Lecture 31: more Chapter 11, Section 3 Categorical \& Quantitative Variable More About ANOVA

םANOVA: Hypotheses, Table, Test Stat, $P$-value $\square 1^{\text {st }}$ Step in Practice: Displays, Summaries $\square A N O V A$ Output
$\square$ Guidelines for Use of ANOVA

## Looking Back: Review

## - 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability (discussed in Lectures 13-20)
- Statistical Inference
$\square \quad 1$ categorical (discussed in Lectures 21-23)
- 1 quantitative (discussed in Lectures 24-27)
- cat and quan: paired, 2-sample, several-sample
- 2 categorical
- 2 quantitative


## ANOVA Null and Alternative Hypotheses

$H_{0}$ : explanatory C \& response Q not related

- Equivalently, $H_{o}: \mu_{1}=\mu_{2}=\cdots=\mu_{I}$ (difference among sample means just chance) $H_{a}$ : explanatory C \& response Q are related
- Equivalently, $H_{a}$ : not all the $\mu_{i}$ are equal (difference too extreme to be due to chance)
Depending on formulation, the word "not" appears in Ho or Ha.


## Example: How to Refute a Claim about "All"

$\square$ Background: Reader asked medical advice columnist: "Dear Doctor, does everyone with Parkinson's disease shake?" and doctor replied: All patients with Parkinson's disease do not shake.
$\square$ Question: Is this what the doctor meant to say?
$\square$ Response:

## Example: ANOVA Alternative Hypothesis

$\square$ Background: Null hypothesis to test for relationship between race (3 groups) and earnings:

$$
H_{o}: \mu_{1}=\mu_{2}=\mu_{3}
$$

- Question: Is this the correct alternative?

$$
H_{a}: \mu_{1} \neq \mu_{2} \neq \mu_{3}
$$

- Response:



## The $F$ Statistic (Review)

$F=\frac{\left[n_{1}\left(\bar{x}_{1}-\bar{x}\right)^{2}+n_{2}\left(\bar{x}_{2}-\bar{x}\right)^{2}+\cdots+n_{I}\left(\bar{x}_{I}-\bar{x}\right)^{2}\right] /(I-1)}{\left[\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\cdots+\left(n_{I}-1\right) s_{I}^{2}\right] /(N-I)}$

- Numerator: variation among groups
- How different are $\bar{x}_{1}, \cdots, \bar{x}_{I}$ from one another?
$\square$ Denominator: variation within groups
- How spread out are samples? (sds $\left.s_{1}, \cdots, s_{I}\right)$


## Role of Variations on Conclusion (Review)

Boxplots with same variation among groups $(3,4,5)$ but different variation within: sds large (left) or small (right)


Scenario on right: smaller s.d.s $\rightarrow$ larger $F=\frac{\text { var among }}{\text { var within }}$ $\rightarrow$ smaller $P$-value $\rightarrow$ likelier to reject $H_{0} \rightarrow$ conclude pop means differ

## ANOVA Table

| Source | Degrees of Freedom | Sum of Squares | Mean Sum of Squares | F | P |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Factor | $D F G=I-1$ | $S S G$ | $M S G=S S G / D F G$ | $F=\frac{M S G}{M S E}$ | p-value |
| Error | $D F E=N-I$ | $S S E$ | $M S E=S S E / D F E$ |  |  |
| Total | $N-1$ | SST |  |  |  |

- Organizes calculations
- "Source" refers to source of variation
- DF: use $I=$ no. of groups, $N=$ total sample size
- SSG measures overall variation among groups
- SSE measures overall variation within groups
- Mean Sums: Divide Sums by DFs
- F: Take quotient of MSG and MSE
- $P$-value: Found with software or tables


## Example: Key ANOVA Values

- Background: Compare mileages for $8 \mid$ sedans, 8 minivans, 12 SUVs; find $\mathrm{SSG}=42.0$. $\mathrm{SSE}=181.4$.
- Question: What are the following values for table: DFG? DFE? MSG? MSE? F?
$\square$ Response:
- $\mathbf{D F G}=3-1=$
$\mathbf{D F E}=N-I=(8+8+12)-3=$
$\mathbf{M S G}=\mathrm{SSG} / \mathrm{DFG}=42 / 2=$
$\mathbf{M S E}=\mathrm{SSE} / \mathrm{DFE}=181.4 / 25=$
$\boldsymbol{F}=\mathrm{MSG} / \mathrm{MSE}=21 / 7.256=$


## Example: Completing ANOVA Table

- Background: Found these values for ANOVA:
- DFG=3-1 = 2
- $\mathbf{D F E}=N-I=(8+8+12)-3=25$
- $\mathbf{M S G}=\mathrm{SSG} / \mathrm{DFG}=42 / 2=21$
- MSE=SSE/DFE=181.4/25=7.256
- $\boldsymbol{F}=\mathrm{MSG} / \mathrm{MSE}=21 / 7.256=2.89$
$\square$ Question: Complete ANOVA table?
$\square \quad$ Response: Software $\rightarrow P$-val $=0.0743 \rightarrow$

| Source | DF | SS | MS | F | P |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 42 |  |  |  |
| Factor |  | 181.4 |  |  |  |
| Error |  | 18 |  |  |  |

## ANOVA $F$ Statistic and $P$-Value

- Sample means very different $\rightarrow$
$F$ large $\rightarrow$
$P$-value small $\rightarrow$
Reject claim of equal population means.
- Sample means relatively close $\rightarrow$
$F$ not large $\rightarrow$
$P$-value not small $\rightarrow$
Believe claim of equal population means.


