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The cost of producing electricity during a given time interval is a random variable that depends upon the availability of the generating units during the study horizon as well as the magnitude of the load. Based upon a Markov model, we present a recursive scheme for estimating the asymptotic mean and variance of the production cost. These computations are difficult because the state space for  a typical power generation system is very large and because the  asymptotic variance depends upon the fundamental matrix. Its computation requires the inversion of a matrix whose dimension depends on the size of the state space. The recursion relations given here preclude the need for such matrix inversion and provide approximate estimates  that compare very favorably with a realistic Monte Carlo simulation. 

 
Production costing models are used in the electric power industry to forecast the expected amount of electricity produced by different power generation units and the expected cost of producing electricity for a given power generation system. These forecasts are extensively used by the industry for financial and capacity planning, fuel management and operational planning. The production cost models account for the expected variation of load (i.e., demand for power) over time and the uncertainty in the utilization of the generating units resulting from their failures and repairs. The production cost of a power generating system over a given time interval is obtained by adding the amounts of energy produced by each unit in megawatt-hours (MWH) multiplied by its operating cost ($/MWH). The major component of the operating cost for each unit is its cost of fuel. The amount of energy produced by each unit is a random variable because it is dependent on the uncertainty in the load and the utilization of the generating units due to the possibility of failures. The production cost is thus also a random variable.


The most frequently used probabilistic model of electric power production costing is due to Baleriaux, Jamoulle and Guertechin (1969). Booth (1972) has popularized their work in the USA. In the Baleriaux model, the hourly loads for the forecast time horizon are considered deterministic (Mazumdar and Bloom 1996). The steady-state expected production costs of the generation system are estimated in the model by using the load duration curve (LDC) in place of the chronological sequence of loads. The LDC is equivalent to the empirical survivor function obtained from the hourly load sequence over the time period of interest. Also, for the computations required in this model, it is not necessary to have information about the individual  distributions of the times to failure and repair of the generating units. It is enough to know their steady-state unavailabilities (called forced outage rates or F.O.R.s in the electric power systems literature). As pointed out by Ryan and Mazumdar (1990, 1992), the Baleriaux model is however unable to provide estimates of the variance of the production costs.


The variance provides an estimate to the planner of the uncertainty associated with a system whose production cost is being evaluated. There are also several potential uses of the estimates of the variance. For example, when considering the payment made by the utilities for the energy purchased from individual power producers, the actual costs are often compared to the costs calculated according to the computer models, and it is important to judge whether or not the discrepancy between the estimated and observed results is within the potential error of the model. In order to make this judgment, some knowledge of the variance of the calculated costs is necessary. For management of fuel inventories, it is also important to know the statistical distribution of the energy to be produced by the generating plants consuming different kinds of fuel. The cost models are potentially capable of providing this information since the production cost is directly related to the magnitude of energy production of the generating units. With the deregulation of electrical energy, much more practical attention is being devoted to risk.  This is particularly true for those new participants in the electrical energy market who are traders and owners of both gas and electrical systems.  These players are interested in profit and risk.  A major component of risk is the variance of the operational cost. Under the recent Clean Air Act, utilities operating coal-fired power plants must obtain sulfur emission allowances sufficient to cover their annual emissions. Forecasting the statistical distribution of sulfur emissions is important in determining the safety stock of such allowances. Similar to costs, the amount of emission of these polluting gases is directly related to the energy produced by the different generating units.


