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ABSTRACT. We prove that the Cauchy problem for a certain sixth order hyperelastic dis-
persive equation is globally well-posed in a natural space. We also show that there exist
solitary wave solutions u(x, y, t) = φc(x − ct, y) that come from an associated varia-
tional problem. Such solitary waves are nonlinearly stable in the sense that if a solution is
initially close to the set of such solitary waves, it remains close to the set for all time in the
natural norm.

1. INTRODUCTION

In this article, we consider the following two-dimensional nonlinear dispersive elastic
wave equation

[ut − uxxt + δuxxxxt + 3uux − γ(2uxuxx + uuxxx)]x − αuyy + βuxxyy = 0. (1.1)

Equation (1.1) was derived by the author in [10] as a model for the deformations of a
hyperelastic compressible plate relative to a uniformly pre-stressed state. In this model
u represents vertical displacement of the plate relative to a uniformly pre-stressed state,
while x and y are rescaled longitudinal and lateral coordinates in the horizontal plane. To
reduce the full three-dimensional field equation to an approximate two-dimensional plate
equation, an assumption has been made that the thickness of the plate is small in compar-
ison to the other dimensions. It is also assumed that the small perturbations superimposed
on the pre-stressed state only appear in the vertical direction (the z-direction) and in one
horizontal direction (the x-direction). Hence the variation of waves in the transverse direc-
tion (the y-direction) is small. Equation (1.1) is obtained under the additional assumption
that the wavelength in the x-direction is short. On the other hand, if the wavelength is
large, we obtain the Kadomtsev-Petviashvili(KP) equation.

The parameters in equation (1.1) are all material constants. The scalar δ describes the
stiffness of the plate which is nonnegative. The coefficients α and β are material constants
that measure weak transverse effects. The material constant γ occurs as a consequence of
the balance between the nonlinear and dispersive effects. Note that there is no dissipation
in this model.

Equation (1.1) generalizes several well-known equations including the BBM equation
[1] when δ = α = β = γ = 0, the regularized long-wave Kadomtsev-Petviashvili(KP)
equation [3] (also referred as KP-BBM equation, see [34]) when δ = β = γ = 0, and
the Camassa-Holm (CH) equation [9] when δ = α = β = 0, γ = 1. In contrast to our
derivation in [10] of nonlinear dispersive waves in a hyperelastic plate, these particular
equations are usually derived as models of water waves. In equation (1.1), the two spatial
dimensions make the analysis very different from the CH equation. The γ-terms include
a nonlinear term of fourth order, which makes equation (1.1) very different from the KP-
BBM equation. This is the reason why we need the stiffness δ-term and the higher-order
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dispersion β-term in y to overcome the technical difficulties in estimating the nonlinear
terms.

One aim of the present paper is to establish the global well-posedness of (1.1) in the
natural space suggested by the following conservation law. Multiplying (1.1) with u and
integrating over the whole space leads to the formal conservation law

d

dt
E(u) =

d

dt

{∫
R2

[u2 + u2
x + δu2

xx]dxdy
}

= 0, (1.2)

hence we may consider the space H2
x ⊂ L2(R2) with the norm

‖u‖2H2
x

= ‖u‖2L2 + ‖ux‖2L2 + ‖uxx‖2L2 ,

as a good candidate for solving the global Cauchy problem for (1.1). Note the absence of
the y derivatives.

For any s ≥ 0, we also introduce the space Y s ⊂ H2
x equipped with the norm

‖u‖Y s = ‖〈ξ〉2〈|ξ|+ |η|〉sû(ξ, η)‖L2
ξη
, (1.3)

where for x ∈ R, 〈x〉 = (1 + x2)1/2 and û is the Fourier transform. Clearly, Y 0 = H2
x . In

addition, we define the “Bourgain space" Xb,s ⊂ S ′(R3) equipped with the norm

‖u‖Xb,s = ‖〈τ − p(ξ, η)〉b〈ξ〉2〈|ξ|+ |η|〉sû(τ, ξ, η)‖L2
τξη
, (1.4)

for any b ∈ R, where

p(ξ, η) =
αξ−1η2 + βξη2

1 + ξ2 + δξ4
.

Theorem 1.1. For any φ ∈ H2
x , there exists u ∈ C(R;H2

x) which solves (1.1) with
u(0, x, y) = φ(x, y) such that E(u(t)) = E(φ) for all t ∈ R. Furthermore, there ex-
ists some b > 1/2 such that u ∈ Xb,0 and u is unique in the class Xb,0. Moreover, if
s > 0, then the map φ 7→ u(t) takes Y s to Xb,s continuously.

Formally, equation (1.1) can be written in the Hamiltonian form

ut + JF ′(u) = 0, (1.5)

where J = 1
2 (1− ∂2

x + δ∂4
x)−1∂x is a skew-symmetric operator and

F (u) =
∫

R2
[u3 + γuu2

x − α(∂−1
x uy)2 − βu2

y]dxdy (1.6)

is the Hamiltonian. Here, ∂−1
x uy is defined via the Fourier transform as

∂̂−1
x uy =

η

ξ
û(ξ, η).

Hence the functional F (u) is formally conserved. Both E(u) and F (u) are crucial to the
stability analysis.

Combining E(u) and F (u) gives us the space W ⊂ H2
x(R2) equipped with the norm

‖u‖2W = ‖u‖2L2 + ‖ux‖2L2 + ‖uxx‖2L2 + ‖uy‖2L2 + ‖∂−1
x uy‖2L2

Because of the last term, any u ∈ W has (formally) a zero x− average for each y. The
space W will be the natural space for our stability theorem.

Theorem 1.2. If φ ∈ W and αβ > 0, then the solution obtained in Theorem 1.1 satisfies
u ∈ C(R;W ). Moreover, for each t ∈ R, F (u(t)) = F (φ).
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Beginning with Section 5 we study the solitary wave of equation (1.1). A solitary wave
is a solution u ∈ W to equation (1.1) of the form u(x, y, t) = φc(x − ct, y). Note that
any translate of a solitary wave is another solitary wave. Solitary waves in solids are easy
to detect because they do not change their shapes during propagation, and can be used for
determination of material properties and flaw detection. Therefore it is of great interest to
decide whether they are stable or not. The appropriate notion of stability here is orbital
stability as follows.

Definition. Let S ⊂ W be a set of solitary waves. It is called W -stable if for any ε > 0,
there is a ν > 0 such that for any u0 ∈W with

inf
v∈S
‖u0 − v‖W < ν,

the solution u of equation (1.1) with initial data u(·, 0) = u0(·) satisfies

sup
−∞<t<∞

inf
v∈S
‖u(t)− v‖W < ε.

Otherwise, S is called W -unstable.
Substituting φ(x − ct, y) into equation (1.1) and integrating once in x we obtain the

equation for any solitary wave to be

−cφx+cφxxx−cδφxxxxx+3φφx−γ(2φxφxx+φφxxx)−α∂−1
x φyy+βφxyy = 0. (1.7)

A solitary wave φc ∈ W is therefore a critical point of the functional cE(u) − F (u).
Let

d(c) = cE(φc)− F (φc). (1.8)
This variational characterization allows us to apply the concentration-compactness prin-
ciple for the existence of solitary waves. Our strategy is to minimize the sum of all the
quadratic terms in the functional under the constraint that the sum of the cubic terms is a
constant, that is, to minimize

Gc(u) =
∫

R2
[cu2 + cu2

x + cδu2
xx + α(∂−1

x uy)2 + βu2
y]dxdy (1.9)

subject to the constraint

K(u) =
∫

R2
[u3 + γuu2

x]dxdy = λ. (1.10)

Using this variational method, we have the following existence result

Theorem 1.3. If c, α, β > 0, then equation (1.1) admits nontrivial solitary waves φc(x−
ct, y) which are multiples of the minimizers to this associated variational problem.

Solitary waves thus obtained are called ground states. In Section 6 we investigate the
stability of the solitary wave solutions to equation (1.1). The stability analysis makes use
of the function d(c). We show that for each c > 0, the function d(c) defined in (1.8) does
not depend on the choice of ground state φc and d(c) is smooth. Moreover, the sign of
d′′(c) determines the stability of the ground states. Our main result is the following

Theorem 1.4. If c, α, β > 0, then the set of ground states of (1.1) is W -stable.

There have been several results regarding the well-posedness and stability for equation
(1.1) in some special cases. When the space dimension is one (α = β = 0) and the stiffness
is zero (δ = 0), the equation becomes the generalized Camassa-Holm (CH) equation. In
[14] was proved the local well-posedness of CH equation in Hs(R), s ≥ 3. The result
was improved to s > 3/2 in [23] and [32]. It is also discussed in [23] that a necessary and
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sufficient condition for a global solution u to exist in Hs(R) is that the L∞-norm of ux
remains bounded. A Besov space approach can be found in [18]. The phase plane analysis
used in [17] shows that there are smooth solitary waves for γ < 1. In the case γ = 1,
the solitary waves are peaked solitons ([9]). The stability of solitary waves was proven
in ([15], [16]). The difference between those papers is that the first one is the exact CH
equation (γ = 1) while the second one treats the case γ < 1. The methods of proof are
necessarily very different however. The first paper [15] gave a quantitative estimate on the
H1 deviation from a translated peakon shape in terms of two conservation laws of the flow.
In the second paper [16] the authors used a spectral analysis of the linearized Hamiltonian
operator following the method of [21]. In contrast to the CH equation, this present paper
considers an equation in two spatial dimensions.

In two dimensions the standard generalization of the KdV equation is the Kadomtsev-
Petviashvili (KP) equation. The first result regarding well-posedness for a KP type equa-
tion appeared in [37] which proved local well-posedness for KP-I and KP-II equations for
initial data in Hs(R2) for s ≥ 3. A significant result on the global well-posedness was
given by Bourgain by using an analysis of multiple Fourier series introduced in [6]-[8],
in the context of Schrödinger, KdV or KP equations. He proved that the KP-II equation
is globally well-posed for initial data in L2(R2). Bourgain’s result was improved in an
anisotropic Sobolev space in [35] and [36]. The gain in regularity for the KP-II equation
was proved in [22]. Flows of the KP-I and KP-II equations, considered in the natural
spaces, behave very differently in the sense that the KP-II equation can be solved by Pi-
card iteration ([8]) while KP-I cannot, in any Sobolev class ([31]). In [19]) and [38], a
global existence result for small initial data was obtained via inverse scattering techniques.
The smallness assumption was later removed ([11]). It was improved in [33] that the so-
lution is locally well-poseded initial data and their antiderivatives in Hs for s ≥ 3. It
was also shown later in [30] that one obtains global well-posedness provided more regular
initial data. In [13] a well-posedness result for small data in a weighted Sobolev space
with essentially H2 regularity was obtained and the result was improved for data in the
intersection of the energy space and a natural weighted L2 space ([12]).

The situation is quite different for KP-BBM equations. It has been proved in [3] that
the KP-BBM equation can be solved by iteration, yielding local and global well-posedness
results. Later [34] showed the global well-posedness for less regular initial data without the
extra constraint on the initial data used in [3]. In contrast to the KP and KP-BBM equations,
the equation considered in the present paper involves much higher nonlinearities.

The equations for the solitary waves of the KP and KP-BBM equations are identi-
cal. The main result on the existence of solitary waves was obtained in [5] using the
concentration-compactness method ([24]). For stability results for the KP equation, we
recall the work of [27], [26] and [4]. For stability of KP-BBM equation, we recall the work
of [3], [25] and [34].

This paper is organized as follows. We prove in the next three sections that the initial-
value problem in R2 is globally well-posed using the Fourier transform restriction method.
We first show that equation (1.1) is locally well-posed. This is accomplished by means of
some bilinear estimates and the contraction-mapping principle in a suitably chosen space.
The global existence is achieved by use of the two conservation laws. In later sections the
prospect in view is the solitary wave problem. In Section 5 we give an existence result
of solitary waves using a concentration-compactness argument. Next we prove that the
solutions are regular. In Section 6 we show that all such solitary waves are orbitally stable
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when considered as solutions of the full evolution equation. In Section 7 we provide a
condition for the nonexistence of solitary waves.

