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Abstract- This paper considers the use of the large deviation (also known as the saddlepoint) approximation for computing the mean and variance of the hourly marginal cost for a power generation system. Such information is expected to be quite useful to both buyers and sellers of electricity in the upcoming deregulated environment. It is assumed that the generating units are dispatched in a pre-specified merit order of loading. Under this assumption, the marginal cost at a given hour is defined to be the operating cost ($/MWH) of the last unit used to meet the load prevailing at this hour. In our stochastic model, the load is represented by a Gauss-Markov stochastic process and the generating unit availability is characterized by its forced outage rate. The computational time of the proposed method is O(N2), which makes it suitable for large systems. It is found that this approximation provides accurate estimates and the computational time is much less compared to exact calculations and Monte Carlo simulation.
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I. INTRODUCTION

The short term marginal cost of a traditional electric power generation system is defined to be the additional cost of meeting unit increase in demand with the generation capacity remaining fixed. Under a merit order load of loading this translates into the variable cost of the last unit used to supply the additional unit of load. According to economic theory (Caramanis, 1992), use of marginal costs to determine electricity rates achieves economic equilibrium and efficiency. In a deregulated environment the marginal cost defined as above should closely approximate the marginal cost, but in order to quantify it, the entire ensemble of generating units participating in the particular market ordered according to their operating cost rates will need to be considered. Here, also, the marginal cost can be considered to be the operating cost of the most expensive unit used to meet the demand. When there exists a very small gap between available supply and demand resulting in a market squeeze, the market clearing price may depart from this strict definition of marginal cost. But, for the most part, the marginal cost using this definition should provide a good enough approximation to the market clearing price. 


A direct application of marginal cost pricing in a deregulated situation is found in the Chilean electricity market in which generators submit to a power pool the list of power plants, their capacities, and operating costs. The pool operator matches supply with demand, and it dispatches power plants in an economic merit order. A variation of electricity pricing based on marginal costs is found in the PJM power pool practices in the USA. Here, generators located within the PJM region cannot bid prices higher than their operating costs. However, power generators from outside the PJM region are allowed to bid any price up to $999.90/MWH (Internet, 1999). Thus the market price of electricity has not always followed marginal cost. As a matter of fact, on July 21, 1998, the wholesale prices of electricity shot up to $990/MWH. The California market has been set up based on the premise that under free competition, in order to maximize their profits the producers will bid prices that are their marginal costs. Yet, in July 1998, the price of electricity went up to $9,999/MWH. Instances of such aberration can only arise in times of a market squeeze that occurs infrequently.


In this paper we adopt the view that in spite of these caveats, buyers and sellers of electricity will be interested in being able to forecast short-term marginal costs that will prevail in a given market during a specified time horizon. But hourly marginal costs are random variables. They are dependent on the load, the merit order of loading, and the set of the generators that are available in these hours. Both the load and the operating status of generators in a future given hour are uncertain quantities, and governed by known probability distributions. We describe a procedure using large deviation or the saddle point method (Iyengar and Mazumdar, 1998; Yin and Mazumdar, 1989) for computing the mean and the variance of the marginal costs based on the knowledge of the forced outage rates of the generating units and the probability distribution of the hourly load represented here by a Gauss-Markov process. This selection was made based on a statistical analysis of the load data for a region covering the northeastern USA (Mazumdar and Valenzuela, 1999). For purpose of making informed decisions that adequately take into account a measure of risk such as VAR (Philipovic, 1998), both a measure of mean and variance will be necessary.

 
In order to compute the mean and the variance of the hourly marginal cost, it is necessary to evaluate the convolution of probability distributions corresponding to the forced outage rates of the generating units and that of the load. In a realistic application we expect the number of generating units participating in the market to be quite large. It is well known in the context of power generating system reliability evaluation how time-consuming the exact computations for this purpose is. The large deviation method has been found to be particularly effective in providing accurate approximations for the power generation reliability indices (Iyengar and Mazumdar, 1988) as well as for aiding computations in evaluating composite reliability and production costing indices (Mazumdar, 1988; Duran, 1986). Whereas for a system involving N participating generating units, the magnitude of exact computation grows exponentially with N, the computational time of the large deviation method is O(N2) which makes it particularly suitable for application with large N.


Most of the computations for the power generating reliability indices have assumed that the load (or the peak load, as the case may be) is a deterministic quantity. However, when predictions are made for a future time period for the marginal costs, it will be incorrect to treat load as free of any uncertainty. We have recently completed a statistical analysis of hourly load data for a two-year period covering the years 1995 and 1996 (Mazumdar and Valenzuela). We found that when the hourly load is regressed on the hourly temperature, the residuals can be approximated by a Gauss-Markov (or equivalently, an AR(1) process.) In the numerical example given here, we have therefore used this load model. Section 2 of this paper describes the model for the load as well as the generating units. Section 3 gives the large deviation formulas for the mean and variance of marginal cost. Section 4 gives a numerical example. 