Methods for computing the expected production costs are well developed and have been well- documented (Lin, Breipohl and Lee 1989). However, the variance of the cost has only recently been studied, although this was originally proposed by a discussant (Wollenberg 1972) to a paper by Sager, Ringlee and Wood (1972). Rau and Necsulescu (1985) pointed to the need for more information about the statistical distribution of production costs. Mazumdar and Yin (1989) developed formulas for the variance of production cost for a unit time interval, a single hour. In this paper, the forced outage rate for a generating unit was taken to represent the probability that the unit would be unavailable, and the load for any one hour was treated as a random variable, with a distribution described by the LDC. The variance computed according to this formulation has two components of variation: a) that due to generating unit forced outages and subsequent repair time, and b) that reflecting the hour-to-hour load variation for the period under consideration. The former is accounted for by the forced outage rate, and the latter by LDC. Because of component (b), the hourly variance is relatively much larger than the variance of the total production cost over a given time interval that is covered by the LDC. To obtain the variance of the total cost over an extended time period, one must account for the dependence between the energy produced for each hour within a time interval. Thus, Bell (1990) in a discussion of Mazumdar and Yin’s paper remarked that “the actual distributions of electric production costing variables are necessarily dependent on the frequency and duration of generating unit outages... A comprehensive solution to the problem must await the development of true chronological power system models that make use of not only unit F.O.R.’s, but also the frequency and duration of generating unit outages.”  Bell was correct in observing that the steady-state forced outage rates and the LDC do not contain sufficient chronological information required to compute the variance of costs over a time-interval.


 Based on Bell’s suggestion, Ryan and Mazumdar (1990, 1992) provided a minimal extension to the Baleriaux model for computation of the variance of production costs by introducing a two-state Markov chain for each generating unit to represent its up and down times. This formulation accounted for the chronological variations in both the load and the availability of the generating units. The load was modeled as a deterministic, time-varying function, whereas the operating states of each unit were modeled as a two-state continuous-time Markov chain (CTMC).


Ryan and Mazumdar’s work showed that an exact computation of the variance of production costs requires an analysis that needs to consider the dependencies of each generating unit’s operating state at different points of time and that also captures the effect of changes in operating states and the chronological sequence of loads. Their example considered a small, three-unit generating system, and it showed that their proposed computational scheme using enumeration of system states would be prohibitive for realistically sized systems. The computational effort is smaller in an algorithm using cumulative capacity states, based on multiples of the greatest common divisor of the unit capacities. This approach was proposed by Lee, Lin and Breipohl (1990). Kapoor and Mazumdar (1996) have used an approximation based on a bivariate Gram-Charlier series to reduce the magnitude of the computations required by this procedure for large systems; nevertheless, the computational requirements for all these methods remain very demanding. Furthermore, the computational formulas developed in these works obscure the asymptotic behavior of the variance as the length of the interval grows.  Thus, it becomes necessary to investigate procedures that yield approximate, asymptotic results with much less computation. 


In this paper, we describe an approximation based on the formulas of Kemeny and Snell (1960) for the asymptotic mean and variance of the sample mean of a function of an irreducible, finite-state, discrete-state Markov chain. The Kemeny and Snell formulas for the asymptotic variance use the fundamental matrix which requires the inversion of a matrix having the same dimension as the size of the state space. This would not be considered a practicable proposition in view of the very large state space associated with a realistic power generating system. Our proposed approximation to these formulas uses a set of recursive equations that precludes the need for matrix inversion. For long study horizons, under the assumption of periodic load, this approximation is observed to yield accurate results in much smaller computation time as compared to  a realistic Monte Carlo simulation. Although this approximation is made possible by the special structure of the transition probability matrix for the production costing problem, we believe that our approach might be of interest to analysts outside the electric power industry who use stochastic models having a very large state space.  The Kemeny-Snell approximation also provides certain useful insights on the asymptotic behavior of the mean and the variance of the costs.  In particular, it shows that the variance grows linearly with the length of the time interval, a fact that has been observed empirically (Lee, Lin and Breipohl), but is not analytically derivable from previous formulas.


In the context of simulation done to estimate the expected performance characteristics of a process in the steady state, information on the variance of their estimates is useful for providing run lengths required to achieve the desired precision on the estimated values (Whitt 1992). A preliminary estimate of variance will help determine the approximate number of replications that will be needed in order to estimate the expected values. Also, the standard deviation is not often accurately estimated from Monte Carlo simulation, and for the production cost, which often possesses a very skewed distribution, there is no easy way to provide a confidence interval for the standard deviation. Thus there exists sufficient motivation in this situation to obtain approximate analytical estimates of the variance, if it can be obtained relatively fast. In section 1, we present the model for the power generation system and introduce the simplifications necessary to apply Kemeny and Snell’s asymptotic formulas for the expected value and the variance. In section 2, the recursive relations that make the approximate computations feasible for large systems are given. Section 3 gives a numerical example.