Notation. For A,B ∈ R, the notation A ∼ B means |A|/2 ≤ |B| ≤ 2|A|. A ∨ B =
max{A,B} and A ∧ B = min{A,B}. For a Lebesgue measurable set D, we denote by
|D| its measure. Constants are denoted by C and may change from line to line.

2. LOCAL WELL-POSEDNESS

In this section we consider the Cauchy problem for{
[ut − uxxt + δuxxxxt + 3uux − γ(2uxuxx + uuxxx)]x − αuyy + βuxxyy = 0

u(x, y, 0) = φ(x, y)
(2.1)

in (x, y) ∈ R2, t ≥ 0. Integrating once in x, we see that the equation can also be written
as  (1− ∂2

x + δ∂4
x)ut − α∂−1

x uyy + βuxyy = −3
2

(u2)x +
γ

2
[(u2)xxx − (u2

x)x]

u(x, y, 0) = φ(x, y).
(2.2)

We formally solve for ut and invert its linear part to see that equation (2.2) is equivalent
to the following integral equation

u(t) = S(t)φ− 1
2

∫ t

0

S(t− t′)
{

[3P1(Dx)− γP2(Dx)](u2(t′)) + γP1(Dx)(u2
x(t′))

}
dt′,

(2.3)

where S(t) is the Fourier multiplier operator with symbol exp
{
it(αξ−1η2 + βξη2)(1 +

ξ2 +δξ4)−1
}

, P1(Dx) is the Fourier multiplier with symbol ξ/(1+ξ2 +δξ4) and P2(Dx)

is the Fourier multiplier with symbol ξ3/(1 + ξ2 + δξ4). If u solves (2.3) locally, then it
also solves (2.2) in sense of distributions.

Let ψ(t) be a cut-off function such that ψ ∈ C∞0 (R), suppψ ⊂ [−2, 2], ψ = 1 on
[−1, 1]. For T > 0, let ψT (t) = ψ(t/T ). Let

f(u) =
[3

2
P1(Dx)− γ

2
P2(Dx)

]
(u2) +

γ

2
P1(Dx)(u2

x).

We define the “temporally truncated" operator

Lu(t) = ψ(t)S(t)φ− ψT (t)
∫ t

0

S(t− t′)f(u(t′))dt′ (2.4)

for which we will estimate each term separately.
We use the idea in [20] to give the linear estimates.

Lemma 2.1. Let s ∈ R. There exists C > 0 such that

‖ψ(t)S(t)φ‖Xb,s ≤ C‖φ‖Y s . (2.5)

Proof. By definition of ‖ · ‖Xb,s ,

‖ψ(t)S(t)φ‖Xb,s = ‖〈τ − p(ξ, η)〉b〈ξ〉2〈|ξ|+ |η|〉sFt
(
ψ(t)eitp(ξ,η)φ̂(ξ, η)

)
‖L2

τξη

= ‖〈ξ〉2〈|ξ|+ |η|〉sφ̂(ξ, η)
(
‖〈τ〉bψ̂(τ)‖L2(τ)

)
‖L2

ξη

= ‖φ‖Y s‖ψ‖Hb ≤ C‖φ‖Y s .
�
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Similarly we get

‖ψT (t)S(t)φ‖Xb,s = ‖φ‖Y s‖ψT ‖Hb ≤ CT 1/2−b‖φ‖Y s . (2.6)

Lemma 2.2. Let 0 < ε < 1/4, b = 1/2 + ε, b′ = 1/2− 2ε. Let g ∈ H−b′(R). Then

‖ψT
∫ t

0

g(t′)dt′‖Hb ≤ CT ε‖g‖H−b′ . (2.7)

Proof. First we split the integral into three parts as follows

ψT

∫ t

0

g(t′)dt′ = ψT

∫ t

0

∫
R
eit
′τ ĝ(τ)dτdt′

= ψT

∫
R
ĝ(τ)

∫ t

0

eit
′τdt′dτ = ψT

∫
R

eitτ − 1
iτ

ĝ(τ)dτ

= ψT

∫
T |τ |≤1

eitτ − 1
iτ

ĝ(τ)dτ − ψT
∫
T |τ |≥1

ĝ(τ)
iτ

dτ + ψT

∫
T |τ |≥1

eitτ

iτ
ĝ(τ)dτ := I1 + I2 + I3.

Now we estimate the contribution of the above three terms separately. The first term
can be written as I1 = ψT

∫
T |τ |≤1

∑
k≥1

tk

k! (iτ)k−1ĝ(τ)dτ . Therefore

‖I1‖Hb =
∥∥∥〈τ〉bF(∑

k≥1

tkψT
k!

∫
T |τ |≤1

(iτ)k−1ĝ(τ)dτ
)∥∥∥

L2

=
∥∥∥〈τ〉b ∫

R
e−itτ

(∑
k≥1

tkψT
k!

∫
T |τ ′|≤1

(iτ)k−1ĝ(τ ′)dτ ′
)
dt
∥∥∥
L2

=
∥∥∥〈τ〉b ∫

R
e−itτ

∑
k≥1

tkψT
k!

dt
∥∥∥
L2
·
∣∣∣ ∫
T |τ ′|≤1

(iτ)k−1ĝ(τ ′)dτ ′
∣∣∣

≤
∑
k≥1

‖ t
kψT
k!
‖Hb ·

∫
T |τ |≤1

|iτ |k−1|ĝ(τ)|dτ

≤
∑
k≥1

‖ t
kψT
k!
‖Hb · T 1−k · ‖g‖H−b′ ·

(∫
T |τ |≤1

〈τ〉2b
′
dτ
)1/2

≤
∑
k≥1

C

k!
T k+1/2−b · T 1−k · T−b

′−1/2 · ‖g‖H−b′

( since we know from (2.6) that ‖tkψT ‖Hb ≤ CT k+1/2−b )

≤ CT 1−b−b′‖g‖H−b′ = CT ε‖g‖H−b′ .

The second term I2 can be bounded as follows.

‖I2‖Hb ≤ ‖ψT ‖Hb ·
∫
T |τ |≥1

|ĝ(τ)|
|τ |

dτ

≤ ‖ψT ‖Hb · ‖g‖H−b′ ·
(∫

T |τ |≥1

|τ |2〈τ〉−2b′dτ
)1/2

≤ CT 1−b−b′‖g‖H−b′ = CT ε‖g‖H−b′ .
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Contribution of I3

‖I3‖Hb =
∥∥∥〈τ〉bF(ψT ∫

T |τ |≥1

eitτ

iτ
ĝ(τ)dτ

)∥∥∥
L2

=
∥∥∥〈τ〉bF[ψT (t) · F−1

( ĝ(τ)
iτ

1T |τ |≥1

)
(t)
]∥∥∥
L2

=
∥∥∥〈τ〉b · ψ̂T ∗ ( ĝ(τ)

iτ
1T |τ |≥1

)∥∥∥
L2
.

Let Ĝ(τ) = ĝ(τ)
iτ 1T |τ |≥1. Then

‖G‖Hb = ‖〈τ〉bĜ‖L2 ≤ ‖g‖H−b′ · sup
T |τ |≥1

〈τ〉b+b′

|τ |
≤ CT 1−b−b′‖g‖H−b′ = CT ε‖g‖H−b′ .

Hence

‖I3‖Hb =
∥∥∥〈τ〉b(ψ̂T ∗ Ĝ)∥∥∥

L2
≤ C

(
‖〈τ〉bψ̂T ‖L1‖G‖L2 + ‖ψ̂T ‖L1‖G‖Hb

)
≤ CT 1−b−b′‖g‖H−b′ = CT ε‖g‖H−b′ .

Altogether, we obtain

‖ψT
∫ t

0

g(t′)dt′‖Hb ≤ CT 1−b−b′‖g‖H−b′ = CT ε‖g‖H−b′ .

�

Lemma 2.3. Let 0 < ε < 1/4, b = 1/2 + ε, b′ = 1/2− 2ε. Then

‖ψT
∫ t

0

S(t− t′)f(u(t′))dt′‖Xb,s ≤ CT ε‖f(u)‖X−b′,s . (2.8)

Proof. It is easy to see that

‖u‖Xb,s = ‖S(−t)u‖Hb,s ,

where Hb,s denotes the subspace of S ′(R3) with the norm

‖u‖Hb,s = ‖〈τ〉b〈ξ〉2〈|ξ|+ |η|〉sû(τ, ξ, η)‖L2
τξη
.

Therefore

‖ψT
∫ t

0

S(t− t′)f(u(t′))dt′‖Xb,s = ‖S(−t)ψT
∫ t

0

S(t− t′)f(u(t′))dt′‖Hb,s

= ‖ψT
∫ t

0

S(−t′)f(u(t′))dt′‖Hb,s

=
∥∥∥〈τ〉b〈ξ〉2〈|ξ|+ |η|〉sFt,x,y(ψT ∫ t

0

S(−t′)f(u(t′))dt′
)∥∥∥

L2
τξη

≤
∥∥∥〈ξ〉2〈|ξ|+ |η|〉s‖Fx,y(ψT ∫ t

0

S(−t′)f(u(t′))dt′
)
‖Hbt

∥∥∥
L2
τξη

≤
∥∥∥〈ξ〉2〈|ξ|+ |η|〉s · CT 1−b−b′‖Fx,y

(
S(−t′)f(u(t′))

)
‖
H−b

′
t

∥∥∥
L2
τξη

(from Lemma 2.2)

= CT 1−b−b′‖f(u)‖X−b′,s = CT ε‖f(u)‖X−b′,s .
�
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As stated in the introduction, the two functionalE(u) and F (u) are formally conserved.
Hence it is possible to draw some preliminary conclusions. First the conservation of E(u)
implies that if the initial data φ ∈ H2

x then the corresponding solution u of (1.1) lies in
H2
x for all t for which it exists. To draw an inference based on the invariance of F (u), the

following lemma is helpful. This lemma is closely related to the embedding theorems for
anisotropic Sobolev spaces studied in [2].

Lemma 2.4.

(i) ‖f‖L∞(R2) ≤ C(‖f‖L2(R2) + ‖fxx‖L2(R2) + ‖fy‖L2(R2)). (2.9)

(ii) ‖f‖3L3(R2) ≤ C‖f‖
3/2
L2(R2)‖f‖H1

x(R2)‖∂−1
x fy‖1/2L2(R2). (2.10)

Proof. (i) We can easily see this from the following estimate∫
R2
|f̂ |dξdη ≤

(∫
R2

(1 + ξ4 + η2)|f̂ |2dξdη
)1/2(∫

R2

1
1 + ξ4 + η2

dξdη
)1/2

≤ C(‖f‖L2(R2) + ‖fxx‖L2(R2) + ‖fy‖L2(R2)).

(ii) See [3] Lemma 2.1. �

Remark. Now suppose the initial data φ ∈W . Consider the case αβ > 0. For simplicity,
we assume α, β > 0 and δ ≤ 1. The invariance of E infers that u ∈ H2

x and more
precisely,∫

R2
[u2 + u2

x + δu2
xx] dxdy ≤ 1

δ

∫
R2

[φ2 + φ2
x + φ2

xx] dxdy ≤ 1
δ
‖φ‖2W .

Thus we would like to show that u(t) ∈ W for all t for which the solution exists. So it
suffices to show that ∂−1

x uy ∈ H1
x(R2), that is, ∂−1

x uy, uy ∈ L2(R2). The invariance of F
means∫

R2
[u3 +γuu2

x−α(∂−1
x uy)2−βu2

y] dxdy =
∫

R2
[φ3 +γφφ2

x−α(∂−1
x φy)2−βφ2

y] dxdy.

