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Synoptic Abstract: This paper proposes a Monte Carlo procedure for evaluating the reliability of a non-repairable system consisting of independent components with two states, failed and working. This procedure replaces the failure distribution of each individual binary component with a two-state continuous time Markov chain. The transition rates for the process are selected such that the steady-state unavailability index equals the component unreliability. The Markov chain for each component is simulated over a chosen time interval and a simulated value of the system uptime is obtained therefrom. The system reliability is estimated as the ratio of the system uptime to the length of the simulation time horizon. An example is given on the application of this procedure to the evaluation of an electric power system reliability index. This example as well as others from several  simple systems show that the proposed procedure is more efficient than the crude Monte Carlo in that it requires fewer random numbers on the average than the latter to obtain the same level of precision. The relative efficiency of this procedure increases with increasing value of system reliability.  



 

				1. INTRODUCTION

	The purpose of this paper is to present a Monte Carlo procedure for evaluating the reliability of a  system based on the reliabilities of the individual binary components that compose the system. It is assumed that the components are statistically independent. This procedure is relatively more efficient than the crude Monte Carlo procedure that uses binomial sampling, and its efficiency improves as the component reliabilities increase.  The sampling for the purpose of applying this procedure is also quite simple.



	The problem of efficient Monte Carlo evaluation of system reliability has received considerable attention in the literature []. It is well known that for the precise Monte Carlo evaluation of a  highly reliable system, the crude Monte Carlo requires a very large number of simulations. Therefore, in order to reduce the number of Monte Carlo runs, various variance reduction procedures have been proposed. Of these, Importance Sampling [] attempts to achieve variance reduction by sampling from a different set of component failure distributions such that system failures occur relatively often, and subsequently correcting for the bias resulting from the choice of component failure distributions different from the actual ones. Although the idea behind Importance Sampling is attractive, in reality, it is not often simple to choose the appropriate distributions from which to sample the component failures []. Other variance reduction methods use prior information of different kinds about the system. For example, Van Slyke and Frank[], and Kumamoto, Tanaka and Inoue []exploit information on the bounds on the system reliability that needs to be separately obtained. Frequently, obtaining the required information may require considerable effort and if indeed this is the case, then the added precision produced by employing the variance reduction procedures may not be cost-effective []. As an application of the proposed Monte Carlo procedure, we have chosen the example of evaluating the loss-of-load probability index for an electric power system. In this case the prior information of the kind used by other variance reduction rocedures in network reliability evaluation does not appear to be available here.



	 The idea behind the proposed procedure is as follows. We replace the failure distribution of each component of the system by a hypothetical Markov chain in steady state that alternates between two states, up or down. The Markov chains for component failures and repairs are being defined for technical reasons only for purposes of variance reduction. It is not necessary that the system adheres to these conditions in reality. The transition rates of each chain are chosen such that the unavailability index for the process is the same as the failure probability of the component. We sample the process for each component over a given time interval T, and based upon the information on the individual component transitions, the total up time during which the system  operates is obtained. Then, an unbiased estimate of the system reliability is the ratio of the system up time to T. A proof of this fact is given in section 2. If the transition rates for each component are now proportionately increased in a manner such the component availabilities. We later show that the total effort required in this mode of sampling as measured by the total number of random numbers necessary to result in a prescribed level of precision on the system reliability estimate  is less than that required by crude Monte Carlo sampling. The efficiency of this procedure increases with increasing level of reliability. This demonstration is given by providing a mathematical proof for several simple systems, and a numerical examples for an electric power system.

	 For sampling the component up and down states, it is not necessary in principle to assume that the underlying process is a Markov chain. Any alternating renewal process in steady state with the appropriate values of the mean up and down times will serve the purpose. But there are certain advantages in the mechanics of simulation from a stationary Markov chain. If the initial states are sampled according to the steady state probabilities, then, because of the memoryless property, the information on the sample paths for the entire time interval can be used. It is not necessary to discard earlier observations that would be required for other alternating renewal processes. Also choosing the component up and down times from a continuous time Markov chain guarantees that the system uptimes and downtimes are independent thus simplifying the expressions for the confidence interval for the system reliability estimator.



	Section 2 gives a formal definition of the procedure. A proof is given for the unbiasedness of the proposed estimator and its relative efficiency is computed for some very simple examples. Section 3 gives a numerical example. It relates to the calculation of the loss-of-load probability index of a power generating system that is extensively used in power systems planning. A considerable amount of literature exists on the computation of this index that is extensively used in power systems planning. This example is of interest,  because unlike coherent networks, bounds are not available for this system reliability index so that the variance reduction techniques based on bounds cannot be used here . An examination of the system up and down times for the two example systems resulting from our Monte Carlo procedure  suggest that their distributions can be approximated quite accurately by exponential distributions. This finding is perhaps not too surprising in view of the results given in Keilson[]. Section 3 provides a formula for the confidence interval for the system reliability  that exploits this observation. Section 4 gives the two numerical examples. 



