Lecture 18: more Chapter 7, Section 3 Continuous Random Variables; Tails of the Normal Curve

םPreview Two Forms of Inference ם68-95-99.7 Rule; Rule for Tails (90-95-98-99)
םStandard Normal Tail-Probability Problems
\square Non-standard Tail-Probability Problems

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing (Lectures 5-12)
- Probability
- Finding Probabilities (discussed in Lectures 13-14)
\square Random Variables (introduced in Lecture 15)
- Binomial (discussed in Lecture 16)

```
- Sampling Distributions
```

- Statistical Inference

Tails of Normal Curve in Inference

- Goal: Perform inference in 2 forms about unknown population proportion or mean:
- Produce interval that has high probability (such as $90 \%, 95 \%$, or 99%) of containing unknown population parameter
- Test if proposed value of population proportion or mean is implausible (low probability--- 1% or $5 \%--$ of sample data)
- Strategy: Focus on tails of normal curve, in the vicinity of $Z=+2$ or $Z=-2$.

68-95-99.7 Rule for Z (Review)

For standard normal Z, the probability is

- 68% that Z takes a value in interval $(-1,+1)$
- 95% that Z takes a value in interval $(-2,+2)$
- 99.7% that Z takes a value in interval $(-3,+3)$

Need to fine-tune information for probability at or near 95\%.

90-95-98-99 Rule for Standard Normal Z

For standard normal Z , the probability is
ㅁ 0.90 that Z takes a value in interval $(-1.645,+1.645)$

- 0.95 that Z takes a value in interval $(-1.960,+1.960)$
- 0.98 that Z takes a value in interval $(-2.326,+2.326)$
- 0.99 that Z takes a value in interval $(-2.576,+2.576)$

Looking Back: The 68-95-99.7 Rule rounded 0.9544 for 2 s.d.s to 0.95 . For exactly 95%, need 1.96 s.d.s.

90-95-98-99 Rule: "Inside" Probabilities

Looking Ahead: This will be useful for "confidence intervals".

-2.576
$+2.576$

90-95-98-99 Rule: "Outside" Probabilities

For standard normal Z, the probability is

- 0.05 that $Z<-1.645$ and 0.05 that $Z>+1.645$
- 0.025 that $Z<-1.96$ and 0.025 that $Z>+1.96$
- 0.01 that $Z<-2.326$ and 0.01 that $Z>+2.326$
- 0.005 that $Z<-2.576$ and 0.005 that $Z>+2.576$

Looking Back: These follow from the inside probabilities, using the fact that the normal curve is symmetric with total area 1.

90-95-98-99 Rule: "Outside" Probabilities

Looking Ahead: This will be useful for "hypothesis tests".

Example: Finding Tail Probabilities

\square Background: Refer to sketch.

\square Question: What is $\mathrm{P}(Z>+2.326)$?

Example: Finding Tail Probabilities

- Background: Refer to sketch.

\square Question: What is $\mathrm{P}(Z<-1.96)$?
$\square_{\text {and }}$ Response:

Example: Finding Tail Probabilities

- Background: Refer to sketch.

\square Question: What is $\mathrm{P}(|Z|>1.96)$?
$\square_{\text {and }}$ Response:

Example: Given Probability, Find z

\square Background: Refer to sketch.

- Question: $0.05=\mathrm{P}(Z<$? $)$
\square^{\square} Response:

Example: Given Probability, Find z

- Background: Refer to sketch.

- Question: $0.005=\mathrm{P}(Z>$? $)$
$\square_{\text {망 }}$ Response:

Non-Standard Normal Problems (Review)

To find probability, given non-standard normal x, first standardize: $z=\frac{x-\mu}{\sigma}$ then find probability (area under z curve).
To find non-standard x, given probability, find z then unstandardize: $x=\mu+z \sigma$

Example: Given x, Find Probability

- Background: Women's waist circumference X (in.) normal; $\mu=32, \sigma=5$.

$\square \quad$ Question: What is $\mathrm{P}(X>43)$?
- Response: $z=$ so $\mathrm{P}(X>43)$ is between between and

Example: Given x, Find Probability

- Background: Women's waist circumference X (in.) normal; $\mu=32, \sigma=5$.