(2.11)
Hence by Lemma 2.4 we know that

min{α, β}
∫

R2
[(∂−1

x uy)2 + u2
y]dxdy

≤
∫

R2
[u3 + γuu2

x]dxdy −
∫

R2
[φ3 + γφφ2

x]dxdy + max{α, β}
∫

R2
[(∂−1

x φy)2 + φ2
y]dxdy

≤‖u‖3L3 + |γ|‖u‖L∞‖ux‖2L2 + ‖φ‖3L3 + |γ|‖φ‖L∞‖φx‖2L2

+ max{α, β}
∫

R2
[(∂−1

x φy)2 + φ2
y]dxdy

≤‖u‖3L3 + ‖φ‖3L3 + C|γ|(‖u‖L2 + ‖uxx‖L2 + ‖uy‖L2)‖ux‖2L2

+ C|γ|(‖φ‖L2 + ‖φxx‖L2 + ‖φy‖L2)‖φx‖2L2 + max{α, β}‖φ‖2W

≤ ‖u‖3L3 + ‖φ‖3L3 + C|γ|‖φ‖2W1
‖ux‖L2 +

C|γ|
δ
‖φ‖3W + max{α, β}‖φ‖2W

≤ C‖φ‖5/2W ‖∂
−1
x uy‖1/2L2 + C‖φ‖3W + C|γ|‖φ‖2W ‖uy‖L2 +

C|γ|
δ
‖φ‖3W1

+ max{α, β}‖φ‖2W

≤ C(δ, α, β, γ, ‖φ‖W ) + C(γ, ‖φ‖W )
(
‖∂−1
x uy‖1/2L2 + ‖uy‖L2

)
.
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Therefore supt
(
‖∂−1
x uy‖2L2 + ‖uy‖2L2

)
≤ C(δ, α, β, γ, ‖φ‖W ). That is,

sup
t

(‖u‖W ) ≤ C(δ, α, β, γ, ‖φ‖W ).

This discussion leads to the following formal statement:
If a solution u of equation (1.1) that starts in the space W , it will remain in this space

throughout its period of existence.
To prove the local well-posedness of the Cauchy problem of (1.1), we need the follow-

ing bilinear estimates.

Theorem 2.5. For every s ≥ 0, there exists 0 < ε < 1/4 such that for b = 1/2 + ε,
b′ = 1/2− 2ε, we have

‖P2(Dx)(uv)‖X−b′,s ≤ C
(
‖u‖Xb,s‖v‖Xb,0 + ‖u‖Xb,0‖v‖Xb,s

)
. (2.12)

‖P1(Dx)(uv)‖X−b′,s ≤ C
(
‖u‖Xb,s‖v‖Xb,0 + ‖u‖Xb,0‖v‖Xb,s

)
. (2.13)

‖P1(Dx)(uxvx)‖X−b′,s ≤ C
(
‖u‖Xb,s‖v‖Xb,0 + ‖u‖Xb,0‖v‖Xb,s

)
. (2.14)

Proof. First we introduce some notations. Let

ζ = (τ, ξ, η), ζ1 = (τ1, ξ1, η1), σ(ζ) = τ − p(ξ, η).

Then estimate (2.12) is equivalent to∥∥∥ |ξ|3

1 + ξ2 + δξ4

〈ξ〉2〈|ξ|+ |η|〉s

〈σ(ζ)〉b′
∫

R3
û(ζ1)v̂(ζ − ζ1)dζ1

∥∥∥
L2

≤ C
(
‖u‖Xb,s‖v‖Xb,0 + ‖u‖Xb,0‖v‖Xb,s

)
. (2.15)

Now let

f1(ζ) = 〈σ(ζ)〉b〈ξ〉2〈|ξ|+ |η|〉sû(ζ), g1(ζ) = 〈σ(ζ)〉b〈ξ〉2v̂(ζ),

f2(ζ) = 〈σ(ζ)〉b〈ξ〉2û(ζ), g2(ζ) = 〈σ(ζ)〉b〈ξ〉2〈|ξ|+ |η|〉sv̂(ζ).

Since for s ≥ 0,

〈|ξ|+ |η|〉s

〈|ξ1|+ |η1|〉s〈|ξ − ξ1|+ |η − η1|〉s
≤ C

( 1
〈|ξ1|+ |η1|〉s

+
1

〈|ξ − ξ1|+ |η − η1|〉s
)
,

the left-hand side of (2.15) is no bigger than

C
∥∥∥ |ξ|3

1 + ξ2 + δξ4

∫
R3

〈ξ〉2

〈ξ1〉2〈ξ − ξ1〉2
f1(ζ1)g1(ζ − ζ1) + f2(ζ1)g2(ζ − ζ1)
〈σ(ζ)〉b′σ(ζ1)〉bσ(ζ − ζ1)〉b

dζ1

∥∥∥
L2
.

The right-hand side of (2.15) is equal to

C
(
‖f1‖L2‖g1‖L2 + ‖f2‖L2‖g2‖L2

)
.

Therefore it suffices to show that for i = 1, 2,∥∥∥ |ξ|3

1 + ξ2 + δξ4

∫
R3

〈ξ〉2

〈ξ1〉2〈ξ − ξ1〉2
fi(ζ1)gi(ζ − ζ1)

〈σ(ζ)〉b′σ(ζ1)〉bσ(ζ − ζ1)〉b
dζ1

∥∥∥
L2

≤ C‖fi‖L2‖gi‖L2 . (2.16)
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Using L2−duality, (2.16) is equivalent to

J =
∣∣∣ ∫

R6

|ξ|3〈ξ〉2

(1 + ξ2 + δξ4)〈ξ1〉2〈ξ − ξ1〉2
f(ζ1)g(ζ − ζ1)h(ζ)

〈σ(ζ)〉b′σ(ζ1)〉bσ(ζ − ζ1)〉b
dζdζ1

∣∣∣
≤ C‖f‖L2‖g‖L2‖h‖L2 . (2.17)

Without loss of generality we may assume f, g, h ≥ 0 and hence can neglect the absolute
value in the left-hand side of (2.17).

Define the dyadic levels

DKK1K2
MM1M2

= {(ζ, ζ1) : 〈ξ〉 ∼M, 〈ξ1〉 ∼M1, 〈ξ − ξ1〉 ∼M2,

〈σ(ζ)〉 ∼ K, 〈σ(ζ1)〉 ∼ K1, 〈σ(ζ − ζ1)〉 ∼ K2}, (2.18)

whereK,K1,K2,M,M1,M2 are all dyadic integers 2n, n = 1, 2, 3, . . .. The setDKK1K2
MM1M2

is not empty only if

M ≤ C(M1 +M2), M1 ≤ C(M +M2), M2 ≤ C(M +M1). (2.19)

Let JKK1K2
MM1M2

be the contribution of DKK1K2
MM1M2

to J . Then we have

J ≤ C
∑

K,K1,K2,M,M1,M2

JKK1K2
MM1M2

, (2.20)

where the sum is taken over the dyadic integers such that (2.19) holds. Next we define the
localizations on level sets of dispersion relation

fKM (ζ) =
{
f(ζ), when 〈σ(ζ)〉 ∼ K, 〈ξ〉 ∼M,

0, elsewhere.
(2.21)

Now we write

JKK1K2
MM1M2

≤ C M5

(1 +M4)M2
1M

2
2K

b′(K1K2)b
〈fK1M1 ∗ gK2M2 , hKM 〉L2 , (2.22)

where 〈·, ·〉L2 is the scalar product in L2(R3). Before estimating the convolution in (2.22),
we give the following two elementary lemmas. The proof is straightforward.

Lemma 2.6. Let C > 0. Let the measurable set Λ ⊂ I × R, where I ⊂ R is measurable.
Suppose

sup
ξ∈I

∣∣∣Λ⋂{(ξ, η) : η ∈ R}
∣∣∣ ≤ C.

Then |Λ| ≤ C|I|.

Lemma 2.7. Let a 6= 0, b, c ∈ R and I an interval on R, then

|H| =
∣∣∣{x ∈ R : ax2 + bx+ c ∈ I}

∣∣∣ ≤ 2

√
|I|
|a|
. (2.23)

The following lemma is crucial to the estimates.

Lemma 2.8. Let ui, i = 1, 2 be two functions on R3 such that for ζ ∈ suppui, we have
〈σ(ζ)〉 ∼ Ki and 〈ξ〉 ∼Mi. Then

‖u1 ∗ u2‖L2 ≤ C(K1 ∧K2)1/2(K1 ∨K2)1/4(M1 ∧M2)5/4‖u1‖L2‖u2‖L2 . (2.24)
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Proof. Take a map q : L2(R3) 7→ L2(R3) defined by q(u)(ζ) = u(−ζ), hence q is iso-
metric on L2(R3). Moreover, for real-valued u, v,

‖u ∗ v‖L2 = ‖u ∗ q(v)‖L2 .

Hence we may assume ξ ≥ 0 on suppui in the proof of Lemma 2.8. Using the Cauchy-
Schwartz inequality we get

‖u1 ∗ u2‖L2 =
(∫

R3

∣∣∣ ∫
R3
u1(ζ1)u2(ζ − ζ1)dζ1

∣∣∣2dζ)1/2

≤
(∫

R3

(∫
R3
|u1(ζ1)u2(ζ − ζ1)|dζ1

)2

dζ
)1/2

≤
(∫

R3

∫
R3
|u1(ζ1)|2dζ1

∫
R3
|u2(ζ − ζ1)|2dζ1 dζ

)1/2

≤ C
(

sup
ζ∈R3

|Aζ |
)1/2

‖u1‖L2‖u2‖L2 , (2.25)

where

Aζ =
{
ζ1 ∈ R3 : 1 ≤ 1 + ξ1 ∼M1, 1 ≤ 1 + ξ − ξ1 ∼M2,

〈σ(ζ1)〉 ∼ K1, 〈σ(ζ − ζ1)〉 ∼ K2

}
. (2.26)

Consider the set

Bζ =
{

(ξ1, η1) ∈ R2 : 1 ≤ 1 + ξ1 ∼M1, 1 ≤ 1 + ξ − ξ1 ∼M2,

τ − p(ξ1, η1)− p(ξ − ξ1, η − η1) ≤ C(K1 ∨K2)
}
. (2.27)

In set Aζ , we have

τ − 2(K1 ∧K2) ≤ τ1 ≤ τ −
1
2

(K1 ∨K2),

therefore

|Aζ | ≤ C(K1 ∧K2)|Bζ |. (2.28)

Now we estimate |Bζ |. First we have that |Projξ1(Bζ)| ≤ C(M1 ∧M2). Now we fix
ξ1, then use Lemma 2.7 to get that the Lebesgue measure of the sections of Bζ with lines
parallel to the η1−axis is bounded by

C(K1 ∨K2)1/2(M1 ∧M2)3/2,

since now the interval |I| ∼ K1 ∨K2, |a|−1 ∼ |ξ1|(1 + ξ2
1), and |ξ− ξ1|(1 + |ξ− ξ1|2) ≤

C(M1 ∧M2)3. Finally, we use Lemma 2.6 to obtain that

|Bζ | ≤ C(K1 ∨K2)1/2(M1 ∧M2)5/2, (2.29)

which, combined with (2.25) and (2.28), completes the proof of Lemma 2.8. �

Proof of Theorem 2.5. Using (2.22) and Lemma 2.8, we can now write

JKK1K2
MM1M2

≤ CM
5(K ∧K1 ∧K2)1/2(K ∨K1 ∨K2)1/4(M ∧M1 ∧M2)5/4

(1 +M4)M2
1M

2
2K

b′(K1K2)b
·

· ‖f‖L2‖g‖L2‖h‖L2 . (2.30)

11



with (2.19) satisfied. Hence now we pick 0 < ε < 1/4 and choose b = 1/2 + ε, b′ =
1/2− 2ε. It’s easy to see that we always have

(K ∧K1 ∧K2)1/2(K ∨K1 ∨K2)1/4

Kb′(K1K2)b
≤ 1

K1/4−2εK
1/2+ε
1 Kε

2

.

Also we obtain that

M5(M ∧M1 ∧M2)5/4

(1 +M4)M2
1M

2
2

≤ C 1

M1/2M
1/2
1 M

3/4
2

.

Thus choosing ε < 1/8 small enough, we may find some θ > 0, for example, θ = 1/16,
so that

M5(K ∧K1 ∧K2)1/2(K ∨K1 ∨K2)1/4(M ∧M1 ∧M2)5/4

(1 +M4)M2
1M

2
2K

b′(K1K2)b

≤ C(KK1K2MM1M2)−θ. (2.31)

Then the proof of (2.12) is completed by summing up with respect to the dyadic integers
M,M1,M2, K,K1,K2 in (2.20).