II. A PRODUCTION COSTING AND LOAD MODELS

 We assume that the marginal cost is calculated for a power generation system consisting of N generating units. The following additional assumptions are made:

a)  The generators are dispatched at each hour in a fixed, pre-assigned loading order, which depends only on the load and the availability of the generating units. 

b)  The ith unit in the loading order has a capacity ci (MW), variable energy cost di ($/MWH), and a forced outage rate, qi,  i=1,2,...,n. 

c)  After adjusting for the variations in the ambient temperature and periodicity, the load at hour t, u(t), is a Gauss-Markov process (Breipohl, Lee, Zhai, and Adapa., 1992) with
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where (t and (t are assumed to be known.

d)  The operating state of each generating unit i follows a two-state continuous-time alternating renewal process, Yi(t)={0,1}. The stochastic processes describing the up and down times of the generating units are in steady state, and for any two unit i and j, they are statistically independent.

III. DISTRIBUTION OF MARGINAL COST

Marginal cost

Under the above assumptions the marginal cost of the system at a specific hour t, denoted by dJ(t), is determined by the operating cost ($/MWH) of the last unit used to meet the load prevailing at this hour. The last such unit in the loading order is called the marginal unit and denoted by J(t). 

Mean and variance of the marginal cost

The mean and the variance of the marginal cost is obtained from the following formulas:
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Computation of 
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Therefore, to compute the mean of the marginal cost at hour t we need to determine the probability that 
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 is greater than zero for all values of j. This probability could be calculated by conditioning on the values of Yi(t). However, the computation time will depend on the many values that the expression 
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 can take, which in the worst case is 2N (when j=N). Thus, the computational time increases exponentially as N increases. In order to apply the large deviation approximation to evaluating (2), we define the random variable 
[image: image14.wmf]X

t

u

t

c

Y

t

j

i

i

i

j

(

)

(

)

(

)

=

-

=

å

1

. For a brief overview of this procedure, see (Mazumdar, 1988). We can write (2) as:
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Denote the cumulative distribution function of Xj(t) by F(x;j,t) and let the corresponding exponentially tilted distribution function (Iyengar and Mazumdar, 1998) be for a given s be:
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 can be expressed as a function of the distribution function Fs(x;j,t) by:
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We next use the central limit theorem to approximate 
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The constant s is next chosen such that the lower limit of the integral is the expected value of the random variable 
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whose distribution function is Fs(x;j,t). The equation (3) is valid for any value of s, so we choose s such that
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. As explained in (Mazumdar, 1988), this reduces to the following equation: 
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Let so denote the unique root of (5). Then, equation (4) can be rewritten as
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The normal approximation to Fs is not likely to be very accurate in the tails. If so is positive, the error of the normal approximation in the tails is reduced by the multiplier 
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Evaluating the integral we have:
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An expression for 
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Procedure for computing 
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The following procedure states the steps involved in computing the mean and variance of the marginal cost at time t.

Procedure
Define Pr[J(t) > 0] = 0, Ed = 0, and Ed2 = 0

For j=1,2,…,N

    



Find s0 by solving 
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Ed = Ed + 
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IV. SYSTEM DATA

We had in hand two years’ hourly data on load and the corresponding temperature in a region covering the Northeastern United States during the calendar years 1995 and 1996. The data set was divided into four subsets covering the four seasons- summer, spring, fall and winter. The load data pertaining to holidays were removed and replaced by the corresponding average value at each hour. Missing information was also replaced with average values. For the summer comprising the months June, July and August, we had in all 174 days’ data for each hour, for the fall, winter, and spring, the number of such days were 178, 171, and 178.  For the summer season, the peak load was 2186 MW, and the average hourly load was 1517 MW. The parameters entering into the appropriate load models were estimated for each season and separately for weekdays and weekends. We present here the results corresponding to the data set for the summer weekdays. In particular, the last day of the data set, September 20, 1996, was chosen for estimating the mean and variance of the hourly marginal costs. The data for this particular day was deleted from the data set, and it was assumed that the hourly loads of the previous days were known. Moreover, the actual hourly temperatures were assumed to be the forecast temperatures for this day. 

Load Model

The load model consists of two components: a regression model with temperature as the independent variable and a suitable determined discrete time series. A separate regression equation is fitted for each hour of the 24-hour period based on the available data and the hourly temperatures ( (
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). The plot of the hourly load vs. corresponding temperature suggested the following model:
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where 

is defined as:
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The plots of the ACF and the PACF (Mazumdar and Valenzuela) of x(t) – x(t-120) and the residuals suggested, after removing the weekly cycle a AR(1) model.

x(t) = x(t-120) +  .8776[ x(t-1) - x(t-121)] + z(t)

where z(t) is a Gaussian white noise with mean 0 and variance 
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= 2627.2. 

