Lecture 31: more Chapter 11, Section 3 Categorical & Quantitative Variable More About ANOVA

- □ANOVA: Hypotheses, Table, Test Stat, *P*-value
- □1st Step in Practice: Displays, Summaries
- □ANOVA Output
- □Guidelines for Use of ANOVA

Looking Back: Review

- 4 Stages of Statistics
 - Data Production (discussed in Lectures 1-4)
 - Displaying and Summarizing (Lectures 5-12)
 - Probability (discussed in Lectures 13-20)
 - Statistical Inference
 - □ 1 categorical (discussed in Lectures 21-23)
 - □ 1 quantitative (discussed in Lectures 24-27)
 - cat and quan: paired, 2-sample, several-sample
 - □ 2 categorical
 - □ 2 quantitative

ANOVA Null and Alternative Hypotheses

 H_0 : explanatory C & response Q not related

Equivalently, $H_O: \mu_1 = \mu_2 = \cdots = \mu_I$ (difference among sample means just chance)

 H_a : explanatory C & response Q are related

Equivalently, H_a : not all the μ_i are equal (difference too extreme to be due to chance)

Depending on formulation, the word "not" appears in Ho or Ha.

Example: How to Refute a Claim about "All"

- **Background**: Reader asked medical advice columnist: "Dear Doctor, does everyone with Parkinson's disease shake?" and doctor replied: *All patients with Parkinson's disease do not shake*.
- **Question:** Is this what the doctor meant to say?
- **□** Response:

Example: ANOVA Alternative Hypothesis

■ **Background**: Null hypothesis to test for relationship between race (3 groups) and earnings:

$$H_0: \mu_1 = \mu_2 = \mu_3$$

Question: Is this the correct alternative?

$$H_a: \mu_1 \neq \mu_2 \neq \mu_3$$

Response:

Practice: 11.37b p.564

The F Statistic (Review)

$$F = \frac{\left[n_1(\bar{x}_1 - \bar{x})^2 + n_2(\bar{x}_2 - \bar{x})^2 + \dots + n_I(\bar{x}_I - \bar{x})^2\right]/(I - 1)}{\left[(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_I - 1)s_I^2\right]/(N - I)}$$

- □ Numerator: variation among groups
 - How different are $\bar{x}_1, \dots, \bar{x}_I$ from one another?
- □ **Denominator:** variation within groups
 - How spread out are samples? (sds s_1, \dots, s_I)

Role of Variations on Conclusion (Review)

Boxplots with same variation *among* groups (3, 4, 5) but different variation *within*: sds large (left) or small

(right)

Scenario on right: smaller s.d.s \rightarrow larger $F = \frac{var \ among}{var \ within}$ \rightarrow smaller P-value \rightarrow likelier to reject $H_0 \rightarrow$ conclude pop means differ

ANOVA Table

Source	Degrees of Freedom	Sum of Squares	Mean Sum of Squares	F	Р
Factor	DFG = I - 1	SSG	MSG = SSG/DFG	$F = \frac{MSG}{MSE}$	p-value
Error	DFE = N - I	SSE	MSE = SSE/DFE		
Total	N-1	SST			

Organizes calculations

- "Source" refers to source of variation
- DF: use I = no. of groups, N = total sample size
- SSG measures overall variation among groups
- SSE measures overall variation within groups
- Mean Sums: Divide Sums by DFs
- F: Take quotient of MSG and MSE
- P-value: Found with software or tables

Example: Key ANOVA Values

- Background: Compare mileages for 8 sedans, 8 minivans, 12 SUVs; find SSG=42.0 SSE=181.4.
- **Question:** What are the following values for table:
 - DFG? DFE? MSG? MSE? F?
- **□** Response:
 - **DFG** = 3 1 = 2
 - **DFE** = N I = (8 + 8 + 12) 3 = 25
 - **MSG** = SSG/DFG = 42/2 = 21
 - **MSE**= SSE/DFE = 181.4/25 = 7.256
 - F = MSG/MSE = 21/7.256 = 2.89

Example: Completing ANOVA Table

- **Background**: Found these values for ANOVA:
 - **DFG**=3-1= 2
 - **DFE=**N-I=(8+8+12)-3=25
 - MSG=SSG/DFG=42/2= 21
 - MSE=SSE/DFE=181.4/25= 7.256
 - **F**=MSG/MSE=21/7.256= 2.89
- □ **Question:** Complete ANOVA table?
- **Response:** Software $\rightarrow P$ -val=0.0743 \rightarrow marginally significant

Source	DF	SS	MS	F	Р
Factor		42		4	
Error		181.4			

ANOVA F Statistic and P-Value

■ Sample means very different →

 $F \text{ large} \rightarrow$

P-value small \rightarrow

Reject claim of equal population means.