Similarly we can obtain the bilinear estimate (2.13) for P1(Dx)(uv).
Now we are left with the estimate (2.14) for P1(Dx)(uxvx). First we rewrite (2.14) in

the form ∣∣∣ ∫
R6

|ξ||ξ1||ξ − ξ1|〈ξ〉2

(1 + ξ2 + δξ4)〈ξ1〉2〈ξ − ξ1〉2
f(ζ1)g(ζ − ζ1)h(ζ)

〈σ(ζ)〉b′σ(ζ1)〉bσ(ζ − ζ1)〉b
dζdζ1

∣∣∣
≤ C‖f‖L2‖g‖L2‖h‖L2 . (2.32)

Introducing JKK1K2
MM1M2

as before, we have

JKK1K2
MM1M2

≤ C M3

(1 +M4)M1M2Kb′(K1K2)b
〈fK1M1 ∗ gK2M2 , hKM 〉L2 . (2.33)

We now bound the term 〈fK1M1 ∗gK2M2 , hKM 〉L2 as in the proof of Theorem 2.5 and thus

JKK1K2
MM1M2

≤ CM
3(K ∧ (K1 ∧K2))1/2(K ∨ (K1 ∨K2))1/4(M ∧ (M1 ∧M2))5/4

(1 +M4)M1M2Kb′(K1K2)b
·

· ‖f‖L2‖g‖L2‖h‖L2 , (2.34)

Therefore we can choose ε and (b, b′) satisfying the assumptions in the theorem so that for
some θ > 0 small enough as before, for example, θ = 1/16,

M3(K ∧ (K1 ∧K2))1/2(K ∨ (K1 ∨K2))1/4(M ∧ (M1 ∧M2))5/4

(1 +M4)M1M2Kb′(K1K2)b

≤ C(KK1K2MM1M2)−θ. (2.35)

Therefore the proof is complete. �

With the above estimates by hand, we can now finish the local version of Theorem 1.1.
As mentioned in the beginning of this section, the Cauchy problem (2.1) is equivalent to
the integral equation (2.3).

We define the localized space Xb,s
T , equipped with the norm ‖u‖Xb,sT = inf ‖v‖Xb,s

where the infimum is taken over all v ∈ Xb,s such that v = u on [−T, T ]× R2.
12



Theorem 2.9. Let s ≥ 0. For any φ ∈ Y s, there exist b > 1/2, T = T (‖φ‖H2
x
) indepen-

dent of s and a unique solution u ∈ Xb,s
T of (2.1). Moreover, for each t ∈ [−T, T ], the flow

map φ 7→ u(t) is Lipschitz continuous from bounded sets of Y s to Y s.

Proof. Fix φ ∈ Y s not identically zero. Let ν = ‖φ‖H2
x
/‖φ‖Y s . We start with the

truncated problem (2.4), from Lemma 2.1 and 2.3 and the bilinear estimates theorems, we
have

‖Lu‖Xb,0 ≤ C‖φ‖Hx2 + CT ε‖u‖2Xb,0 ,
‖Lu‖Xb,s ≤ C‖φ‖Y s + CT ε‖u‖Xb,s‖u‖Xb,0 ,

where L is defined in (2.4). Define the space

Z = {u ∈ Xb,s : ‖u‖Z = ‖u‖Xb,0 + ν‖u‖Xb,s <∞}.

Then we obtain that

‖Lu‖Z ≤ C(‖φ‖H2
x

+ ν‖φ‖Y s) + CT ε‖u‖2Z , (2.36)

also we have the contraction

‖Lu− Lv‖Xb,0 ≤ CT ε‖u− v‖Xb,0‖u+ v‖Xb,0 , (2.37)

‖Lu− Lv‖Xb,s ≤ CT ε(‖u− v‖Xb,0‖u+ v‖Xb,s + ‖u− v‖Xb,s‖u+ v‖Xb,0). (2.38)

Combining the above two we deduce that

‖Lu− Lv‖Z ≤ CT ε‖u+ v‖Z‖u− v‖Z . (2.39)

Setting

T =
1

4C2(‖φ‖H2
x

+ ν‖φ‖Y s)ε
=

1
(8C2‖φ‖H2

x
)ε
,

we deduce from (2.36) and (2.39) that the mapping L is strictly contractive on the ball of
radius 4C‖φ‖H2

x
in Z. This gives the existence and uniqueness of solution to the truncated

problem (2.4), hence also proves the existence of solution u ∈ Xb,s to the full integral
equation (2.3) on the time interval [−T, T ] with T = T (‖φ‖H2

x
). Choosing T small enough

to make ψ,ψT = 1 on [−T, T ], we deduce the local existence and uniqueness of solution
to equation (2.3).

To show that the flow map φ 7→ u(t) is Lipschitz continuous from bounded sets of Y s

to Y s, we consider u, v are two solutions on [−T, T ] with initial data φ and ψ respectively.
Similarly to the derivation of (2.38), we have

‖u− v‖Xb,s ≤ ‖φ− ψ‖Y s +
∥∥∥ψT ∫ t

0

S(t− t′)[f(u(t′))− f(v(t′))]dt′
∥∥∥
Xb,sT

≤ ‖φ− ψ‖Y s + CT ε‖f(u1)− f(u2)‖X−b′,s
≤ ‖φ− ψ‖Y s + CT ε‖u+ v‖Xb,s‖u− v‖Xb,s . (2.40)

Hence on any bounded set of Y s, say a ball of radius R, we have

sup
−T≤t≤T

‖u(t)− v(t)‖Y s ≤ ‖φ− ψ‖Y s + 2CRT ε sup
−T≤t≤T

‖u(t)− v(t)‖Y s , (2.41)

which immediately gives the Lipschitz continuity of the flow map. Thus we complete the
proof of Theorem 2.9. �
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3. GLOBAL WELL-POSEDNESS IN Y s

In this section we prove Theorem 1.1.
In Theorem 2.9 we know that the existence time T depends only on the H2

x-norm of
the initial data. As long as ‖u(t)‖H2

x
does not blow up, we can always reiterate the result

of Theorem 2.9. Hence the global well-posedness will follow from the conservation of
‖u(t)‖H2

x
.

Lemma 3.1. Let φ ∈ H2
x . Then the solution u of (2.1) obtained in Theorem 2.9 satisfies

the conservation law E(u(t)) = E(φ) on [−T, T ].

Proof. First consider the case when φ ∈ Y 2. From Theorem 2.9, we get a solution u(t) ∈
Xb,2
T for some b > 1/2. We use a regularization argument due to Molinet ([29]). For

ε > 0, we define the function ϕε as

ϕ̂ε =
{ 1, if ε < |ξ|, |η| < 1/ε,

0, otherwise.
(3.1)

Denote uε(t) = ϕε ∗ u(t). Then uε(t) satisfies the equation

uεt − uεxxt + δuεxxxxt +
3
2
ϕε ∗ (u2)x −

γ

2
[ϕε ∗ (u2)xxx − ϕε ∗ (u2

x)x]

− α∂−1
x uεyy + βuεxyy = 0, (3.2)

where ∂−1
x is defined as the Fourier multiplier with symbol (−iξ)−1. Multiplying (3.2) by

uε(t) and integrating over R2, after several integrations by parts we obtain

1
2
d

dt
E(uε) =

3
2

∫
R2

[ϕε ∗ u2 − (uε)2]uεxdxdy +
γ

2

∫
R2

[ϕε ∗ u2
x − (uεx)2]uεxdxdy

− γ

2

∫
R2

[ϕε ∗ u2 − (uε)2]uεxxxdxdy.

Integrating on [0, t] for t ∈ [−T, T ] yields

E(uε)− E(φε) = 3
∫ t

0

∫
R2

[ϕε ∗ u2 − (uε)2]uεxdxdydt
′ + γ

∫ t

0

∫
R2

[ϕε ∗ u2
x − (uεx)2]uεxdxdydt

′

− γ
∫ t

0

∫
R2

[ϕε ∗ u2 − (uε)2]uεxxxdxdydt
′. (3.3)

From the Sobolev embedding theorem we know that Y 2 ⊂ L∞ and moreover, u, ux ∈
L∞. Thus

‖ϕε ∗ u2 − (uε)2‖L2 ≤ ‖ϕε ∗ u2 − u2‖L2 + ‖u2 − (uε)2‖L2

≤ ‖ϕε ∗ u2 − u2‖L2 + ‖u− uε‖L2‖(u+ uε)‖L∞
−→ 0, as ε→ 0. (3.4)

Similarly, we obtain

lim
ε→0
‖ϕε ∗ u2

x − (uεx)2‖L2 = 0. (3.5)
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We also have∣∣∣ ∫
R2

[ϕε ∗ u2 − (uε)2]uεxxxdxdy
∣∣∣

= 2
∣∣∣ ∫

R2
[ϕε ∗ (uux)− uεuεx]uεxxdxdy

∣∣∣ ≤ 2‖ϕε ∗ (uux)− uεuεx‖L2‖uεxx‖L2

≤ 2
{
‖ϕε ∗ (uux)− uux‖L2 + ‖uux − uεux‖L2 + ‖uεux − uεuεx‖L2

}
‖uεxx‖L2

≤ 2
{
‖ϕε ∗ (uux)− uux‖L2 + ‖u− uε‖L∞‖ux‖L2 + ‖uε‖L∞‖ux − uεx‖L2

}
‖uεxx‖L2 .

Since Y 2 ⊂ L∞, uux ∈ L2, therefore

lim
ε→0
‖ϕε ∗ (uux)− uux‖L2 = 0, lim

ε→0
‖u− uε‖L∞ = 0.

Fixing t′ ∈ [−T, T ], from all the above estimates we know

lim
ε→0

3
∫

R2
[ϕε ∗ u(t′)2 − (uε(t′))2]uεx(t′)dxdy

+ γ

∫
R2

[ϕε ∗ u2
x(t′)− (uεx(t′))2]uεx(t′)dxdy

− γ
∫

R2
[ϕε ∗ u2(t′)− (uε(t′))2]uεxxx(t′)dxdy = 0. (3.6)

Moreover since u(t) ∈ Xb,2
T for some b > 1/2, from the Sobolev embedding we that

u ∈ L∞([−T, T ];Y 2). Therefore the integrals in (3.6) are uniformly bounded on [−T, T ].
Thus by the Lebesgue dominated convergence theorem, passing to the limit in (3.3) we
obtain that

E(u(t)) = E(φ),
for all φ ∈ Y 2.

Now we approximate any φ ∈ H2
x by a sequence in Y 2 and use the local well-posedness

theorem 2.9 to get the conservation of E(u) for data in H2
x . �

Now combining Theorem 2.9 and Lemma 3.1, we obtain the global well-posedness in
Y s for all s ≥ 0, hence completing the proof of Theorem 1.1.

4. GLOBAL WELL-POSEDNESS IN W

In the previous section we made use of the conservation lawE(u) to establish the global
well-posedness result in the space Y s for all s ≥ 0. As we pointed out in the introduction,
there is another formal conservation law F (u), which, together with E(u), suggest to
us another function space W to work on. As before, we define the Bourgain space W b

associated to the space W by the norm

‖u‖W b = ‖〈τ − p(ξ, η)〉b〈ξ〉〈|ξ|+ |ξ|−1|η|〉û(τ, ξ, η)‖L2
τξη
. (4.1)

To get the well-posedness, we first establish the bilinear estimates as before.

Lemma 4.1. There exists 0 < ε < 1/4 such that for b = 1/2 + ε, b′ = 1/2− 2ε, we have

‖P1(Dx)(uv)‖W−b′ ≤ C‖u‖W b‖v‖W b . (4.2)

‖P2(Dx)(uv)‖W−b′ ≤ C‖u‖W b‖v‖W b . (4.3)

‖P1(Dx)(uxvx)‖W−b′ ≤ C‖u‖W b‖v‖W b . (4.4)
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Proof. The proof is similar to that of Theorems 2.5. We first prove estimate (4.3). Denote

k(ξ, η) = 〈ξ〉〈|ξ|+ |ξ|−1|η|〉.