				2. PROPOSED PROCEDURE

 

2.1	Assumptions

	1) The system has n s-independent components 

	2) Each component is either functioning or failed; the probability of component i functioning is pi, and the probability of its failure is qi.

	3) The system is either functioning or failed. The system reliability is denoted by h(p). 

	4) For each component i, Xi(t) is a hypothetical stationary Markov chain with two states, 1 (up) and 0 (down). The failure and repair rates for the process are respectively (i  and (i.   They can be any positive real numbers that satisfy the following condition on the availability index for the process:

			� EMBED Equation.2  ���					(1)

It is clear that for this process, E[Xi(t)] = pi .



	5) The stochastic processes Xi(t) are s-independent for i=1,2,...,n.





2.2.	Description of the Monte Carlo Procedure

	From Assumption 4, it follows that the up times and down times for each component are independently exponentially distributed. The simulations are done as follows. At time 0, the operating state of each unit i is sampled from its stationary probability distribution: Pr{component is up} = pi, and Pr{component is down} = 1-pi.  If the sampled state is up, the duration of the (remaining) up time is sampled from an exponential distribution with mean = 1/(i; if the sampled state is down, the duration of the remaining down time is sampled from an exponential distribution with mean = 1/(i. After the initial transition, depending on the operating state of each unit at this time, successive up and down times are generated from their respective exponential distributions until a time T is reached. From the component transitions between the up and down states, the corresponding system states during the time interval [0,T] is obtained from the system structure function (((). Let U and D denote respectively the system up and down times during the simulation interval (U + D = T). Then, the quantity � EMBED Equation.2  ���U/T is an unbiased estimate of the system reliability, h(p). The proof follows. 



	We notice from equation (1) that if (i and (i are increased by multiplying them with the same multiplier, the value of pi is unaltered and the expected value of � EMBED Equation.2  ��� does not change, but because of more rapid transitions between the up and down system state, the variability of U for a fixed T decreases. When the system transitions are fewer in number, there will be much difference in the observed uptime from one simulation to another when T and the availability index are held constant. As the transition rates increase, this variability decreases.



	In order to carry out the simulation scheme it is perhaps not necessary to confine ourselves to exponential distributions. But, this distribution has some practical advantages because of its memoryless property. Thus, in this situation, after sampling the initial component state, we are assured that the remaining time in this state has an exponential distribution. If we used any other distribution, it would be necessary to discard earlier observations in the simulation until the stochastic processes for components have reached a steady state.

    

2.2.	Properties of the Procedure

	We now prove two properties of the proposed Monte Carlo procedure. First, we show that the Monte Carlo estimate is an unbiased estimator of system reliability. Next, we show that for estimating the reliability of a single component, it is more efficient than crude Monte Carlo, and that the relative efficiency increases as the reliability increases.



A.	Unbiasedness

	Let ((.) denote the system structure function. That is, 

	� EMBED Equation.2  ��� 	 

Since each of the component processes is in steady state, Xi(t) has a Bernoulli distribution with E(Xi(t)) = pi. Therefore, E[((X1(t),X2(t),...,Xn(t))] = h(p). Since

		 � EMBED Equation.2  ���			    



B.	Efficiency  with respect to Crude Monte Carlo Binomial Sampling



	Consider a system consisting of a single component only, and suppose that its reliability is p. We define a two-state Markov chain X(t) with two states marked 0 (down) and 1 (up) whose failure and repair rates are given respectively by ( and (. These constants are chosen such that 

			 � EMBED Equation.2  ���

In the steady state, X(t) = 1 with probability p, and X(t) = 0, with  probability 1-p. Finally, we define ( = (+(. When the process X(t) is stationary, it is known that[] cov[X(t),X(s)] = p(1-p)exp(-((s-t(). Let U denote the total up time when the process X(t) is simulated over the interval (0,T). Then,

		� EMBED Equation.2  ���		 Now, if (T>>1, that is, when the component transition rates or the simulation interval or both are large,  equation (2) can be approximated as follows

		Var[� EMBED Equation.2  ���	      					(3)	

In order to achieve the same variance as given in equation (3), crude Monte Carlo will require a total of (T/2 samples of uniform random numbers. On the other hand, when X(t) is simulated, the expected number of random numbers  will be

	         	2(Total number of cycles of successive up and down times in [0,T])

		� EMBED Equation.2  ���= � EMBED Equation.2  ���

	 	  = 2Tp(1-p)(

Thus the efficiency of the sampling based on the Markov chain as compared to the crude Monte Carlo (for large (T) is 

		� EMBED Equation.2  ���	    				(4)

 It is thus obvious that the efficiency of the Markov procedure is always greater than one for large (T, except in the case when p = 1/2. Also the equation (4) shows that the relative efficiency of the procedure increases as p is bounded away from 1/2. Equqtion (3) also shows that as ( and ( are increased resulting in an increase for (, the variance of the Monte Carlo estimate of reliability  decreases inversely proportional to (.



