Lecture 9: Chapter 5, Section 1 Relationships (Categorical and Quantitative)

Two- or Several-Sample or Paired Design
Displays and Summaries
Notation
Role of Spreads and Sample Sizes

Looking Back: Review

4 Stages of Statistics

- Data Production (discussed in Lectures 1-4)
- Displaying and Summarizing
 - □ Single variables: 1 cat,1 quan (discussed Lectures 5-8)
 - □ Relationships between 2 variables:
 - Categorical and quantitative
 - Two categorical
 - Two quantitative
- Probability
- Statistical Inference

Single Quantitative Variables (Review)

- **Display:**
 - Stemplot
 - Histogram
 - Boxplot

Summarize:

- Five Number Summary
- Mean and Standard Deviation

Add categorical explanatory variable \rightarrow display and summary of quantitative responses are **extensions** of those used for single quantitative variables. Design for Categorical/Quantitative Relationship

- Two-Sample
- Several-Sample
- Paired

Looking Ahead: Inference procedures for population relationship will differ, depending on which of the three designs was used.

Displays and Summaries for Two-Sample Design

Display: Side-by-side boxplots

- One boxplot for each categorical group
- Both share same quantitative scale
- **Summarize:** Compare
 - Five Number Summaries (looking at boxplots)
 - Means and Standard Deviations

Looking Ahead: Inference for population relationship will focus on means and standard deviations.

Example: Formats for Two-Sample Data

- Background: Data on students' earnings includes gender info: MaleEarnings FemaleEarnings
- 12 3 1 7 10 2 ...
 Question: How else can we format the data?
 Response:

Example: *Display/Summarize for Two-Sample*

Background: Earnings of sampled males and females are displayed with side-by-side boxplots.

- **Question:** What do the boxplots show?
- **Response:**
 - Center:
 - Spread:

©2011 Brooks/Cole, Cengage Learning

Elementary Statistics: Looking at the Big Picture Practice: 5.7 p.145

L9.10

Example: *Summaries for Two-Sample Design*

Background: Earnings of sampled males and females are						
su	mmarize	d with softwa	ire:			
Descripti	ve Statis	tics: Earned b	y Sex			
Variable	Sex	Ν	Mean	Median	TrMean	StDev
Earned	female	282	3.145	2.000	2.260	5.646
	male	164	4.860	3.000	3.797	7.657
Variable	Sex	SE Mean	Minimum	Maximum	Q1	QЗ
Earned	female	0.336	0.000	65.000	1.000	3.000
	male	0.598	0.000	69.000	2.000	5.000
	uestion:	What does the	ne output to	ell us?		

- **Response:**
 - Centers:
 - Spreads:
 - Shapes:

Example: Several-Sample Design

■ **Background**: Math SAT scores compared for samples of students in 5 year categories.

- **Question:** What do the boxplots show?
- **Response:**

Looking Back: (Sampling Design) Are there confounding variables/bias? These are all intro stats students...

©2011 Brooks/Cole, Cengage Learning Display and Summaries for Paired Design

- **Display:** histogram of differences
- Summarize: mean and standard deviation of differences

Example: Paired vs. Two-Sample Design

- **Background:** Comparing ages of surveyed students' parents to see if mothers or fathers are older.
- **Questions:**
 - Why is design paired, not two-sample?
 - How to display and summarize relationship between parent sex and parent age?
 - What results would you expect to see?
- **Responses:**
 - Paired because
 - Display:

Summarize:

May suspect tend to be older.

Example: Histogram of Differences

Background: Histogram of differences, father's age minus mother's age:

- □ **Question:** What does histogram show about relationship between parent sex and parent age?
- **Response:**
 - Center:
 - Spread:
 - Shape:

©2011 Brooks/Cole, Cengage Learning

Notation

- Two-sample or Several-Sample Design: extend notation for means and standard deviations with subscript numbers 1, 2, etc.
- Paired Design: indicate notation for differences with subscript "d"

Example: Notation

- **Background**: For a sample of countries, illiteracy rates are recorded for each gender group.
- **Question:** How do we denote the following?
 - Mean of illiteracy differences for sampled countries
 - Standard deviation of illiteracy differences for the sampled countries
- **Response:** (______ design)
 - Mean of illiteracy differences for the sampled countries:
 - Standard deviation of illiteracy differences for the sampled countries:

Example: *More Notation*

- Background: Records are kept concerning percentages of students at all private, state, and staterelated schools receiving Pell grants.
- **Question:** How do we denote the following?
 - Mean percentages for the three types of school
 - Standard deviations of percentages for the three types of school

Response:

- Mean %'s for the three types of school:
- Standard deviations of %'s for the three types of school:

L9.28

Sample vs. Population Differences

How different are responses for sampled groups?

- **Centers:** First compare means/medians.
 - Spreads: Differences appear more pronounced if values are concentrated around their centers.

Sample Sizes: Differences are more impressive coming from larger samples.

Looking Ahead: Inference comparing means will have us focus on centers, spreads, and sample sizes.

Example: Impact of Spreads on Perceived Difference between Means

Background: Experiment compared test scores for gumchewers and non-chewers learning anatomy. Means: 83.6 (chewers), 78.8 (non-chewers)

- Question: For which scenario (left or right) are you more convinced that chewing gum aids learning?
- **Response:**

Example: Impact of Sample Size on Perceived Difference between Means

- Background: Experiment compared test scores for gum-chewers and non-chewers learning anatomy.
 Means: 83.6 (chewers), 78.8 (non-chewers)
- Question: Which would convince you more that chewing gum aids learning: if data came from 56 students or 560 students?

Response:

Example: Impact of Spreads/Sample Size on Perceived Difference between Means

Background: Experiment compared test scores for gumchewers and non-chewers learning anatomy. Means: 83.6 (chewers), 78.8 (non-chewers)

- Question: Are there concerns about experimenter effect, placebo effect, realism, ethics, compliance?
- **Response**: ________ is most worrisome.

©2011 Brooks/Cole, Cengage Learning

Lecture Summary

(Categorical and Quantitative Relationships)

Two- or Several-Sample Design

- Format: one column for each group or one column for each of two variables
- **Display:** side-by-side boxplots
- **Compare:** means and sd's or 5 No. Summaries

Paired Design:

- **Display:** Histogram of differences
- **Summarize:** Mean and sd of differences
- □ **Notation:** Design? Sample or population?
- How Different Are Sample Means?
 - Impacted by spreads and sample sizes