As with (2.17) we see that estimate (4.3) is equivalent to∣∣∣ ∫
R6
m̄(ξ, ξ1, η, η1)

f(ζ1)g(ζ − ζ1)h(ζ)
〈σ(ζ)〉b′σ(ζ1)〉bσ(ζ − ζ1)〉b

dζdζ1

∣∣∣ ≤ C‖f‖L2‖g‖L2‖h‖L2 , (4.5)

where

m̄(ξ, ξ1, η, η1) =
|ξ|3k(ξ, η)

(1 + ξ2 + δξ4)k(ξ1, η1)k(ξ − ξ1, η − η1)
,

or equivalently, we may replace m̄ by m defined as

m(ξ, ξ1, η, η1) =
|ξ|3〈ξ〉l(ξ, η)

(1 + ξ2 + δξ4)〈ξ1〉l(ξ1, η1)〈ξ − ξ1〉l(ξ − ξ1, η − η1)
, (4.6)

where l(ξ, η) = 1 + |ξ|+ |ξ|−1|η|. Since 1+|ξ|
l(ξ1)l(ξ−ξ1) ≤ C

〈ξ〉
〈ξ1〉〈ξ−ξ1〉 , we have

m(ξ, ξ1, η, η1) ≤ |ξ|2|η|〈ξ〉
(1 + ξ2 + δξ4)〈ξ1〉l(ξ1)〈ξ − ξ1〉l(ξ − ξ1)

+ C
|ξ|3〈ξ〉

(1 + ξ2 + δξ4)〈ξ1〉〈ξ − ξ1〉
.

In view of Theorem 2.5, it suffices to prove (4.5) with

m(ξ, ξ1, η, η1) =
|ξ|2|η|〈ξ〉

(1 + ξ2 + δξ4)〈ξ1〉l(ξ1)〈ξ − ξ1〉l(ξ − ξ1)
. (4.7)

Introduce JKK1K2
MM1M2

as before. Using |η| ≤ |η1|+ |η − η1| and Lemma 2.8, we obtain that
the substitute of (2.22) in the context of (4.3) is

JKK1K2
MM1M2

≤ C M3

(1 +M4)M1M2

(M1

M2
+
M2

M1

) 1
Kb′(K1K2)b

〈fK1M1 ∗ gK2M2 , hKM 〉L2

≤ C
(M1

M2
+
M2

M1

)M3(K ∧K1 ∧K2)1/2(K ∨K1 ∨K2)1/4(M ∧M1 ∧M2)5/4

(1 +M4)M1M2Kb′(K1K2)b

× ‖f‖L2‖g‖L2‖h‖L2

≤ C (M1 ∨M2)M3(K ∧K1 ∧K2)1/2(K ∨K1 ∨K2)1/4(M ∧M1 ∧M2)5/4

(1 +M4)M1M2Kb′(K1K2)b

× ‖f‖L2‖g‖L2‖h‖L2 . (4.8)

Hence we may choose proper ε > 0 and for b = 1/2 + ε, b′ = 1/2− 2ε so that

(M1 ∨M2)M3(K ∧K1 ∧K2)1/2(K ∨K1 ∨K2)1/4(M ∧M1 ∧M2)5/4

(1 +M4)M1M2Kb′(K1K2)b

≤ C(KK1K2MM1M2)−θ.

for some θ > 0 sufficiently small (for example, θ = 1/16). Therefore the sum over the
dyadic integersM,M1,M2,K,K1,K2 satisfying (2.19) is bounded byC‖f‖L2‖g‖L2‖h‖L2 ,
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which gives (4.3). We can apply the same method to get (4.2). As for (4.4), the substitute
of (4.8) is

JKK1K2
MM1M2

≤ C
(M1

M2
+
M2

M1

)M(K ∧K1 ∧K2)1/2(K ∨K1 ∨K2)1/4(M ∧M1 ∧M2)5/4

(1 +M4)Kb′(K1K2)b

× ‖f‖L2‖g‖L2‖h‖L2

≤ C (M1 ∨M2)M(K ∧K1 ∧K2)1/2(K ∨K1 ∨K2)1/4(M ∧M1 ∧M2)5/4

(1 +M4)Kb′(K1K2)b

× ‖f‖L2‖g‖L2‖h‖L2 . (4.9)

Therefore we have completed the proof of (4.4). �

With Lemma 4.1 in hand, we deduce the local well-posedness lemma for data in W .
The proof is similar to the proof of Theorem 2.9.

Lemma 4.2. Let φ ∈ W . There exist b > 1/2, T = T (‖φ‖W ) and a unique solution u ∈
C([−T, T ];W )

⋂
Xb,0
T of (2.1). Moreover, for each t ∈ [−T, T ], the flow map φ 7→ u(t)

is Lipschitz continuous from bounded sets of W to W .

Now we are ready to prove the conservation of F (u).

Lemma 4.3. Let φ ∈W and αβ > 0. Then the solution u of (2.1) obtained in Lemma 4.2
satisfies the conservation law F (u(t)) = F (φ) on [−T, T ].

Proof. First we prove the conservation for initial data φ ∈ V where

V = {f ∈ L2(R2) : f ∈ H4 and ∂−1
x f ∈ H2}.

In view of Theorem 2.9 we know that there exists a unique solution u(t) ∈ C([−T, T ];H4)
⋂
Xb,0
T .

Using the Duhamel’s integral we may write u(t) as

u(t) = S(t)φ− 1
2

∫ t

0

S(t− t′)(1− ∂2
x + δ∂4

x)−1∂x[3u2(t′)− γ(u2(t′))xx + γu2
x(t′)]dt′.

Hence

∂−1
x u(t) = S(t)∂−1

x φ− 1
2

∫ t

0

S(t− t′)(1− ∂2
x + δ∂4

x)−1[3u2(t′)− γ(u2(t′))xx + γu2
x(t′)]dt′,

which implies that ∂−1
x u ∈ H2. Let P denote the operator 1 − ∂2

x + δ∂4
x. From equation

(2.2) we know that

ut = −P−1
{3

2
(u2)x −

γ

2
[(u2)xxx − (u2

x)x]− α∂−1
x uyy + βuxyy

}
. (4.10)

Therefore u ∈ V implies that ut ∈ H4
x .

Introducing ϕε as in (3.1) and uε = ϕε ∗ u the convolution, we know that uε satisfies
equation (3.2). Define

wε = −P−1
{3

2
ϕε ∗ u2 − γ

2
[ϕε ∗ (u2)xx − ϕε ∗ (u2

x)]− α∂−2
x uεyy + βuεyy

}
. (4.11)
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Then
1
2
d

dt
F (uε) =

∫
R2

{3
2

(uε)2 − γ

2
[(uε)2

xx − (uεx)2]− α∂−2
x uεyy + βuεyy

}
uεt dxdy

=
∫

R2
(−Pwε)uεt dxdy +

3
2

∫
R2

[(uε)2 − ϕε ∗ u2]uεt dxdy

− γ

2

∫
R2

[(uε)2 − ϕε ∗ u2]uεxxt dxdy +
γ

2

∫
R2

[(uεx)2 − ϕε ∗ u2
x]uεt dxdy.

(4.12)

Since ut ∈ H4
x , from (3.4) and (3.5) we know that the last three terms converge to zero as ε

tends to zero for any fixed t ∈ [−T, T ]. From the definition of wε we know that wεx = uεt .
Therefore the first term in (4.12) is equal to∫

R2
−wεPuεt dxdy =

∫
R2
−wεPwεx dxdy = 0.

Therefore by the Lebesgue dominated convergence theorem as used in Lemma 3.1 together
with F (uε)→ F (u), as ε→ 0, we obtain that

F (u(t)) = F (φ).

Now for general initial data φ ∈ W , we use a sequence {φn} ⊂ V converging to φ in
W with corresponding solutions un ⊂ V . From Lemma 4.2 we know that un(t) → u(t)
in W for all t ∈ [−T, T ] where u(t) is the solution to equation (2.1) associated with initial
data φ and T = T (‖φ‖W ). From the embedding Lemma 2.4 we obtain that

F (φn)→ F (φ), F (un(t))→ F (u(t)).

Thus F (u(t)) = F (φ) for all t ∈ [−T, T ]. �

Combining Lemma 4.2, Lemma 4.3 and the remark after Lemma 2.4, we complete the
proof of Theorem 1.2.

5. EXISTENCE OF SOLITARY WAVES

The focus of the development of the following sections is the solitary wave of (1.1),
defined in (1.7). Localized, travelling-wave solutions of nonlinear wave equations are
known in many circumstances to play a distinguished role in the long-time evolution of an
initial disturbance.

In this section we prove the existence of solitary waves for positive α and β. The result
is the following:

Theorem 5.1. Let α and β be positive. For any c > 0, the equation (1.7) possesses a
nontrivial solution φc ∈W .

We will prove existence of solitary waves in the space W by considering the following
variational problem. Define for any u ∈W , ρ(u) = cu2+cu2

x+cδu2
xx+α(∂−1

x uy)2+βu2
y .

Define

Gc(u) =
∫

R2
ρ(u)dxdy, (5.1)

K(u) =
∫

R2
[u3 + γuu2

x]dxdy. (5.2)

Then if the minimization problem:

Iλ = inf
{
Gc(u)

∣∣∣ u ∈W,K(u) = λ
}

(5.3)
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has a nontrivial solution ψc ∈ W for some λ > 0, then there is a Lagrange multiplier
µ 6= 0 such that

−cψc+c∂2
xψc−cδ∂4

xψc−α∂−2
x ∂2

yψc+β∂
2
yψc = µ

[
−3

2
ψ2
c+

γ

2
((∂xψc)2+2ψc∂2

xψc)
]

in W ′,

(5.4)
where ∂−2

x ∂2
yψc is the element of W ′(the dual space of W in L2-duality) such that for any

f ∈W ,
〈∂−2
x ∂2

yψc, f〉W ′,W = (∂−1
x ∂yψc, ∂

−1
x ∂yf)L2 .

By taking the x-derivative of (5.4) in D′(R2), and performing the scaling φc = µψc, one
can easily see that φc satisfies the equation(1.7) in D′(R2). We call such solutions ground
state solutions and denote the set of all ground state solutions Sc. By homogeneity of Gc
and K we know that ground states also achieve the minimum

I1 = inf
{ Gc(u)
K(u)2/3

∣∣∣ u ∈W,K(u) > 0
}
. (5.5)

It then follows that
Iλ = λ2/3I1. (5.6)

First we show that Iλ is bounded from below.

Lemma 5.2. For any λ > 0, Iλ > 0.

Proof. First it is obvious to see that for every positive c, α, β, there are positive c1, c2 such
that

c1‖u‖2W ≤
∫

R2
ρ(u)dxdy ≤ c2‖u‖2W . (5.7)

From the embedding Lemma 2.4, we get that ‖u‖Lq ≤ C‖u‖W , for 2 ≤ q ≤ ∞. Hence

λ =
∫

R2
[u2 + γuu2

x]dxdy ≤ C‖u‖3W ,

and then Iλ ≥ c1
(
λ
C

)2/3
> 0 for any λ > 0. �

We say that a sequence {un} ⊂W is a minimizing sequence if for some λ > 0,

lim
n→0

K(un) = λ, lim
n→0

Gc(un) = Iλ. (5.8)

Proof of Theorem 5.1. From (5.6) we see that the subadditivity condition holds

Iλ < Iλ1 + Iλ−λ1 , for λ1 ∈ (0, λ). (5.9)

Let un be a minimizing sequence for (5.3). Then from the anisotropic Sobolev embedding
(2.9), we can find a sequence ϕn ∈ L∞loc(R2) such that un = ∂xϕn and vn = ∂yφn =
∂−1
x ∂yun. We denote ρn = ρ(un). Hence we know that

∫
R2 ρndxdy → Iλ > 0 as

n→∞.