■ Sample means relatively close →

 $F not large \rightarrow$

P-value not small \rightarrow

Believe claim of equal population means.

How Large is "Large" F

Particular *F* distribution determined by DFG, DFE

(these determined by sample size, number of groups)

P-value in software output lets us know if *F* is large.

Note: P-value is "bottom line" of test; "top line" is examination of display and summaries.

Example: Examining Boxplots

Background: For all students at a university, are Math SATs related to what year they're in?

- **Question:** What do the boxplots suggest?
- **Response:** As year goes up, mean

(Suggests students scored better in Math.)

Example: Examining Summaries

■ **Background**: For all students at a university, are Math SATs related to what year they're in?

Level	N	Mean	StDev
1	32	643.75	63.69
2	233	613.91	61.00
3	87	601.84	89.79
4	28	581.79	89.73
other	10	578.00	72.08

- **Question:** What do the summaries suggest?
- Response: Means decrease by about _____ points for each successive year 1 to 4. Standard deviations are around _____, and sample sizes are _____.

Example: ANOVA Output

Background: For all students at a university, are Math SATs related to what year they're in?

Analysis of Variance for Math

•					
Source	DF	SS	MS	F	P
Year	4	78254	19563	3.87	0.004
Error	385	1946372	5056		
Total	389	2024626			

- **Question:** What does the output suggest?
- **Response:** Test H_o :

P-value=0.004. Small? Reject H_0 ? Conclude all 5 population means may be equal?

Year and Math SAT related in population?

How Large is "Large" F (Review)

Particular *F* dist determined by DFG, DFE (these determined by sample size, number of groups)

P-value in software output lets us know if *F* is large.

P-value = 0.004 \rightarrow F = 3.87 is large (in given situation)

F (4,385) distribution (for I = 5 groups, total N = 390)

Example: ANOVA Output

- **Background**: A test for a relationship between Math SAT and year of study, based on data from a large sample of intro stats students at a university, produced a large *F* and a small *P*-value.
- Question: What issues should be considered before we use these results to draw conclusions about the relationship between year of study and Math SAT for all students at that university?
- Response:

Guidelines for Use of ANOVA Procedure

- Need random samples taken independently from several populations.
- Confounding variables should be separated out.
- Sample sizes must be large enough to offset nonnormality of distributions.
- Need populations at least 10 times sample sizes.
- Population variances must be equal.

Pooled Two-Sample t Procedure (Review)

If we can assume $\sigma_1 = \sigma_2$, standardized difference between sample means follows a pooled t distribution.

Some apply Rule of Thumb: use pooled *t* if larger sample s.d. not more than twice smaller.

The F distribution is in a sense "pooled": our standardized statistic follows the F distribution only if population variances are equal (same as equal s.d.s)

Example: Checking Standard Deviations

■ **Background**: For all students at a university, are Math SATs related to what year they're in?

		<i></i>	J
Level	N	Mean	StDev
1	32	643.75	63.69
2	233	613.91	61.00
3	87	601.84	89.79
4	28	581.79	89.73
other	10	578.00	72.08

- **Question:** Is it safe to assume equal population variances?
- **□** Response:

Largest s.d.= > 2(smallest s.d.) ?
Assumption of equal variances OK?

Example: Reviewing ANOVA

■ **Background**: For all students at a university, are Verbal SATs related to what year they're in?

Level	N	Mean	${ t StDev}$		
1	32	596.25	86.91		
2	234	592.76	65.87		
3	86	596.51	77.26		
4	29	579.83	79.47		
other	10	551.00	124.32		
Source	DF	SS	MS	F	P
Year	4	23559	5890	1.10	0.357

- **Questions:** Are conditions met? Do the data provide evidence of a relationship?
- Response: n_i large and 124.32 not > 2(65.87) \rightarrow P-val=0.357 small? Evidence of a relationship?

Guidelines for Use of ANOVA (Review)

- Need random samples taken independently from several populations
- Confounding variables should be separated out
- Sample sizes must be large enough to offset nonnormality of distributions
- Need populations at least 10 times sample sizes
- Population variances must be equal.

Example: Considering Data Production

- **Background**: F test found evidence of relationship between Math SAT and year (P-value 0.004), but not Verbal SAT and year (P-value 0.357).
- Question: Keeping in mind that the sample consisted of students in various years taking an introductory statistics class, are there concerns about bias/confounding variables?
- □ **Response:** For Math, ____. For Verbal, ____.

Lecture Summary

(Inference for Cat \rightarrow Quan; More About ANOVA)

- □ ANOVA for several-sample inference
 - Formulating hypotheses correctly
 - ANOVA table
 - F statistic and P-value
- □ 1st step in practice: displays and summaries
 - Side-by-side boxplots
 - Compare means, look at sds and sample sizes
- □ ANOVA output
- Guidelines for use of ANOVA