Power Generating System

We consider a generation system patterned after the generation mix of an actual electric utility company. The cost and the reliability parameters of the units belonging to this system are given in Table 1. 

Table 1: A 17-unit power generation system.

	Units
	Capacity

(MW)
	MTTF

1/(h)
	MTTR

1/ (h)
	Energy cost

d $/MWH

	1-2
	400
	1100
	150
	  6.00

	3
	350
	1150
	100
	11.40

	4-7
	150
	  960
	  40
	11.40

	8-9
	150
	1960
	  40
	14.40

	10-12
	200
	  950
	  50
	22.08

	13-15
	100
	1200
	  50
	23.00

	16
	  50
	2940
	  60
	27.60

	17
	100
	  450
	  50
	43.50


(Cost of unserved demand, dN+1 = $135 MWH)
V. NUMERICAL RESULTS

The purpose of this section is to compare the speed and accuracy of the large deviation approximation with those of exact computations and Monte Carlo simulation. For the load and power generating system models given in the preceding section we compute the exact value of the mean and standard deviation of the hourly marginal cost over a 24 hour period by conditioning on the unit states. We also run a Monte Carlo simulation program, which was stopped when all the coefficient of variations of the sample of the hourly marginal costs reached values less than 0.1%. Tables 2 and 3 show the outputs obtained from the exact computation, the proposed approximation, and the Monte Carlo simulation. The computation times were 60, 1, 51 seconds, respectively. The programs were run on a PC with a 166 MHz Pentium processor. 

Table 2: Mean of hourly marginal cost.

	
	
	Method
	

	Hour
	Exact computation

$/MWH
	Large deviation

$/MWH
	Monte Carlo

$/MWH

	0
	11.52
	11.53
	11.52

	1
	11.49
	11.48
	11.49

	2
	11.46
	11.45
	11.46

	3
	11.40
	11.40
	11.40

	4
	11.41
	11.40
	11.41

	5
	11.56
	11.58
	11.56

	6
	11.97
	11.98
	11.97

	7
	12.41
	12.46
	12.40

	8
	12.88
	13.13
	12.88

	9
	12.80
	13.02
	12.80

	10
	13.05
	13.35
	13.05

	11
	12.90
	13.16
	12.89

	12
	12.49
	12.58
	12.48

	13
	12.67
	12.84
	12.67

	14
	11.99
	12.00
	11.98

	15
	11.71
	11.74
	11.71

	16
	11.55
	11.56
	11.54

	17
	11.58
	11.61
	11.58

	18
	11.55
	11.57
	11.55

	19
	11.71
	11.74
	11.70

	20
	12.13
	12.15
	12.12

	21
	12.09
	12.10
	12.08

	22
	11.72
	11.74
	11.72

	23
	11.48
	11.49
	11.47


Table 3: Standard deviation of hourly marginal cost.

	
	
	Method
	

	Hour
	Exact value

   $/MWH
	Large deviation

   $/MWH
	Monte Carlo

   $/MWH

	0
	0.77
	0.81
	0.77

	1
	0.65
	0.65
	0.67

	2
	0.70
	0.69
	0.71

	3
	0.84
	0.83
	0.85

	4
	0.86
	0.85
	0.86

	5
	0.96
	0.99
	0.96

	6
	1.83
	1.81
	1.82

	7
	2.35
	2.46
	2.32

	8
	2.95
	3.09
	2.89

	9
	2.86
	3.00
	2.80

	10
	3.16
	3.26
	3.13

	11
	2.99
	3.12
	2.90

	12
	2.47
	2.59
	2.42

	13
	2.69
	2.84
	2.64

	14
	1.86
	1.86
	1.83

	15
	1.39
	1.38
	1.37

	16
	0.96
	0.99
	0.92

	17
	1.06
	1.08
	1.06

	18
	0.97
	0.99
	0.96

	19
	1.38
	1.38
	1.35

	20
	2.05
	2.07
	2.01

	21
	1.99
	2.00
	2.04

	22
	1.40
	1.40
	1.38

	23
	0.89
	0.91
	0.86


To see the performance of the computation time of the proposed approximation when the number of units increases, we replicated the units of the test system (Table 1) 2,4,6,8,10,12,20, and 30 times. We also increased the load by the corresponding multiples. Figure 1 shows how the CPU time for the large deviation method increases as the number of units increases.  A best fit of this curve is given by the equation:










CPU time = .8 + .00061(N2  (sec.)
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Figure 1: CPU time versus number of units (large deviation approximation).

VI. CONCLUSIONS

Estimates of parameters related to the distribution of cost for large generating systems often turn out to be a very time-consuming affair. We have shown that the large deviation approximation provides both fast and accurate estimates for the mean and the variance of the hourly marginal costs when compared with exact computation and Monte Carlo simulation. The exact values can be computed in a reasonable time only for very small power systems. The Monte Carlo simulation also exhibits good performance; however, the computation time is highly dependent on the level of the accuracy required and the size of the system. 
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