smokers not alcoholic

Example: Table of Expected Counts

- Background: If proportions alcoholic were same for S and NS, expect
 - (40/1,000)(230) = 9.2 smokers to be alcoholic
 - (40/1,000)(770) = 30.8 non-smokers to be alcoholic; also
 - (960/1,000)(230) = 220.8 smokers not alcoholic
 - (960/1,000)(770) = 739.2 non-smokers not alcoholic
- **Question:** Where do they appear in table of expected counts?

Response:

	Alcoholic	Not Alcoholic	Total	Note:
Smoker			230	9.2/230 =
Nonsmoker			770	30.8/770 =
Total	40	960	1,000	40/1,000

Example: Table of Expected Counts

	Alcoholic	Not Alcoholic	Total
Smoker	9.2	220.8	230
Non-smoker	30.8	739.2	770
Total	40	960	1000

- **Note:** Each expected count is $\frac{Column \ total \times Row \ total}{Table \ total}$
 - (40)(230)/1,000 = 9.2 smokers to be alcoholic
 - (40)(770)/1,000 = 30.8 non-smokers to be alcoholic; also
 - (960)(230)/1,000 = 220.8 smokers not alcoholic
 - (960)(770)/1,000 = 739.2 non-smokers not alcoholic

Chi-Square Statistic

 Components to compare observed and expected counts, one table cell at a time: component = (observed - expected)² components are individual standardized squared differences.
 Chi-square test statistic x² combines all components by summing them up: chi-square = sum of (observed - expected)²

Chi-square is sum of standardized squared differences.

Example: Chi-Square Statistic

Background: Observed and Expected Tables:

Obs	А	NA	Total
S	30	200	230
NS	10	760	770
Total	40	960	1000

Exp	A	NA	Total
S	9.2	220.8	230
NS	30.8	739.2	770
Total	40	960	1000

- **Question:** What is the chi-square statistic?
- **Response:** Find chi-square = sum of $\frac{(\text{observed expected})^2}{\text{expected}}$

_

Example: Assessing Chi-Square Statistic

- **Background**: We found chi-square = 64.
- **Question:** Is the chi-square statistic (64) large?
- **Response:**

Chi-Square Distribution

- chi-square = sum of $\frac{(\text{observed expected})^2}{\text{expected}}$ follows a predictable pattern (assuming H_0 is true) known as
 - **chi-square distribution** with df = $(r-1) \times (c-1)$
 - r = number of rows (possible explanatory values)
 - *c*= number of columns (possible response values)
 Properties of chi-square:
 - Non-negative (based on squares)
 - Mean=df [=1 for smallest (2×2) table]
 - Spread depends on df
 - Skewed right

Chi-Square Density Curve

For chi-square with 1 df, $P(\chi^2 \ge 3.84) = 0.05$ → If $\chi^2 > 3.84$, *P*-value < 0.05 **Properties of chi-square:** 3-Non-negative Mean = df2df=1 for smallest $[2 \times 2]$ table Right-tail 1area = 0.05Spread depends on df 0-Skewed right ġ 5

Chi-square with 1 df (for 2-by-2 table)

Example: Assessing Chi-Square (Continued)

- **Background**: In testing for relationship between smoking and alcoholism in 2×2 table, found $\chi^2 = 64$
- Question: Is there evidence of a relationship in general between smoking and alcoholism (not just in the sample)?
- Response: For df=(2-1)×(2-1)=1, chi-square considered "large" if greater than 3.84
 →chi-square=64 large? _____P-value small?_____
 Evidence of a relationship between smoking and alcoholism? ______

Inference for 2 Categorical Variables; z or χ^2

For 2×2 table,
$$z^2 = \chi^2$$

- *z* statistic (comparing proportions) \rightarrow combined tail probability=0.05 for *z*=1.96
- chi-square statistic (comparing counts) \rightarrow right-tail prob=0.05 for $\chi^2 = 1.96^2 = 3.84$

Example: Relating Chi-Square & z

- Background: We found chi-square = 64 for the
 2-by-2 table relating smoking and alcoholism.
- Question: What would be the z statistic for a test comparing proportions alcoholic for smokers vs. non-smokers?
- **Response:**

Assessing Size of Test Statistics (Summary)

When test statistic is "large":

- z: greater than 1.96 (about 2)
- *t*: depends on df; greater than about 2 or 3
- F: depends on DFG, DFE
- χ^2 depends on df=(*r*-1)×(*c*-1);

greater than 3.84 (about 4) if df=1

Explanatory/Response: 2 Categorical Variables

Roles impact what summaries to report
 Roles do *not* impact χ² statistic or *P*-value

Example: Summaries Impacted by Roles

Background: Compared proportions alcoholic (resp) for smokers and non-smokers (expl).