1.
MODEL

We use a model similar to the one proposed by Ryan and Mazumdar and subsequently used by Lee, Lin and Breipohl. Our model represents the load and the available generating capacity of each unit as stochastic processes, namely discrete-time Markov chains (DTMC). Inasmuch as the load is described by a stochastic process in our model, it represents a generalization to the model considered by Ryan and Mazumdar who considered load as a deterministic time-varying function. Our model represents a minimal extension of the original Baleriaux model, in the following sense: we retain the forced outage rates and the load duration curve as representations of the steady-state behavior of these stochastic processes (as in the Baleriaux formulation), and we supplement that information with a minimal representation of their chronological behavior, namely the fundamental matrix. The decision to use DTMC as the stochastic model results from two considerations: first, load data is typically available as discrete, hourly time-series, so that the parameters of its DTMC can be estimated in a straightforward manner. Second, the DTMC formulation allows for the direct application of the Kemeny-Snell formula for the asymptotic variance.

    It is assumed that the costs are being calculated for a power generation system consisting of N generating units over a time interval [0,T]. The following assumptions are made:


1.
The hourly load at time t, X0(t), follows an irreducible discrete-time Markov chain in steady-state with L different states and a known transition probability matrix. For two load state x0,y0, we define the transition probability by p0(y0(x0). The limiting probability for the state x0 is denoted by (0(x0). Note that the LDC can now be regarded as the upper tail of the distribution,  i.e., the LDC at 
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2.
The generators are dispatched at each hour in a fixed, preassigned loading order, which depends only upon the system load and the availability of the generating units. The ith unit in the loading order has capacity ci(MW), energy cost ki ($/MWH), and the unavailability or F.O.R. pi, i=1,2,...,n. The cost of unserved energy is kN+1 ($/MWH). The ki’s usually define an increasing sequence, which is called the merit order.


3.
The available capacity of each generating unit i follows a two-state DTMC in steady state:
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We define pi(1)(yi(xi) to be the one-step transition probability for moving from state xi to yi for unit i (xi, yi = 0,1; state 0 corresponds to a capacity value of 0 , and state 1 corresponds to a capacity value of ci.) The DTMC model of generating unit available capacity is not the usual model in the power system engineering literature, which more typically uses CTMC’s. (see, for instance, Endrenyi 1979). The next subsection discusses how we derived a DTMC model for the generating units from the usual continuous-time version.


4.
For i(j, Xi(t)and Xj(s) are independent for all values of t and s. The load process X0(t)  is independent of each Xi(t).


5.
The up and down process of a generating unit continues irrespective of whether or not it is in use.


The last assumption is necessary in order to ensure the steady state condition for the generating units. Similar to the Baleriaux model, we do not consider here the short-term unit commitment constraints (Wood and Wollenberg 1995) such as start-up costs, minimum up and down times, etc.   

Representation of the Generating System as a Discrete Time Markov Chain:

 
Because our purpose is to make use of the formulas given in Kemeny and Snell to calculate the asymptotic mean and variance of the production costs, we first define a discrete chain for the outage and repair of the generating units in which the transitions take place at hourly intervals and which is approximately equivalent to the more usual CTMC model of unit availability. 

Generating Units :


Following the usual CTMC version, let (i be the failure rate and (i be the repair rate for unit i. Then, the unavailability or F.O.R. of this unit is






Also, E[Xi(t)]=E[Xi(()]=ci(1-pi) for all t in the interval [0,T]. We define qi = 1-pi.  From the well-known formula (Ross 1993) on the transition probabilities of a two-state CTMC, we   approximate the transition probabilities at the end of every hour for the DTMC to be 










When 

 and 

 are both much greater than one hour, the one-step transition probability matrix 
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 for the unit can also be  approximated as follows:
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When 

 and 

 are very large, which is usually the case in practice, both these approximations yield very similar values and are close to their continuous time counterpart since very few transitions are expected to take place within an hour. Both approximations yield the limiting probability for the available capacity of unit i to be