(i) Assume first that “vanishing" happens, i.e. for any R > 0,

lim
n→∞

sup
(x,y)∈R2

∫
(x,y)+BR

ρndxdy = 0, (5.10)

where the BR is the ball of radius R centered at the origin. In [2] the authors give a
complete proof for the local version of anisotropic embedding (see [2], p.187). Here for
u = ϕx, we denote Ω = (x, y) +B1. Then for any q ≥ 2 this local version becomes

‖ϕx‖Lq(Ω) ≤ C
[
‖ϕx‖L2(Ω) + ‖ϕy‖L2(Ω) + ‖ϕxxx‖L2(Ω)

]
, (5.11)
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i.e. for u ∈W ,

‖u‖Lq(Ω) ≤ C
[
‖u‖L2(Ω) + ‖∂−1

x uy‖L2(Ω) + ‖uxx‖L2(Ω)

]
,

where in (5.11) the positive constant C is independent of (x, y) ∈ R2. Therefore we know
that for u ∈W , ∫

(x,y)+B1

|u|qdxdy ≤ C
(∫

(x,y)+B1

ρ dxdy
)q/2

,

∫
(x,y)+B1

|uu2
x|dxdy ≤ C

(∫
(x,y)+B1

|u|3dxdy
)1/3

·
(∫

(x,y)+B1

|ux|3dxdy
)2/3

.

Applying Lemma 2.4 we get
‖ux‖L3 ≤ C‖u‖W . (5.12)

Covering R2 by balls of radius 1 such that each point of R2 is contained in at most 3 balls,
we obtain that for any u ∈W∫

R2
|u|qdxdy ≤ 3C

(
sup

(x,y)∈R2

∫
(x,y)+B1

ρ dxdy
)q/2−1

· ‖u‖2W ,

∫
R2
|uu2

x|dxdy ≤ C‖u‖2W
[
3C
(

sup
(x,y)∈R2

∫
(x,y)+B1

ρ dxdy
)1/2

‖u‖2W
]1/3

.

Hence from (5.10), we get

un → 0 in L3,

∫
R2
|un(∂xun)2|dxdy → 0,

which contradicts the constraint in Iλ.

(ii) Assume now that “dichotomy" occurs. We define the usual concentration function

Q(t) = lim
n→∞

sup
(x0,y0)∈R2

∫
(x0,y0)+Bt

ρndxdy where for t ≥ 0.

“Dichotomy" means that there is a θ ∈ (0, Iλ) such that limt→∞Q(t) = θ. We will
show that (??) will give a contradiction provided that it leads to the splitting of un into
two sequences u1

n and u2
n in W with disjoint supports. We will construct u1

n and u2
n by

localizing ϕn.
For any fixed ε > 0, we can find n0 ∈ N, R0,Rn > 0, with Rn ↗ +∞, and points

~An ∈ R2, such that

θ ≥
∫
~An+BR0

ρndxdy ≥ θ − ε, Qn(2Rn) ≤ θ + ε, for all n ≥ n0,

where

Qn(t) = sup
(x0,y0)∈R2

∫
(x0,y0)+Bt

ρndxdy.

Hence
∫
R0≤|~x− ~An|≤2Rn

ρndxdy ≤ 2ε.
Now let ξ, η ∈ C∞0 (R2) be as follows: 0 ≤ ξ, η ≤ 1, ξ ≡ 1 on B1, suppξ ⊂ B2; η ≡ 1

on R2\B2, suppξ ⊂ R2\B1. We set ξn = ξ
(
·− ~An
R1

)
, ηn = η

(
·− ~An
Rn

)
. and we construct

u1
n = ∂x[ξn(ϕn − an)], u2

n = ∂x[ηn(ϕn − bn)],
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where the {an} and {bn} are sequences of real numbers to be chosen later. Also we can
set

v1
n = ∂−1(u1

n)y = ∂y[ξn(ϕn − an)], v2
n = ∂−1(u2

n)y = ∂y[ηn(ϕn − bn)],

and then we have
‖u1

n+u2
n − un‖L2 ≤

‖(∂xξn) · (ϕn − an)‖L2 + ‖(∂xηn) · (ϕn − bn)‖L2 +
√

2ε

and

‖(∂xξn) · (ϕn − an)‖L2 =
(∫

R1≤|~x− ~An|≤2R1

|∂xξn|2|ϕn − an|2dxdy
)1/2

≤ ‖∂xξn‖Lp
(∫

R1≤|~x− ~An|≤2R1

|ϕn − an|qdxdy
)1/q

,

where 1
p + 1

q = 1
2 . In order to determine an and bn, we need the following lemma:

Lemma 5.3. Let q ≥ 2, then there exists a positive constant C such that for all f ∈
L1
loc(R2) with∇f ∈ L2

loc(R2), for all R > 0 and for all ~x0 ∈ R2(∫
R≤|~x−~x0|≤2R

|f(~x)−mR(f)|qd~x
)1/q

≤ CR2/q
(∫

R≤|~x−~x0|≤2R

|∇f |2d~x
)1/2

,

where

mR(f) =
1

vol(Ω~x0,R)

∫
R≤|~x−~x0|≤2R

f(~x)d~x, ~x = (x, y) ∈ R2

and
Ω~x0,R = {~x ∈ R2 : R < |~x− ~x0| < 2R}.

Proof of Lemma 5.3. The lemma is proved by applying the Poincaré inequality for zero
mean-value H1 functions on the bounded open set Ω~x0,R. Then using the Sobolev embed-
ding theorem we obtain the existence of a positive constant C(~x0, R) such that(∫

R≤|~x−~x0|≤2R

|f(~x)−mR(f)|qd~x
)1/q

≤ C(~x0, R)
(∫

R≤|~x−~x0|≤2R

|∇f |2d~x
)1/2

.

Then the translation invariance of Lebesgue measure and the scale change f 7→ f( ·R ) show
that C(~x0, R) = CR2/q where C is independent of ~x0 and R. �

Now we continue the proof of Theorem 5.1. We pick

an = mR1(ϕn) =
1

vol(Ω ~An,R1
)

∫
R1≤|~x− ~An|≤2R1

ϕn(~x)d~x.

Applying Lemma 5.3 we get

‖(∂xξn) · (ϕn − an)‖L2

≤ CR
2
p+ 2

q−1

1

(∫
R1≤|~x− ~An|≤2R1

[|un|2 + |vn|2]d~x
)1/2

≤ C ′
√
ε.

In the same way, we can choose bn = mRn(ϕn) to get the bound:

‖(∂xηn) · (ϕn − bn)‖L2

≤ C
(∫

Rn≤|~x− ~An|≤2Rn

[|un|2 + |vn|2]d~x
)1/2

≤ C
√
ε.
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The above two bounds imply that ‖u1
n + u2

n − un‖L2 ≤ C
√
ε. Similarly we obtain ‖v1

n +
v2
n − vn‖L2 ≤ C

√
ε. Now we consider

‖∂xu1
n + ∂xu

2
n − ∂xun‖L2

= ‖∂2
x

(
ξn(ϕn − an)

)
+ ∂2

x

(
ηn(ϕn − bn)

)
− ∂2

xϕn‖L2

≤‖(∂2
xξn)(ϕn − an)‖L2 + ‖(∂2

xηn)(ϕn − bn)‖L2 + ‖(1− ξn − ηn)∂xun‖L2

+ 2‖(∂xξn)un‖L2 + 2‖(∂xηn)un‖L2 .

The first three terms in the right hand side of the above inequality are bounded as the
preceding ones. For the last two terms, one may consider for example

‖(∂xξn)un‖L2 ≤ ‖∂xξn‖L∞
(∫

R1≤|~x− ~An|≤2R1

|un|2d~x
)1/2

≤ C
√
ε.

Hence we have ‖∂xu1
n + ∂xu

2
n − ∂xun‖L2 ≤ C

√
ε, ‖∂yu1

n + ∂yu
2
n − ∂yun‖L2 ≤ C

√
ε.

Finally, we estimate

‖∂2
xu

1
n + ∂2

xu
2
n − ∂2

xun‖L2

≤‖(∂3
xξn)(ϕn − an)‖L2 + ‖(∂3

xηn)(ϕn − bn)‖L2 + ‖(1− ξn − ηn)∂2
xun‖L2

+ 3‖(∂xξn)∂xun‖L2 + 3‖(∂xηn)∂xun‖L2 + 3‖(∂2
xξn)un‖L2 + 3‖(∂2

xηn)un‖L2

≤ C
√
ε.

Therefore we have proved that for any ε > 0, there is a σ(ε) > 0(with σ(ε)→ 0 as ε→ 0)
such that we can find u1

n and u2
n in W satisfying that for all n ≥ n0:∫

R2
ρ(u1

n + u2
n − un)dxdy ≤ σ(ε) (5.13)

Similarly we can get∣∣∣ ∫
R2

ρ(u1
n)dxdy − θ

∣∣∣ ≤ σ(ε),
∣∣∣ ∫

R2
ρ(u2

n)dxdy − (Iλ − θ)
∣∣∣ ≤ σ(ε). (5.14)

and
dist(supp u1

n, supp u2
n)→∞ as n→∞, supp u1

n

⋂
supp u2

n = ∅
So ∣∣∣ ∫

R2
[(u1

n)3 + (u2
n)3 − (un)3]dxdy

∣∣∣ ≤ σ(ε), (5.15)∣∣∣ ∫
R2

[u1
n(∂xu1

n)2 + u2
n(∂xu2

n)2 − un(∂xun)2]dxdy
∣∣∣ ≤ σ(ε). (5.16)

Now by taking subsequences if necessary, we may assume that as n→∞,∫
R2

[(u1
n)3 + γu1

n(∂xu1
n)2]dxdy → λ1(ε),

∫
R2

[(u2
n)3 + γu2

n(∂xu2
n)2]dxdy → λ2(ε),

with |λ1(ε) + λ2(ε)− λ| ≤ σ(ε).

(a) Assume first that limε→0 λ1(ε) = 0, then choosing ε small enough, for n suf-
ficiently large, we get kn =

∫
R2 (u2

n)3 + γu2
n(∂xu2

n)2dxdy > 0. So by considering

wn =
(
λ2(ε)/kn

)1/3

u2
n, we get

Iλ2(ε) ≤ lim inf
n→∞

∫
R2

ρ(wn)dxdy = lim inf
n→∞

∫
R2

ρ(u2
n)dxdy ≤ Iλ − θ + σ(ε),
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which contradicts the condition limε→0 λ2(ε) = λ.

(b) Therefore we may assume that limε→0 |λ1(ε)| > 0, limε→0 |λ2(ε)| > 0. In the
same way, we get

Iλ1(ε) + Iλ2(ε) ≤ lim inf
n→∞

∫
R2

ρ(u1
n)dxdy + lim inf

n→∞

∫
R2

ρ(u2
n)dxdy ≤ Iλ + σ(ε).

Hence by letting ε go to zero, and by using the fact that for λ > 0, Iλ = λ2/3I1, we reach
a contradiction. This ends to rule out the “dichotomy" case.

(iii) So by [24] we can only have “compactness". Thus there exists a sequence {~xn} ⊂
R2 such that for any ε > 0, there is a finite R > 0 and n0 > 0 such that∫

~xn+BR

ρndxdy ≥ Iλ − ε for n ≥ n0.

Let H1
x,loc(R2) = {u ∈ L2

loc(R2) : ux ∈ L2
loc(R2)}. Since un is bounded in W , we may

assume that un(· − ~xn) converges weakly in W to some ψc ∈ W . And for large n, we
have∫
~xn+BR

|un|2dxdy ≥
∫

R2
|un|2dxdy−2ε,

∫
~xn+BR

|∂xun|2dxdy ≥
∫

R2
|∂xun|2dxdy−2ε.

So this implies that

‖ψc‖2H1
x
≤ lim inf

n→∞
‖un‖2H1

x
≤ lim inf

n→∞

∫
~xn+BR

[|un|2 + |∂xun|2]dxdy + 2ε. (5.17)

Now we need the following lemma to show that the injectionW ⊂ H1
x,loc(R2) is compact.

Lemma 5.4. Let un be a bounded sequence in W , and let R > 0. Then there is a subse-
quence unk which converges strongly to u in H1

x(BR).

