Lecture 9: Chapter 5, Section 1 Relationships (Categorical and Quantitative)

-Two- or Several-Sample or Paired Design
םDisplays and Summaries
\square Notation
■Role of Spreads and Sample Sizes

Looking Back: Review

- 4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing
\square Single variables: 1 cat,1 quan (discussed Lectures 5-8)
- Relationships between 2 variables:
- Categorical and quantitative
- Two categorical
- Two quantitative
- Probability
- Statistical Inference

Single Quantitative Variables (Review)

- Display:
- Stemplot
- Histogram
- Boxplot
- Summarize:
- Five Number Summary
- Mean and Standard Deviation

Add categorical explanatory variable \rightarrow
display and summary of quantitative responses are extensions of those used for single quantitative variables.

Design for Categorical/Quantitative Relationship

- Two-Sample
- Several-Sample
- Paired

Looking Ahead: Inference procedures for population relationship will differ, depending on which of the three designs was used.

Displays and Summaries for Two-Sample Design

\square Display: Side-by-side boxplots

- One boxplot for each categorical group
- Both share same quantitative scale
\square Summarize: Compare
- Five Number Summaries (looking at boxplots)
- Means and Standard Deviations

Looking Ahead: Inference for population relationship will focus on means and standard deviations.

Example: Formats for Two-Sample Data

- Background: Data on students' earnings includes gender info: | MaleEarnings | FemaleEarnings | |
| :--- | ---: | ---: |
| | 12 | 3 |
| 10 | 7 | |
| 10 | 2 | |
| | \ldots | \ldots |
- Question: How else can we format the data?
\square Response:

Example: Display/Summarize for Two-Sample

\square Background: Earnings of sampled males and females are displayed with side-by-side boxplots.

- Question: What do the boxplots show?
\square Response:
- Center:
- Spread:
- Shape:

Example: Summaries for Two-Sample Design

- Background: Earnings of sampled males and females are summarized with software:

Descriptive Statistics: Earned by Sex						
Variable	Sex	N	Mean	Median	TrMean	StDev
Earned	female	282	3.145	2.000	2.260	5.646
	male	164	4.860	3.000	3.797	7.657
						Q1

\square Question: What does the output tell us?Response:

- Centers:
- Spreads:
- Shapes:

Example: Several-Sample Design

- Background: Math SAT scores compared for samples of students in 5 year categories.

\square Question: What do the boxplots show?
- Response:

Looking Back: (Sampling Design) Are there confounding variables/bias? These are all intro stats students...

Display and Summaries for Paired Design

- Display: histogram of differences
\square Summarize: mean and standard deviation of differences

Example: Paired vs. Two-Sample Design

- Background: Comparing ages of surveyed students' parents to see if mothers or fathers are older.
$\square \quad$ Questions:
- Why is design paired, not two-sample?
- How to display and summarize relationship between parent sex and parent age?
- What results would you expect to see?
\square Responses:
- Paired because
- Display:

Summarize:

- May suspect tend to be older.

Example: Histogram of Differences

- Background: Histogram of differences, father's age minus mother's age:

- Question: What does histogram show about relationship between parent sex and parent age?
- Response:
- Center:
- Spread:
- Shape:

Notation

\square Two-sample or Several-Sample Design: extend notation for means and standard deviations with subscript numbers 1,2 , etc.
\square Paired Design: indicate notation for differences with subscript " d "

Example: Notation

- Background: For a sample of countries, illiteracy rates are recorded for each gender group.
- Question: How do we denote the following?
- Mean of illiteracy differences for sampled countries
- Standard deviation of illiteracy differences for the sampled countries
- Response: design)
- Mean of illiteracy differences for the sampled countries:
- Standard deviation of illiteracy differences for the sampled countries:

Example: More Notation

- Background: Records are kept concerning percentages of students at all private, state, and staterelated schools receiving Pell grants.
- Question: How do we denote the following?
- Mean percentages for the three types of school
- Standard deviations of percentages for the three types of school
\square Response:
- Mean \%'s for the three types of school:
- Standard deviations of \%'s for the three types of school:

Sample vs. Population Differences

How different are responses for sampled groups?
\square Centers: First compare means/medians.
\square Spreads: Differences appear more pronounced if values are concentrated around their centers.

- Sample Sizes: Differences are more impressive coming from larger samples.

```
Looking Ahead: Inference comparing means will have us focus on centers, spreads, and sample sizes.
```


Example: Impact of Spreads on Perceived Difference between Means

- Background: Experiment compared test scores for gumchewers and non-chewers learning anatomy. Means: 83.6 (chewers), 78.8 (non-chewers)

Scenario A (more spread) Scenario B (less spread)
One of these (left or right) represents the actual data.

- Question: For which scenario (left or right) are you more convinced that chewing gum aids learning?
\square Response:

Example: Impact of Sample Size on Perceived Difference between Means

- Background: Experiment compared test scores for gum-chewers and non-chewers learning anatomy. Means: 83.6 (chewers), 78.8 (non-chewers)
- Question: Which would convince you more that chewing gum aids learning: if data came from 56 students or 560 students?
\square Response:

Example: Impact of Spreads/Sample Size on Perceived Difference between Means

\square Background: Experiment compared test scores for gumchewers and non-chewers learning anatomy. Means: 83.6 (chewers), 78.8 (non-chewers)

- Question: Are there concerns about experimenter effect, placebo effect, realism, ethics, compliance?
\square Response:
is most worrisome.

Lecture Summary

(Categorical and Quantitative Relationships)

\square Two- or Several-Sample Design

- Format: one column for each group or one column for each of two variables
- Display: side-by-side boxplots
- Compare: means and sd's or 5 No. Summaries
\square Paired Design:
- Display: Histogram of differences
- Summarize: Mean and sd of differences
\square Notation: Design? Sample or population?
\square How Different Are Sample Means?
- Impacted by spreads and sample sizes