		3. CONFIDENCE INTERVAL FOR SYSTEM RELIABILITY



	In our Monte Carlo procedure, the system reliability is being estimated by the observed interval availability for the system over a time interval length of time T when the up and down times of the individual components are described by a Markov chain. The actual simulation for the two examples revealed that the system up times and down times can be closely approximated by exponential distributions. In this situation, one can obtain the confidence intervals for system availability based on an F distribution[]. Since, however,  the number of system transitions using this procedure will often  be quite large resulting in large values of degrees of freedom for the F distribution,  for which published tables are not easily available, we provide here an approximate formula for the confidence interval which is quite accurate for our purposes.



	In a two state stationary Markov chain as previously described, suppose that ( and ( are the failure and repair rates respectively, and U and D denote the respective total up and down times observed during a time interval T. Suppose further that the total number of transitions observed from the up to down state during this interval be m, and the total number of transitions from the down to up state during the same interval be n. The two values m and n can differ at most by one, and for our purpose, we will assume that they are equal, and have a common value which we denote by k. (The formulas given below can be easily modified for the more general situation.)   The two random variables (U and (V are independently distributed gamma random variables with scale parameter 1 and shape parameter k.  Now, define W(ln((U) and V(ln((V). Then, for large values of k, W and V are approximately normal [] with their common mean and variance given by

		� EMBED Equation.2  ���

Now, applying Stirling’s approximation, the mean and the variance can be approximated for large k [] as

		� EMBED Equation.2  ���(6)

Therefore, ln(U/D) is approximately normal with 

		� EMBED Equation.2  ��� 

Based on equation (7), a 95% confidence interval formula for ln((/() is given by 

		� EMBED Equation.2  ��� 

The corresponding 95% confidence interval for the unavailability index, i.e., � EMBED Equation.2  ��� , the surrogate for system reliability,  is

	 � EMBED Equation.2  ���          

In the examples given in the following section, equation (8) is used for the confidence intervals for system reliability.



		     		4.	EXAMPLES



	We apply the proposed Monte Carlo procedure to two examples. The first example relates to the evaluation of the reliability of a system considered first by Kumamoto, Tanaka and Inoue (KTI)[], and subsequently by Locks[]. The block diagram for this system is given in Figure 1. Equivalently, this example requires the assessment of the probability that two nodes, s and t, are connected in an undirected network whose arcs fail randomly and independently. The second example refers to the estimation of the loss of load probability index for a hypothetical power generation system  referred to in the power systems literature as the IEEE Reliability Test System[]. Computation of this index has received much attention, and various analytical approximation schemes have been proposed for the purpose of obtaining speedy estimates of this measure[].



4.1.	Assessment of  s-t connectedness in an undirected network.



	Figure 1 shows an undirected network consists of 18 arcs which fail independently of each other. The network functions if there is an uninterrupted connection between the points s and t. Each arc is assumed to function with probability 0.9 .  The algorithm provided by KTI requires knowledge of a subset of the cut sets and path sets of the system, and bounds based on these subsets. The variance reduction procedure being proposed in this paper does not require any such prior knowledge about the system. 



	To implement the proposed procedure, a depth-first procedure is used, whenever there is a component transition, to ascertain the connectivity of the network. Table 1 gives the observed number of transitions from up to down state and vice versa for the system, the point estimate of system reliability and the lower and upper 95% confidence bounds calculated according to equation (8) above for several different values of (, ( and T. The numbers displayed in the table have been obtained by averaging over 10 simulations with different starting seeds. This table also displays the average number of random numbers per component used in the simulation. Notice that the values closely agree with the theoretical expected value which is � EMBED Equation.2  ���. Finally, the table shows the random numbers required per component to result in the identical length of confidence intervals if a crude Monte Carlo sampling of Bernoulli random variables were used. The efficiency of the proposed Monte Carlo procedure is then given by the ratio of the two estimated values of the random numbers required by the two procedures to result in the same 95% confidence interval length. For example, when ( =  1,000, ( = 9,000, T = 100, the average length of the 95% confidence interval for the system reliability is 1.425x10-5 . The sample size for crude Monte Carlo that will yield the same interval width is given by solving the following equation for n:

		� EMBED Equation.2  ���  

We use the known value [] of the system reliability, namely, p = 1.0 - 29.1x10-6, and obtain the required sample size nc = 2,202,025. The average number of random numbers per component used in our Monte Carlo procedure is nm = 179,911. Thus the efficiency of the proposed procedure is

			� EMBED Equation.2  ���

for the chosen values of (, (, T and the confidence coefficient.