\square Question: What is $\mathrm{P}(X<23)$?$\begin{array}{ll}\text { Response: } z= & \text { between } \\ \text { so } \mathrm{P}(X<23) \text { is between } & \text { and }\end{array}$

Example: Given x, Find Probability

- Background: Women's waist circumference X (in.) normal; $\mu=32, \sigma=5$.

\square Question: What is $\mathrm{P}(X>39)$?
- Response: $z=$ so $\mathrm{P}(X>39)$ is

Example: Given Probability, Find x

- Background: Math SAT score X for population of college students normal; $\mu=610, \sigma=72$.

\square Question: 0.98 is probability of X in what interval?
\square Response: Prob. 0.98 has z from
to So x is from

Example: Given Probability, Find x

\square Background: Math SAT score X for population of college students normal; $\mu=610, \sigma=72$.

\square Question: Bottom 5\% are below what score?Response: Bottom 0.05 has $z=$
SO $x=$

Example: Given Probability, Find x

- Background: Math SAT score X for population of college students normal; $\mu=610, \sigma=72$.

\square Question: Top half a percent were above what score?Response: Top 0.005 has $z=$
$\operatorname{so} x=$

Example: Comparing to a Given Probability

- Background: Math SAT score X for population of college students normal; $\mu=610, \sigma=72$.

\square Question: Is $\mathrm{P}(\mathrm{X}<480)$ more or less than 0.01 ?
- Response: 480 has $z=$ Since -1.81 is
prob. is

Example: More Comparisons to Given Probability

- Background: $0.01=\mathrm{P}(Z<-2.326)=\mathrm{P}(Z>+2.326)$
- Question: Are the following >0.01 or <0.01 ?
- $\mathrm{P}(Z>+2.4) ; \mathrm{P}(Z>+1.9) ; \mathrm{P}(Z<-3.7) ; \mathrm{P}(Z<-0.4)$
\square Response:
- $\mathrm{P}(Z>+2.4)$
- $\mathrm{P}(Z>+1.9) \quad 0.01$, since +1.9 is
- $\mathrm{P}(Z<-3.7) \quad 0.01$, since -3.7 is
- $\mathrm{P}(Z<-0.4) \quad 0.01$, since -0.4 is
extreme than +2.326 extreme than +2.326
extreme than -2.326
extreme than -2.326

A Closer Look: As z gets more extreme, the tail probability gets

Looking Ahead: When we perform inference in Part 4, some key decisions will be based on how a normal probability compares to a set value like 0.01 or 0.05.

Example: Practice with 90-95-98-99 Rule

$\square \quad$ Background: Male chest sizes X normal; $\mu=37.35, \sigma=2.64$ (inches).

\square Question: $\mathrm{P}(X>45)$ is in what range?

- Response: 45 has $z=$ so $\mathrm{P}(X>45)$ is between

Example: More Practice with 90-95-98-99 Rule

- Background: Female chest sizes X normal; $\mu=35.15, \sigma=2.64$ (inches).

- Question: $\mathrm{P}(X<28.8)$ is in what range?
- Response: 28.8 has $z=$ so $\mathrm{P}(X<28.8)$ is between

Example: 90-95-98-99 Rule, Given Probability

- Background: Male ear lengths X normal; $\mu=2.45, \sigma=0.17$ (inches).

\square Question: Top 5\% are greater than what value?
\square Response: Top 5\% are above $z=$
So $x=$

Example: More Use of Rule, Given Probability

- Background: Female ear lengths X normal; $\mu=2.06, \sigma=0.17$ (inches).

- Question: Bottom 2.5\% are less than what value?
- Response: Bottom 2.5\% are below $z=$

So $x=$

Example: Sketching Curve with 90-95-98-99 Rule

- Background: IQs X are normal; $\mu=100, \sigma=15$.

- Question: What does the Rule tell us about the IQ curve?
\square Response:

Lecture Summary

(Tails of Normal Curve)

- Two forms of inference
- Interval estimate
- Test if value is plausible
- 68-95-99.7 Rule and Rule for tails of normal curve
- Reviewing normal probability problems
- Given x, find probability
- Given probability, find x
\square Focusing on tails of normal curve
- Standard normal problems
- Non-standard normal problems