The Composite Generation System
 


 Having defined the Markov chains for the generating units and the load, we can  combine these two chains  to form the Markov chain for the power generation system. Let 

 be the state vector where  x0  represents the state of the load and xi, i = 1, 2, ..., N, denotes the available capacity of each unit i such that  xi = ci   if unit i is up and  xi = 0 if unit i is down. By virtue of independence, the transition probabilities and limiting probabilities for the  system are given by 
 




  
(1)




      (2)




Defining the transition probability matrix and the matrix of limiting state probabilities by  

 the fundamental matrix for the Markov chain (Kemeny and Snell 1960) is given by
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The number of rows and columns in  
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We define 

 to  be the production cost ($/hour) incurred by the system per hour when the system is in state [x0, x1,...,xN] . To apply the asymptotic formulas for the evaluation of production cost mean and variance, let 



EMBED Equation 
 denote the state vector of the generation system at hour t.    Define




: 
states of the Markov chain




: 
cost rate for state  

 i.e., the production cost   
of the system per unit time when the system  is 
in state  



 

:
limiting probability for state 



 

: 
element of the fundamental matrix where the state 

of the row is  

 and the state of the column is 




. 

Then the asymptotic mean and variance of the total production cost during the time period [0,T] are given by 
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 (Kemeny and Snell, p. 86) where












(3)





(4)

Note that the above formulas show that the mean and the variance grow linearly as the time horizon T increases. This latter result seems to have gone unnoticed by previous authors on the production cost problem, and is confirmed by the numerical results given in Section 3.

2.
RECURSIVE FORMULATIONS FOR THE ASYMPTOTIC MEAN AND VARIANCE 


While applying the above formulas to estimating the production costs of a power generation system consisting of a large number of generating units, one faces the problem of how to evaluate (, f and ( in an effective manner, taking into account the large state space of the Markov chain. From (1) and (2), the transition probabilities and the limiting probabilities have nice product forms where the individual terms represent probabilities for the load and the generating units. This property provides a means for easily developing recursive procedures for computing these quantities by considering one unit at a time. Unfortunately, to obtain the fundamental matrix, the matrix inversion cannot be done without first constructing the entire transition probability  and the limiting probability matrices for the entire generation system. The approximate recursive procedure given below precludes the need for matrix inversion, and makes the computation of the asymptotic variance of the production cost feasible for large systems.

A Recursive Expression for the Production Cost Rate


The recursive equation for the rate of production costs 

 was first proposed by Bloom (1992). Consider first the hourly marginal cost of the generation system as a function of load, which is defined to be the hourly operating cost of the last unit used to meet the load. Starting with the top of the merit order, suppose that we have already calculated the hourly marginal cost ((x0,xi+1,...,xN) of the units i+1,i+2,...,N, expressed as a function of the load and the corresponding availability states of these units, and we are now ready to incorporate unit i. Suppose that the available generating capacity of unit i is xi MW. If the load of x0 MW is less than xi (x0> 0), then unit i is the system’s marginal unit and its running cost ki is the system’s marginal cost. Then the marginal cost in the interval 0<x0<xi is ki which can be represented by 

where





      


If the load x0 exceeds xi, then one of the units i+1, i+2,...,N is marginal; since the addition of xi MW reduces the effective load by this amount for the remaining units, the marginal cost is ((x0-xi,xi+1,...,xN). Thus, noting that ((x0,xi,...,xN)=0 when x0<0, we have






The hourly production cost ((x0,xi,...,xN), of a system consisting of units i through N when the available capacity of unit j is xj, is given by the integral of ((.). That is,






 Thus we can write   
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Mean of Production Cost


Now, let 
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Thus, the expected production cost of the system is:
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Asymptotic Variance of Production Cost


To compute 
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 according to (4), we will consider the three terms separately. The first term  can be obtained from equation (7). To compute the second term, similar recursive formulas can be obtained. Since ((x0-xi,xi+1,...,xN)>0 implies that x0-xi>0, which in its turn implies that x0>0, we have from (5)