	Table 2 displays the values of the averaged values of the sample means and standard deviations of the up times and down times over ten simulations for given sets of values for (, ( and T. Notice the closeness of the values for the mean and the standard deviation for each simulation run. The similarity is more pronounced for down times than up times. In any event, it appears that it will not be incorrect to approximate the system up time and down time distributions by exponential distributions, and use equation (8) to compute the confidence bounds for the system reliability. Table 3 displays the efficiency of the Markov procedure for three different choices of  component reliability =0.7, 0.8 and 0.9. As conjectured, we efficiency of the variance reduction procedure increases with increased value of component (and thus, system) reliability.



	Figure 2 plots the CPU time versus the lengths of the confidence intervals for all the simulations. This chart is particularly revealing in that it shows that as ( and ( are increased, the lengths of the resulting confidence intervals quickly decrease with very little increase in the CPU time. The increase in the CPU time results from the need to account for the increased number of component transitions and their combined effect on system transitions. As the transition rates are increased beyond a certain point, the CPU times increase with very little incremental gain obtained on the precision of the reliability estimates. According to our experience, this relationship of the precision of the Monte Carlo estimate to the CPU time apears to hold quite universally for a wide spectrum of different systems.



4.2.	Loss-of-load Probability Index for a Power Generating System



	Consider an electric power generating system consisting of n power generating units. Suppose that the installed capacity of unit i is ci MW, and its steady-state unavailability  index is qi. We define a random variable Xi  associated with this unit that measures its instantaneous available capacity. That is,

		� EMBED Equation.2  ���

We assume that the Xi’s are indepenent. An index that is of great interest to power system planners is the probability that the total available capacity on a given day is exceeded by the peak load, L[]. When this event occurs, the system’s available generating capacity is insufficient to meet the system load. Thus the loss-of-load probability index is measured by

		LOLP = Pr{ X1+X2+....+Xn<L}.			(9)

For planning purposes, it is necessary to determine the amount of generation reservers that is necessary to keep the value of this index to be very small (on the order of 10-4 corresponding roughly to one day’s outage in ten years.)  Examining (9), we observe that when the ci’s and the pi’s are all different, the total number of arithmetic operations in the computation of one LOLP index varies exponentially with the number of generating units in the system and it might become prohibitively large for large values of n. Thus, it is necessary to find an inexpensive method for its computation. Various approximation schemes have been proposed for the computation of this index[], which requires non-trivial numerical work. It is clear that accurate computation of this index by means of crude Monte Carlo will require a large number of runs, and thus a Monte Carlo method which provides substantial variance reduction is of interest. 



	Table 4 gives an example of a power generating system referred to in the power systems literature as the IEEE Reliability Test System. This is considered to possess many of the attributes of a typical power generating system. The system consists of 32 generating units, and the table displays the capacities and the unavailabilities of the different units. In order to apply  our variance reduction procedure, we initially assume ( and ( values for each unit such that � EMBED Equation.2  ��� and 10/( equals the unit’s unavailability. The assumed values of the transition rates ( and ( for each unit are also displayed in this table. Next, we speed up these transition rates by multiplying them by factors of 20, 40, 60, 80, 100, 120, and 140. For each pair of (i and (i for every unit i, we simulate its up and down process Xi(t) over a time interval T = 100. We observe the alternating renewal process giving the successive times elapsed until the system enters the ‘loss-of-load’ state, and the successive times spent in this state. As observed in Example 1, the  system up and down times can also be adequately approximated by suitable exponential distributions. The estimate of the loss-of -probability index is the ratio of the total observed system down time to T. Table 5 gives the true value and the point estimates of the LOLP index as well as the 95% upper and lower confidence bounds obtained from equation (8). The total number of random numbers used in the simulation as well as the efficiency of the Markov Monte Carlo scheme as compared to crude Monte Carlo are also displayed in this table. As before, the efficiency is estimated  by the ratio of the estimated average number of random numbers required per generating unit by the crude Monte Carlo procedure to the corresponding number for the variance reduction procedure  that will yield confidence interval widths. Here, the efficiency of the variance reduction procedure is seen to be much greater than in Example 1. 