	Alcoholic	Not Alcoholic	Total	a 30 a ta
Smoker	30	200	230	$p_1 = \frac{30}{230} = 0.13$
Nonsmoker	10	760	770	$\hat{p}_2 = \frac{10}{770} = 0.01$
Total	40	960	1,000	12 //0
<u>3</u>	$\frac{0}{0} = 0.75$	$\frac{200}{960} = 0.21$		-

- **Question:** What summaries would be appropriate if alcoholism is explanatory variable?
- Response: Compare proportions (resp) for (expl).

Example: Comparative Summaries

Background: Calculated proportions for table:

	Alcoholic	Not Alcoholic	Total	30
Smoker	30	200	230	$\hat{p}_1 = \frac{30}{230} = 0.130$
Nonsmoker	10	760	770	$\hat{p}_2 = \frac{10}{770} = 0.013$
Total	40	960	1,000	12 //0
	30 - 0.75	200 - 0.21		a

Question: How can we express the higher risk of alcoholism for smokers and the higher risk of smoking for alcoholics?

Response: Smokers are _____ times as likely to be alcoholics compared to non-smokers. Alcoholics are ______ times as likely to be smokers compared to non-alcoholics.
Contraction of the statistics: Looking at the Big Picture Practice: 5.98b,d p.215
L32.35

Guidelines for Use of Chi-Square Procedure

- Need random samples taken independently from several populations.
- Confounding variables should be separated out.
- Sample sizes must be large enough to offset nonnormality of distributions.
- Need populations at least 10 times sample sizes.

Rule of Thumb for Sample Size in Chi-Square

 Sample sizes must be large enough to offset nonnormality of distributions.
 Require expected counts all at least 5 in 2×2 table
 (Requirement adjusted for larger tables.)

Looking Back: Chi-square statistic follows chi-square distribution only if individual counts vary normally. Our requirement is extension of requirement for single categorical variables $np \ge 10, n(1-p) \ge 10$ with 10 replaced by 5 because of **summing** several components.

Example: *Role of Sample Size*

Background: Suppose counts in smoking and alcohol two-way table were 1/10th the originals:

	Alcoholic Not Alcoholic		Total
Smoker	3	20	23
Nonsmoker	1	76	77
Total	4	96	100

- **Question:** Find chi-square; what do we conclude?

But the statistic does **not** follow χ^2 distribution because expected counts (0.92, 22.08, 3.08, 73.92) are ; individual distributions are **not** normal.

Confidence Intervals for 2 Categorical Variables

- Evidence of relationship→ to what extent does explanatory variable affect response?
- Focus on **proportions**: 2 approaches
- Compare confidence intervals for population proportion in response of interest (one interval for each explanatory group)
- Set up confidence interval for difference between population proportions in response of interest, 1st group minus 2nd group

Example: Confidence Intervals for 2 Proportions

- **Background:** Individual CI's are constructed:
 - **Non-smokers** 95% CI for pop prop p alcoholic (0.005,0.021)
 - Smokers 95% CI for pop prop p alcoholic (0.09, 0.17)
- **Question:** What do the intervals suggest about relationship between smoking and alcoholism?
- **Response:** Overlap? Relationship between smoking and alcoholism? likely to be alcoholic if a smoker).

Example: *Difference between 2 Proportions (CI)*

- Background: 95% CI for difference between population proportions alcoholic, smokers minus non-smokers is (0.088, 0.146)
- Question: What does the interval suggest about relationship between smoking and alcoholism?

Lecture Summary

(Inference for Cat \rightarrow Cat; Chi-Square)

- □ Hypotheses in terms of variables or parameters
- □ Inference based on proportions or counts
- □ Chi-square test
 - Table of expected counts
 - Chi-square statistic, chi-square distribution
 - Relating *z* and chi-square for 2×2 table
 - Relative size of chi-square statistic
 - Explanatory/response roles in chi-square test
- □ Guidelines for use of chi-square
- □ Role of sample size
- □ Confidence intervals for 2 categorical variables