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Introduction:  The linear mixing of thermal 
infrared (TIR) emission spectra in multi-mineralic 
mixtures has been proven, and its limits and 
applicability have been quantitatively investigated 
[1,2]. Limiting factors in the accuracy of any linear 
retrieval (spectral deconvolution) algorithm include the 
spectral precision of the instrumentation as well as the 
fact that the number of end-members must be ≤ the 
number of spectral bands in the TIR [1]. Because of this 
end-member constraint, there is no way to examine a 
multispectral TIR image using a large, spectral end-
member library [3].  A possible solution is the 
implementation of an automated, blind end-member 
algorithm to analyze all possible subsets (of arbitrary 
size k) of minerals present in the mixture from within a 
mineral library (of size n). For example, in the only 
such study to employ this technique, the Kelso Dunes, 
California were examined using 375 unique 
combinations (k4) of the most likely (n=) 15 minerals 
present in the dunes [4]. The deconvolution model 
results were analyzed for their “goodness of fit” to 
laboratory spectra of collected sand samples. This 
investigation proved highly successful, further 
supporting the capabilities of linear retrieval in the TIR 
[4]. However, the process was computationally 
intensive because it was entirely manual. The 
development of an automated algorithm to accomplish 
this task would decrease the amount of time required 
for such an investigation by many orders of magnitude. 

From a remote sensing perspective, an automated 
blind end-member spectral deconvolution algorithm 
could be useful to determine mineral abundance for any 
mixture (or pixel-by-pixel in a TIR image) using a large 
emissivity library of minerals as input.  This approach 
is particularly timely as there multispectral TIR 
mapping instruments now orbiting Earth and Mars. 

 
Algorithm:  Combinatorial mathematics states that 

the number of unique k-subsets of n elements is given 
by the equation: 
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It is observed that as n increases for any given k, the 
result grows significantly. For example, 15 C 4 = 1,365 
and 20 C 4 = 4,845. Algorithms have been written by 
combinatorial mathematicians to generate lists of these 
combinations with different ordering methods. In the 

techniques developed here, a lexicographic (integer) 
ordering algorithm was implemented [5]. 

All routines were written in the MATLAB 
environment (Version 6.1.0.450). This software was 
chosen due to its ability to efficiently manipulate large 
matrices. The algorithm accepts the following as input: 
(1) an “unknown” mixture spectrum, at high spectral 
resolution (518 data points); (2) a library composed of n 
individual mineral spectra, also at high resolution and 
possibly present in the unknown; (3) a user-selected 
maximum output subset size k; and (4) a user-selected 
threshold abundance below which minerals should not 
appear in the modeled output (e.g. 0-5%). Concerning 
(4), the mathematical techniques utilized in the linear 
deconvolution (and explained in detail in [1]) involve a 
linear regression analysis that can result in negative 
values in the output matrix of end-member fractions.  
Because negative abundances are physically 
impossible, model results containing these are removed 
from further consideration. Linear deconvolution can 
also produce spurious results below the realistic 
accuracy of the model (~5%) [1]. 

A combinations list is then generated for n C 2, and 
each unique combination is used as indices for the 
modeled reconstruction of the unknown emissivity. For 
example, where n=20, the 190 resultant combinations 
{1,2}, {1,3}, {1,4}, … {18,20} and {19,20} are each 
used to construct a narrowed end-member library, and 
linear deconvolution is performed on this narrowed 
library, resulting in a vector of abundance fractions for 
each combination. If any fraction is less than the low 
threshold parameter, the combination is removed. Then 
a candidate emissivity is constructed using each 
fraction vector, and the root-mean-squared (RMS) error 
(or “goodness of fit”) of the candidate is calculated 
[1,4]. The combination resulting in the lowest RMS 
error is considered the best fitting combination and 
stored. Next, the subset size is increased by one, and a 
new combination list is generated (n C 3 long). If a 
better-fitting combination of three elements is found 
within this list, that combination becomes the new best 
fit. This process is repeated until (k) is reached. 
Theoretically, the combination that results in the lowest 
RMS error will be the  one that actually comprises the 
mixture. 

 
Preliminary Results:  Thermal emission spectra of 

several mixtures of known mineralic composition were 
used to initially test the capabilities of this algorithm. 
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The mixtures were composed of hornblende, 
microcline, oligoclase and quartz, and have been 
analyzed in prior investigations of spectral 
deconvolution [1]. 