[image: image20.wmf]{

}

2

0

1

0

1

2

1

0

1

0

2

0

2

)

(

)

(

      

          

          

)

,...,

,

(

2

      

          

          

)

,...,

,

(

)

,...,

,

(

i

i

N

i

i

i

i

N

i

i

N

i

x

x

R

x

R

k

x

x

x

x

x

k

x

x

x

x

x

x

x

-

-

+

-

L

+

-

L

=

L

+

+





(8)

since 

 implies that 

  and









where 

.

Therefore, (8 ) can be expressed as:






We now define 
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The third term of (4) involves the fundamental matrix. Let F be the fundamental matrix of a Markov chain with transition probability matrix P and limiting probability matrix SYMBOL 80 \f "Symbol". Then, by definition,
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where


and 
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Now, consider a two-dimensional state vector obtained from the composition of two independent Markov chains with the respective transition probabilities p0(.(.) and p1(.(.), the fundamental matrix elements f0(.(.) and f1(.(.) and the limiting probabilities by (0(.) and (1(.). Denote the transition probability of the composite chain by p(.,.(.,.), the fundamental matrix element by f(.,.(.,.) and the limiting probability by ((.,.). Then,








                                                           (11)                                                                           

With obvious changes in notations, equation (11) generalizes to



 












(12)

Now, because 

,  it is reasonable to assume that the last sum in (12) should be of a magnitude smaller than the preceding terms.  Therefore, it appears appropriate to neglect this term, thereby obtaining the following recursive relationship for the fundamental matrix. That is,



 

                                                          (13)

 Now, to compute the third term of (4), define 



[image: image30.wmf]L

L

L

i

i

N

i

N

i

N

i

N

i

N

y

y

x

x

x

y

x

x

x

y

y

y

f

y

y

x

x

x

x

i

N

i

N

(

,

)

(

,

,

.

.

.

,

)

(

,

,

.

.

.

,

)

(

,

.

.

.

,

|

,

.

.

.

,

)

(

,

.

.

.

,

)

,

.

.

.

,

,

.

.

.

,

0

0

0

0

=

å

å

p


 



                                                          (14)                                                                                                                                                

We also define 




        (15)       

and note that
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We show in the Appendix that
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(16)


The quantities 

 can be obtained recursively from 

 using (6), (9), (A-2), (A-3). Thus, substituting equations (7), (10) and (A-8) into equation (4), the final expression for the asymptotic variance becomes
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3.
NUMERICAL RESULTS


Tables 1 and 2 provide an example of a power generation system that has been patterned after the IEEE Reliability Test System (1979). Table 1 shows the generating units(j) in their loading order with their capacity(cj), cost(kj) and reliability parameters( 

 and 

). Table 2 shows the chronological hourly sequence of loads for a period of L=24 hours. It is assumed that this daily load pattern is deterministic and repeated every 24 hours. Let x0 and y0 denote two load states (not the actual load levels.) That is, we assume





and





The limiting probabilities of each load state are






The mean and variance for production costs are calculated using the recursive formulas developed in the preceding section for time intervals  of T = 24 hours, 168 hours (1 week), 672 hours (1 month), and 2016 hours (3 months).  The results are shown in Table 3 which also gives the corresponding point estimates obtained from Monte Carlo simulation with 8000 runs. The respective CPU-times are also shown.

 
It is seen that the recursive procedure using Kemeny and Snell’s formulas provides very accurate estimates of the mean and the standard deviation for long time horizons where they are almost indistinguishable from the Monte Carlo results. As a matter of fact, the estimate of the mean is always accurate, and it should cause no surprise because there was no approximation involved. The fact that the estimates of the standard deviation are not accurate for short time intervals and are accurate for large time intervals is also not surprising in view of the asymptotic character of Kemeny and Snell’s formulas. What is most striking is the fact that the estimates based on these formulas are so accurate for large T even though the recursive formulation was developed by ignoring the contribution of the last term in (12).  The computer time needed by the approximation compares well with the Monte Carlo simulation. Under the assumption of periodic load, the recursive formulation is much faster compared to Monte Carlo with 8000 runs.  