Proof. Let un be a bounded sequence in W , with un = ∂xϕn, ϕn ∈ L2
loc(R2), and

let vn = ∂yϕn ∈ L2
loc(R2). Multiplying ϕn by a cutoff function ψ ∈ C∞0 (R2) with

0 ≤ ψ ≤ 1, ψ ≡ 1 onBR and supp ψ ⊂ B2R, we may assume that supp ϕn ⊂ B2R. Thus
supp un ⊂ B2R. Now since un is bounded in W , we may assume that un ⇀ u = ∂xϕ
weakly in W , and replacing ϕn by ϕn −ϕ, we can also assume that ϕ = 0. Then we have

‖un‖2H1
x(B2R) =

∫
B2R

[|un|2 + |∂xun|2]dxdy =
∫

R2
(1 + |ξ|2)|ûn|2dξdη

=
∫
{|ξ|≤R1,|η|≤R1}

(1 + |ξ|2)|ûn|2dξdη +
∫
{|ξ|≥R1}

(1 + |ξ|2)|ûn|2dξdη

+
∫
{|ξ|≤R1,|η|≥R1}

(1 + |ξ|2)|ûn|2dξdη,

(5.18)

where ûn(ξ, η) is the Fourier transform of un(x, y). The third term in (5.18) satisfies∫
{|ξ|≤R1,|η|≥R1}

(1 + |ξ|2)|ûn|2dξdη =
∫
{|ξ|≤R1,|η|≥R1}

1
|η|2

(|v̂n|2 + |η|2|ûn|2)dξdη

≤ 1
R2

1

(‖vn‖2L2(R2) + ‖∂yun‖2L2(R2))
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The second term is bounded in the following way∫
{|ξ|≥R1}

(1 + |ξ|2)|ûn|2dξdη ≤
1
R2

1

(‖∂xun‖2L2(R2) + ‖∂2
xun‖2L2(R2))

So for a fixed ε > 0, we can choose R1 sufficiently large to get∫
{|ξ|≥R1}

(1 + |ξ|2)|ûn|2dξdη +
∫
{|ξ|≤R1,|η|≥R2

1}
(1 + |ξ|2)|ûn|2dξdη ≤

ε

2
.

We then use the Lebesgue dominated convergence theorem for the first term, having no-
ticed that since un tends to 0 weakly in H1

x(R2), ûn(ξ, η) =
∫
B2R

e−ixξ−iyηun(x, y)dxdy
tends to zero as n→∞, for a.e. (ξ, η) ∈ R2, and that |ûn| ≤ ‖un‖L1(B2R). Therefore the
first term in (5.18) also approaches zero as n→∞. Hence un → 0 strongly in H1

x(B2R),
thus proving the Lemma. �

By Lemma 5.4, we can assume that un(· − ~xn) → ψc strongly in H1
x,loc(R2). Then

(5.17) shows that in fact

‖ψc‖2H1
x
≤ lim inf

n→∞
‖un‖2H1

x
≤ ‖ψc‖2H1

x(BR) + 2ε.

Therefore by taking a subsequence we obtain that un(· − ~xn) → ψc strongly in H1
x(R2).

Using the embeddingW ⊂ Lq(R2) for q ≥ 2, we get un(·−~xn)→ ψc strongly in Lq(R2)
for q ≥ 2, hence

∫
R2 u

3
ndxdy →

∫
R2 ψ

3
cdxdy. In the same way, we obtain

∂xun(· − ~xn)→ ∂xψc strongly in L2(R2).

So∣∣∣ ∫
~xn+BR

[un(∂xun)2 − ψc(∂xψc)2]dxdy
∣∣∣

=
∣∣∣ ∫
~xn+BR

{(un − ψc)(∂xun)2 + ψc[(∂xun)2 − (∂xψc)2]}dxdy
∣∣∣

≤ ‖un − ψc‖L3(~xn+BR)‖∂xun‖2L3 + ‖ψc‖L∞‖∂xun − ∂xψc‖L2(~xn+BR)

≤ ‖un − ψc‖L3(~xn+BR)‖un‖2W + ‖ψc‖L∞‖∂xun − ∂xψc‖L2(~xn+BR) (by (5.12))
−→ 0 as n→∞.

Therefore
∫

R2 un(∂xun)2dxdy →
∫

R2 ψc(∂xψc)2dxdy. So∫
R2

[ψ3
c + γψc(∂xψc)2]dxdy = λ.

Since ∫
R2

ρ(ψc)dxdy ≤ lim inf
n→∞

∫
R2

ρ(un)dxdy = Iλ,

we can conclude that ψc is a solution of the minimization problem (5.3). Thus (1.7) admits
a nontrivial solution. �

Next we prove that any solitary wave of (1.1) is smooth. More precisely we have

Theorem 5.5. Any solitary wave solution of (1.1) is in H∞ provided α, β > 0.

Proof. The solitary wave equation of (1.1) can be written as the following "elliptic" equa-
tion:[
− cδ∂6

x + c∂4
x +β∂2

x∂
2
y − c∂2

x−α∂2
y

]
u = −3∂x(uux) + γ∂3

x(uux)− γ
2
∂2
x(u2

x). (5.19)
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The difficulty arises from the nonisotropy of the symbol of the linear "elliptic" operator
L = −cδ∂6

x + c∂4
x + β∂2

x∂
2
y − c∂2

x − α∂2
y . We will proceed by "bootstrapping", using the

embedding theorems for anisotropic Sobolev spaces ([2]), and the following variant due to
Lizorkin ([28]) of the Mikhlin-Hörmander multiplier theorem.

Proposition 5.6. -[28] Let Φ: Rn → R be Cn for |ξj | > 0, j = 1, 2, . . .. Assume that
there existsM > 0 such that∣∣∣ξk11 · · · ξknn

∂kΦ
∂ξk11 · · · ∂ξ

kn
n

(ξ)
∣∣∣ ≤M, (5.20)

with ki = 0 or 1, k = k1 + · · · + kn = 0, 1, . . . , n. Then Φ ∈ Mq(Rn), 1 < q < ∞, i.e.
Φ is a Fourier multiplier on Lq(Rn).

Set g = −uux, h = −u2
x. (5.19) yields that

û = −
i(3ξ + γξ3)ĝ + γ

2 ξ
2ĥ

cδξ6 + cξ4 + βξ2η2 + cξ2 + αη2
, (5.21)

Thus

ûxx =
i(3ξ3 + γξ5)ĝ + γ

2 ξ
4ĥ

cδξ6 + cξ4 + βξ2η2 + cξ2 + αη2
. (5.22)

Lemma 5.7. Let u ∈W be a solitary wave solution of (1.1). Then

u ∈ {f ∈ Lq(R2) ∀q ∈ [2,∞], fx ∈ L6(R2)
⋂
L3(R2), fxx, fxxx, fy, fxy ∈ L3(R2)}.

Proof of Lemma 5.7. A stronger embedding result than Lemma 2.4 can be found in [2]
(Theorem 15.7, p.323) which states that in fact

u ∈ Lq, for q ≥ 2, ux ∈ Lq1 , for q1 ∈ [2, 6].

Therefore g = −uux ∈ Lq1(R2), and h = −u2
x ∈ L3(R2). It is easily checked that

Φ1 =
3ξ + γξ3

cδξ6 + cξ4 + βξ2η2 + cξ2 + αη2
,Φ2 =

γ
2 ξ

2

cδξ6 + cξ4 + βξ2η2 + cξ2 + αη2

satisfy the assumption of Proposition 5.6, yielding that u ∈ L3(R2). Similarly we obtain
that uxx, uxxx, uy, uxy ∈ L3(R2). �

Let w = ux. Lemma 5.7 implies that u, uxx, uy ∈ L3(R2) and w,wxx, wy ∈ L3(R2).
By [2], Theorem 10.2, one has u,w ∈ L∞(R2). And by interpolation between w ∈
L∞(R2) and wxx ∈ L3(R2), one has wx ∈ L6(R2). So

gxx = −(uuxxx + 3uxuxx) ∈ L3(R2), gy = −(uyux + uuxy) ∈ L3(R2).

hxx = −2(u2
xx + uxuxxx) ∈ L3(R2), hy = −2uxuxy ∈ L3(R2).

Another application of Proposition 5.6 leads to

uxx, uxxxx, uxxy, uyy, wxx, wxxxx, wxxy, wyy ∈ L3(R2).

Now let u1 = uxx, w1 = wxx, then u1, ∂
2
xu1, ∂yu1, w1, ∂

2
xw1, ∂yw1 ∈ L3(R2), which

implies that u1, w1 ∈ L∞(R2). Thus we obtain gxx, hxx ∈ L∞(R2). Similarly, one can
get gy, hy ∈ L∞(R2) by considering u2 = uy, w2 = wy . Hence Lizorkin’s Theorem
implies that uxxxx, uxxy, uyy ∈ L∞(R2), wxxxx, wxxy, wyy ∈ L∞(R2), which implies
that gxxx, gxxy, hxxx, hxxy ∈ L∞(R2). Iteration of the process leads to the conclusion of
Theorem 5.5. �

25



6. STABILITY OF SOLITARY WAVES

In the previous sections we proved that there exists a nontrivial smooth solitary wave
solution φc to equation (1.7) with positive speed c, i.e., φc ∈W solves the equation

−cu+ cuxx − cδuxxxx +
3
2
u2 − γ(

1
2
u2
x + uuxx)− α∂−2

x uyy + βuyy = 0. (6.1)

We also know that equation (1.1) can be written in Hamiltonian form and has the invari-
ants

E(u) =
∫

R2
[u2 + u2

x + δu2
xx] dxdy, (6.2)

F (u) =
∫

R2
[u3 + γuu2

x − α(∂−1
x uy)2 − βu2

y] dxdy. (6.3)

A central role will be played by the functionals Gc(u) and K(u), where

Gc(u) =
∫

R2
[cu2+cu2

x+cδu2
xx+α(∂−1

x uy)2+βu2
y]dxdy, K(u) =

∫
R2

[u3+γuu2
x]dxdy

are defined for u ∈ W . Note that the functional K(u) is well-defined on W by Sobolev
embedding theorem. Equation (6.1) is the Euler-Lagrange equation of the functional

Lc(u) =
1
2

[Gc(u)−K(u)] =
1
2

[cE(u)− F (u)].

Recall that from Section 5 we have introduced the ground states to be the solutions to
the solitary wave equation that come from the associated variational problem. Multiplying
equation (5.4) by ψc and integrating yields that

Iλ = Gc(ψc) =
3
2
K(ψc).

Using homogeneity, we have

Iλ = λ2/3I1, Gc(ψc) =
1
µ2
Gc(φc), K(φc) = µ3K(ψc).

This implies that

Gc(φc) =
4
9
I3
1 =

3
2
K(φc). (6.4)

Thus we may characterize the set of ground states Sc as

Sc = {φc ∈W : Gc(φc) =
4
9
I3
1 =

3
2
K(φc)}. (6.5)

Define the scalar function d of the wavespeed c as introduced in [21] to be

d(c) = cE(φc)− F (φc)

for φc ∈ Sc. It’s easy to see that d(c) depends only on c and not on φc ∈ Sc. In fact, from
the definition of d and the characterization of Sc, it follows that

d(c) = Gc(φc)−K(φc) =
1
2
K(φc) =

4
27
I3
1 . (6.6)

Consider the equation

−w + wxx − δwxxxx +
3
2
w2 − γ(

1
2
w2
x + wwxx)− α∂−2

x wyy + βwyy = 0.
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By the theorem of existence of solitary waves we know that there is a ground state solu-
tion w to this equation and obviously w does not depend on c. Using the transformation
φc(x, y) = cw(x,

√
cy), we get that φc(x, y) is a ground state of (6.1). Hence we consider

G1(w) =
∫

R2
[w2 + w2

x + δw2
xx + α(∂−1

x wy) + βw2
y]dxdy,

then G1(w) is positive and independent of c and Gc(φc) = c5/2G1(w). Hence

d(c) =
1
6
Gc(φc) =

1
6
c5/2G1(w), d′′(c) =

5
8
√
cG1(w) > 0.