Is RMS error sufficient?  To conserve processor time 
and rigorously test the algorithm, a blind end-member 
library of size n=20 was initially used, in conjunction 
with the TES spectral library of 170 minerals [3].  An 
end-member library subset was constructed of 16 
arbitrarily selected mineral spectra and the four known 
end-members.  The k value was set at 4 for each 
execution, and the low threshold parameter was set at 
0%.  Therefore, the number of combinations examined 
was (20 C 2) + (20 C 3) + (20 C 4) = 6,175. The results 
for three mixtures are tabulated in Table 1. 

 
Mixture 2 3 4 

Mineral 
Real 
% Mod. % 

Real 
% Mod. % 

Real 
% Mod. % 

Hornblende 10 0.0 20 22.4 70 74.4 

Microcline 10 12.9 20 20.5 5 9.1 

Oligoclase 20 20.3 20 27.8 5 0.0 

Quartz 60 53.0 40 30.2 20 15.6 

Pyroxmangite 0 14.4 0 0.0 0 0.0 

Biotite 0 0.0 0 0.0 0 1.6 

Table 1.  Algorithm output for three mixtures 
using high-resolution thermal emission spectra. 

 
The modeled mixtures above exhibited the lowest RMS 
error, and were selected as the best-fitting 
combinations. The RMS errors for modeled mixtures 2, 
3 and 4 were 0.0040, 0.0039 and 0.0025, respectively. 
The algorithm at times finds other minerals that 
compose a mathematically better fit to the unknown 
than the actual combination of minerals. This suggests 
that RMS error alone may not be capable of judging 
absolute “goodness of fit.” Also, it is observed that 
some minerals with abundance ≤15%  are not always 
detected, or other minerals are detected in their place. 
This was also noted in previous investigations and 
appears to depend not only on abundance, but on 
spectral features as well [1,2]. These and other 
characteristics of the algorithm are currently being 
studied in greater detail. 

Algorithm runtime considerations.  Performing 
thousands of spectral deconvolutions per unknown 
spectrum clearly requires a fast and capable computer. 
The trials performed in this study were done on a 
Windows 2000 machine with a 1400 MHz Intel 
Pentium 4 CPU and 128 MB RAM. The total runtime 
of the algorithm was measured  for end-member 

libraries of different sizes, ranging from 4 to 50, and 
k=4. In the 20 end-member library trials (6,175 total 
combinations) the algorithm ran for ~8 seconds.  In a 
50 end-member library trial (251,125 total 
combinations) the algorithm ran for ~4,032 seconds (67 
minutes). Further investigation into the effects of 
increasing the number of end-members in the spectral 
library is underway. Ideally, the algorithm should be 
able to choose from the entire library of recorded 
thermal emission spectra and quickly produce a 
resultant fit. 

Effects of degraded spectral resolution.  The effect 
of degrading the spectral resolution of the mineral and 
mixture spectra is also of interest, given that the Mars-
orbiting Thermal Emission Imaging System (THEMIS) 
instrument only has 10 spectral bands in the TIR (6.5 
and 14.5 µm). The capabilities of a linear retrieval 
algorithm at this resolution were tested by degrading 
the spectral resolution of the end-member and mixture 
spectra to the approximated THEMIS band centers. The 
resulting fractional abundances are tabulated in Table 2 
(compare to the actual compositions of mixtures 2-4 in 
Table 1). The RMS errors for modeled mixtures 2, 3 
and 4 were 0.0041, 0.0033 and 0.0016, respectively.  
Further analysis of the accuracy at low spectral 
resolution is also underway. If successful, this 
algorithm will be implemented for imaging instruments 
such as THEMIS in order to identify mineral 
percentages and track sediment transport over time on 
the surface of Mars and Earth [3]. 

 
Mixture 2 3 4 

Mineral Mod. % Mod. % Mod. % 

Hornblende 5.4 21.5 70.0 

Microcline 10.3 19.3 18.4 

Oligoclase 32.3 29.2 0.0 

Quartz 52.9 30.7 11.9 

Table 2.  Spectral deconvolution results 
using 10-band thermal emission spectra. 
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