Shih (1995) has considered a model where the hourly load sequence defines a stochastic process given according to a Gauss-Markov model (Breipohl, Lee, Zhai and Adapa 1992). She has shown that a similar recursive formulation also yields accurate results. In addition, she has extended this formulation to the consideration of marginal costs as well.

 Table I

An Example Power Generation System

Unit (j)
Capacity, cj
(MW)
F.O.R.,  pj
MTTF, 1/(j
(Hour)
MTTR,  1/(j
(Hour)
Cost,  kj
($/MHW)

1
1000
.1000
1440
160
4.50

2
900
.1034
1300
150
5.00

3
700
.0977
1200
130
5.50

4-5
600
.0909
1100
110
5.75

6-8
500
.0873
1150
110
6.00

9-13
400
.0756
1100
90
8.50

14
300
.0654
1000
70
10.00

15-19
200
.0535
850
48
14.50

20-26
100
.0741
600
48
22.50

27-32
100
.0331
350
12
44.00

(Cost of unserved demand, kN+1: = $140/MWH).

Table II

Chronological Load Sequence for a 24-hour Period 

Hour
1
2
3
4
5
6
7
8
9
10
11
12

Load(MW)
4250
4250
5100
5100
5500
5500
7550
7550
8600
8600
9000
9000

Hour
13
14
15
16
17
18
19
20
21
22
23
24

Load(MW)
9000
8500
8500
8500
7550
6400
5500
5500
5100
5100
4250
4250

Table III

Comparison of the Recursive Asymptotic Method (RA) with Simulation*
  

      Time
Horizon
24 hrs
168 hrs
672 hrs
2016 hrs

Expected
Simulation
1.32x106
9.33x106
3.72x107
1.12x108

  Value ($)
RA
1.33x106
9.30x106
3.72x107
1.12x108

Standard
Simulation
4.31x105
2.56x106
6.44x106
1.20x107

Deviation($)
RA
1.32x106
3.50x106
6.99x106
1.21x107

  CPU
Simulation
3.92
17.74
67.40
249.53

  (seconds)
RA
3.52
3.52
3.52
3.52

 *:
Based on 8000 replications

APPENDIX


Here, we provide the recursive formulas for 

 defined in equations (14) and (16) respectively. Using the following well-known properties of the  fundamental matrix (Kemeny and Snell 1960),
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(A-1)

we obtain














    (A-2a)
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    (A-2b)
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    (A-2c)


[image: image40.wmf]{

[

]

[

]

[

]

[

]

}

)

(

)

,...,

(

)

(

          

          

)

(

)

(

)

(

)

(

)

,...,

,

(

)

(

)

(

    

          

          

)

,...,

,

(

)

(

)

(

)

,...,

,

(

)

,...,

,

(

1

0

1

0

1

0

1

0

1

2

1

0

0

1

0

1

,...,

1

0

0

1

0

1

1

0

1

0

1

1

i

N

i

i

i

i

i

i

N

i

i

i

i

x

y

y

x

y

x

N

i

i

i

i

N

i

i

N

i

i

y

x

x

x

x

x

R

x

R

y

y

R

y

R

k

y

y

y

y

x

x

R

x

R

k

x

x

x

x

y

y

R

y

R

k

y

y

y

y

x

x

x

x

i

i

N

N

i

i

p

p

p

+

+

=

=

+

+

+

´

-

-

-

-

+

-

L

-

-

+

-

L

-

-

+

-

L

-

L

-

å

å

å

+

+












    (A-2d)
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    (A-2e)

  We also obtain
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   (A-3)

where
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the term (A-2c)
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    (A-4)

the term (A-2d)                                       
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     (A-5)

and the term (A-2e)
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(A-6)

Thus,
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(A-7)
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(A-8)


Thus, substituting equations (7), (10) and (A-8) into equation (4), the final expression for the asymptotic variance becomes
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