## How Large is "Large" $F$

Particular $F$ distribution determined by DFG, DFE
(these determined by sample size, number of groups)
$P$-value in software output lets us know if $F$ is large.
Note: P-value is "bottom line" of test; "top line" is examination of display and summaries.

## Example: Examining Boxplots

- Background: For all students at a university, are Math SATs related to what year they're in?

- Question: What do the boxplots suggest?
- Response: As year goes up, mean (Suggests
students scored better in Math.)


## Example: Examining Summaries

- Background: For all students at a university, are Math SATs related to what year they're in?

| Level | N | Mean | StDev |
| :--- | ---: | ---: | ---: |
| 1 | 32 | 643.75 | 63.69 |
| 2 | 233 | 613.91 | 61.00 |
| 3 | 87 | 601.84 | 89.79 |
| 4 | 28 | 581.79 | 89.73 |
| Other | 10 | 578.00 | 72.08 |

$\square$ Question: What do the summaries suggest?

- Response: Means decrease by about points for each successive year 1 to 4 . Standard deviations are around and sample sizes are


## Example: ANOVA Output

- Background: For all students at a university, are Math SATs related to what year they're in?
Analysis of Variance for Math

| Source | DF | SS | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Year | 4 | 78254 | 19563 | 3.87 | 0.004 |
| Error | 385 | 1946372 | 5056 |  |  |
| Total | 389 | 2024626 |  |  |  |

- Question: What does the output suggest?
$\square$ Response: Test $H_{o}$ :
$P$-value $=0.004$. Small? $\quad$ Reject $H_{0}$ ? $\qquad$
Conclude all 5 population means may be equal? Year and Math SAT related in population?


## How Large is "Large" $F$ (Review)

Particular $F$ dist determined by DFG, DFE (these determined by sample size, number of groups) $P$-value in software output lets us know if $F$ is large. $P$-value $=0.004 \rightarrow F=3.87$ is large (in given situation)
$F(4,385)$ distribution (for
$I=5$ groups, total $N=390$ )


## Example: ANOVA Output

- Background: A test for a relationship between Math SAT and year of study, based on data from a large sample of intro stats students at a university, produced a large $F$ and a small $P$-value.
- Question: What issues should be considered before we use these results to draw conclusions about the relationship between year of study and Math SAT for all students at that university?
$\square$ Response:


## Guidelines for Use of ANOVA Procedure

- Need random samples taken independently from several populations.
- Confounding variables should be separated out.
- Sample sizes must be large enough to offset nonnormality of distributions.
- Need populations at least 10 times sample sizes.
- Population variances must be equal.


## Pooled Two-Sample $t$ Procedure (Review)

If we can assume $\sigma_{1}=\sigma_{2}$, standardized difference between sample means follows a pooled $t$ distribution.

- Some apply Rule of Thumb: use pooled $t$ if larger sample s.d. not more than twice smaller.
The F distribution is in a sense "pooled": our standardized statistic follows the F distribution only if population variances are equal (same as equal s.d.s)


## Example: Checking Standard Deviations

- Background: For all students at a university, are Math SATs related to what year they're in?

| Level | N | Mean | StDev |
| :--- | ---: | ---: | ---: |
| 1 | 32 | 643.75 | 63.69 |
| 2 | 233 | 613.91 | 61.00 |
| 3 | 87 | 601.84 | 89.79 |
| 4 | 28 | 581.79 | 89.73 |
| other | 10 | 578.00 | 72.08 |

- Question: Is it safe to assume equal population variances?
$\square$ Response:
Largest s.d. $=[>2$ (smallest s.d.) ? Assumption of equal variances OK?


## Example: Reviewing ANOVA

- Background: For all students at a university, are Verbal SATs related to what year they're in?

| Level | N | Mean | StDev |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 32 | 596.25 | 86.91 |  |  |  |
| 2 | 234 | 592.76 | 65.87 |  |  |  |
| 3 | 86 | 596.51 | 77.26 |  |  |  |
| 4 | 29 | 579.83 | 79.47 |  |  |  |
| other | 10 | 551.00 | 124.32 | MS | F | P |
| Source | DF | SS | MS |  |  |  |
| Year | 4 | 23559 | 5890 | 1.10 | 0.357 |  |

- Questions: Are conditions met? Do the data provide evidence of a relationship?
$\square \quad$ Response: $n_{i}$ large and 124.32 not $>2(65.87) \rightarrow$ $P$-val $=0.357$ small? Evidence of a relationship?


## Guidelines for Use of ANOVA (Review)

- Need random samples taken independently from several populations
- Confounding variables should be separated out
- Sample sizes must be large enough to offset nonnormality of distributions
- Need populations at least 10 times sample sizes
- Population variances must be equal.


## Example: Considering Data Production

- Background: $F$ test found evidence of relationship between Math SAT and year ( $P$-value 0.004), but not Verbal SAT and year ( $P$-value 0.357 ).
- Question: Keeping in mind that the sample consisted of students in various years taking an introductory statistics class, are there concerns about bias/confounding variables?
- Response: For Math,

For Verbal,

## Lecture Summary

(Inference for Cat $\rightarrow$ Quan; More About ANOVA)

- ANOVA for several-sample inference
- Formulating hypotheses correctly
- ANOVA table
- $F$ statistic and $P$-value
$\square 1^{\text {st }}$ step in practice: displays and summaries
- Side-by-side boxplots
- Compare means, look at sds and sample sizes
$\square$ ANOVA output
- Guidelines for use of ANOVA