We will prove Theorem 1.4 in the following argument. The following two lemmas are
helpful in order to prove the stability.

Lemma 6.1. Let c > 0 and suppose d′′(c) > 0, then there exists δ0 > 0 such that if
|c− c1| < δ0 then

d(c1) > d(c) + d′(c)(c1 − c) +
1
4
d′′(c)(c1 − c)2.

Proof. The functionalsE and F areC∞-mappings fromW to R. and the mapping c 7→ Gc
is also C∞ from R+ to C∞(W ; R). Hence the value I1 varies smoothly with c ∈ (0,∞),
and consequently d is a smooth function of c > 0. So the lemma is just a direct application
of the Taylor’s Theorem. �

Now for ε > 0 and c > 0, we define the “ε-tube" of the set of solitary waves of
speed c to be Sc,ε =

{
u ∈ W : infφc∈Sc ‖u − φc‖W < ε

}
. Since d′(c) > 0, by

the Implicit Function Theorem, for each c > 0, there corresponds a tube Sc,ε0 and C1-
mapping f : Sε0,c −→ R+ such that{

d(f(u)) = 1
2K(u)

f(φc) = c.
(6.7)

In fact, from the previous calculation we may write out f explicitly in the form that f(u) =[
3K(u)
G1(w)

]2/5
.

Lemma 6.2. Suppose d′′(c) > 0 for some c > 0. Then there exists ε0 > 0 such that for
any u ∈ Sc,ε0 and φc ∈ Sc

f(u)
[
E(u)− E(φc)

]
−
[
F (u)− F (φc)

]
≥ 1

4
d′′(c)|f(u)− c|2, (6.8)

where f(u) is defined in (6.7) above.

Proof. We know that

K(u) = 2d(f(u)) = 2
[
fE(φf(u))− F (φf(u))

]
= 2[Gf (φf )−K(φf )] = K(φf )

since Gc(φc) = 3K(φc) for all c.
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By definition, φf(u) minimizes Gf(u) subject to the constraint K(u) = K(φf(u)). This
implies that Gf(u)(φf(u)) ≤ Gf(u)(u). Applying Lemma 6.1 we obtain

f(u)E(u)− F (u) = Gf(u)(u)−K(u)

≥ Gf(u)(φf(u))−K(φf(u)) = d(f(u))

≥ d(c) + d′(c)
(
f(u)− c

)
+

1
4
d′′(c)

(
f(u)− c

)2

= f(u)E(φc)− F (φc) +
1
4
d′′(c)

(
f(u)− c

)2

,

this is

f(u)
[
E(u)− E(φc)

]
−
[
F (u)− F (φc)

]
≥ 1

4
d′′(c)|f(u)− c|2.

�

Proof of Theorem 1.4. Suppose Sc is W -unstable. This means that there exists σ > 0 and
initial data un(0) ∈ Sc,1/n and times tn > 0, n = 1, 2, . . . such that

inf
φ∈Sc

‖un(·, tn)− φ‖W = σ. (6.9)

Because the functionalE and F are continuous onW and are conserved, there are elements
{φn} ⊂ Sc such that as n→∞

|E(un(·, tn))− E(φn)| = |E(un(0))− E(φn)| → 0, (6.10)

|F (un(·, tn))− F (φn)| = |F (un(0))− F (φn)| → 0. (6.11)

Pick σ < ε0 small enough so that Lemma 6.2 applies, which is to say that for all n =
1, 2, . . .

f(un(tn))
[
E(un(tn))− E(φn)

]
−
[
F (un(tn))− F (φn)

]
≥ 1

4
d′′(c)|f(un(tn))− c|2.

(6.12)

Observe that for any n ≥ 1

‖un(tn)‖W ≤ ‖φn‖W + 2σ

≤ CG1/2
c (φn) + 2σ (from (5.7))

=
2C
3
I

3/2
1 + 2σ (from (6.5)) < +∞.

Therefore the sequence {un(·, tn)} is uniformly bounded in W . It follows immediately
from (6.7) that {K(un(·, tn))} is bounded and hence so is {f(un(tn))} since f(u) =[
3K(u)/G1(w)

]2/5
. Combining this with (6.10)-(6.12) yields

f(un(tn))→ c as n→∞. (6.13)

This relation implies in turn that

K(un(tn)) = 2d(f(un(tn)))→ 2d(c) =
8
27
I3
1 , as n→∞, from (6.6).

Hence
Gc(un(tn)) = cE(un(tn))− F (un(tn)) +K(un(tn))

→ d(c) + 2d(c) = 3d(c) =
4
9
I3
1 .
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Now define wn by wn = K(un(tn))−1/3un(tn), Then K(wn) = 1 and Gc(wn) =
K(un(tn))−2/3Gc(un(tn)) → I1. Therefore the sequence {wn} minimizes Gc subject
to the constraint K = 1.

In the proof of Theorem 5.1 we showed that for a minimizing sequence {ψn} ⊂ W
with the constraint K(ψn) = 1 , there exist a subsequence of {ψn} (still denoted {ψn})
and a sequence of translation vectors {~xn} such that ψn(· − ~xn) converges to a minimizer.
Hence there exists a subsequence of {wn}, still denoted {wn}, a sequence of translation
vectors {~xn}, and a w ∈W with K(w) = 1 such that limn→∞ ‖wn(· − ~xn)−w‖W = 0,
that is limn→∞ ‖wn − w(· + ~xn)‖W = 0. So let φn = 1

3I1w(· + ~xn) ∈ Sc. This in turn
implies that limn→∞ ‖un(tn)− φn‖W = 0, which contradicts (6.9). Hence we obtain the
stability. �

7. NONEXISTENCE OF SOLITARY WAVES

In contrast to the existence theorem of the solitary waves, we also provide a nonexis-
tence result of the solitary waves. The main result of this section is the following theorem:

Theorem 7.1. The equation (1.7) with δ ≥ 0 does not admit any nontrivial solitary wave
satisfying u ∈W , u ∈ H2(R2) ∩ L∞loc(R2), uxxx, uyy ∈ L2

loc(R2) if α ≤ 0 and β ≤ 0.

Proof. The proof is based on the Pohojaev type identities. The regularity assumptions in
Theorem 7.1 are need to justify the identities by the following standard truncation argu-
ment. Let f0 ∈ C∞0 (R), 0 ≤ f0 ≤ 1, f0(t) = 1 if 0 ≤ |t| ≤ 1, f0(t) = 0 if |t| ≥ 2. Set
fj = f0(| · |/j2), j = 1, 2, · · ·

Multiplying (1.7) by xfju and then integrating over R2 we get

− c
∫

R2
xfj(

u2

2
)xdxdy + c

∫
R2
xfjuuxxxdxdy − cδ

∫
R2
xfjuuxxxxxdxdy +

∫
R2
xfj(u3)xdxdy

− γ
∫

R2
xfj(u2uxx)xdxdy − α

∫
R2
xfju∂

−1
x uyydxdy + β

∫
R2
xfjuuxyydxdy = 0,

By using several integration by parts and Lebesgue dominated convergence theorem, we
can get that as j →∞

− c
∫

R2
xfj(

u2

2
)xdxdy →

∫
R2

c

2
u2dxdy,

∫
R2
xfj(u3)xdxdy → −

∫
R2
u3dxdy,

− α
∫

R2
xfju∂

−1
x uyydxdy →

∫
R2
−α

2
(∂−1
x uy)2dxdy, β

∫
R2
xfjuuxyydxdy →

∫
R2

β

2
u2
ydxdy,

c

∫
R2
xfjuuxxxdxdy = −c

[ ∫
R2
fjuuxxdxdy +

∫
R2
x(fj)xuuxxdxdy +

∫
R2
xfj(

u2
x

2
)xdxdy

]
= −c

[
−
∫

R2
(fju)xuxdxdy −

∫
R2

(x(fj)xu)xuxdxdy −
∫

R2
(xfj)x

u2
x

2
dxdy

]
= c
[ ∫

R2
(fj)x(

u2

2
)xdxdy +

∫
R2
fju

2
xdxdy +

∫
R2
x(fj)xx(

u2

2
)xdxdy∫

R2
x(fj)xu2

xdxdy +
∫

R2
fj
u2
x

2
dxdy +

∫
R2
x(fj)x

u2
x

2
dxdy

]
−→

∫
R2

3c
2
u2
xdxdy.
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Similarly we get

cδ

∫
R2
xfjuuxxxxxdxdy −→ cδ

∫
R2
−u

2
xx

2
dxdy.

Now

−γ
∫

R2
xfj(u2uxx)xdxdy = γ

[ ∫
R2
fju

2uxxdxdy +
∫

R2
x(fj)xu2uxxdxdy

]
= −γ

∫
R2

(fj)xu2uxdxdy − γ
∫

R2
fj · 2uu2

xdxdy + γ

∫
R2
x(fj)xu2uxxdxdy

−→
∫

R2
−2γuu2

xdxdy.

Putting all the above together we obtain∫
R2

c

2
u2 +

3c
2
u2
x + δ

cu2
xx

2
− u3 − 2γuu2

x −
α

2
(∂−1
x uy)2 +

β

2
u2
y dxdy = 0. (7.1)

Multiplying (1.7) by y∂−1
x uy and integrating over R2

−c
∫

R2
uxy∂

−1
x uydxdy + c

∫
R2
uxxxy∂

−1
x uydxdy +

∫
R2

3uuxy∂−1
x uydxdy

− γ
∫

R2
(2uxuxx + uuxxx)y∂−1

x uydxdy − α
∫

R2
∂−1
x uyyy∂

−1
x uydxdy

+ β

∫
R2
uxyyy∂

−1
x uydxdy = 0,

Again, integrating by parts we get

− c
∫

R2
uxy∂

−1
x uydxdy =

∫
R2
− c

2
u2dxdy, c

∫
R2
uxxxy∂

−1
x uydxdy =

∫
R2
− c

2
u2
xdxdy,

− cδ
∫

R2
uxxxxxy∂

−1
x uydxdy =

∫
R2
−cδ

2
u2
xxdxdy,

∫
R2

3uuxy∂−1
x uydxdy =

∫
R2

1
2
u3dxdy,

− α
∫

R2
∂−1
x uyyy∂

−1
x uydxdy =

∫
R2

α

2
(∂−1
x uy)2dxdy, β

∫
R2
uxyyy∂

−1
x uydxdy =

∫
R2

β

2
u2
ydxdy,

−γ
∫

R2
(2uxuxx + uuxxx)y∂−1

x uydxdy = −γ
2

∫
R2

[(u2)xxx − (u2
x)x]y∂−1

x uydxdy

= −γ
2

∫
R2
u2
xyuy − (u2)xxyuydxdy

= −γ
2

[
∫

R2
(uu2

x)yydxdy −
∫

R2
2uuxuxyy + (u2)xxyuydxdy

=
∫

R2

γ

2
uu2

xdxdy.

This implies that∫
R2

c

2
u2 +

c

2
u2
x + δ

c

2
u2
xx −

1
2
u3 − γ

2
uu2

x −
α

2
(∂−1
x uy)2 − β

2
u2
y dxdy = 0. (7.2)

To get the third identity, we first notice that if u ∈ W satisfies (1.7) in D ′(R2), then u
satisfies

−cu+ cuxx − cδuxxxx +
3
2
u2 − γ

2
(u2
x + 2uuxx)− α∂−1

x vy + βuyy = 0 in W ′,
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where v = ∂−1
x uy ∈ L2 and ∂−1

x vy ∈W ′. Now taking the W −W ′ duality product of the
last equation with u ∈W we have∫

R2
cu2 + cu2

x + δcu2
xx −

3
2
u3 − 3γ

2
uu2

x + α(∂−1
x uy)2 + βu2

y dxdy = 0. (7.3)

(7.2)·3−(7.3) we obtain∫
R2

c

2
(u2 + u2

x + δu2
xx)− 5

2
[α(∂−1

x uy)2 + βu2
y] dxdy = 0, (7.4)

which rules out the case that α ≤ 0, β ≤ 0. �
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