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Abstract. In this paper we establish a viscosity solution theory for a class of
nonlinear parabolic equations with discontinuities of the sign function type in
the second derivatives of the unknown function. We modify the definition of
classical viscosity solutions and show uniqueness and existence of the solutions.
These results are related to the limit behavior for the motion of a curve by a very
small power of its curvature, which has applications in image processing. We also
discuss the relation between our equation and the total variation flow in one space
dimension.

1. Introduction

We study a class of fully nonlinear parabolic equations with a jump discontinuity
in the second derivatives of the unknown. The general equation form of equations
we discuss is

ut + F (∇u, sgn(f(∇2u))) = 0 in Tn × (0,∞) (1.1)

with initial condition
u(x, 0) = u0(x) for all x ∈ Tn, (1.2)

where Tn denotes the n-dimensional torus, F and f are assumed to be continuous
functions and satisfy the ellipticity and u0 is a continuous function on Tn. More
detailed assumptions will be given later. The function sgn is formally understood
as the usual sign function:

sgn(a) =


1 if a > 0,

0 if a = 0,

−1 if a < 0.

We are particularly interested in the motion of a one dimensional graph with its
normal velocity equal to the sign of its curvature:

ut −
√

1 + u2x sgn(uxx) = 0. (1.3)

It is not clear how one should handle such a discontinuity caused by the sign
function of the second derivatives to obtain a unique solution of such equations.
The classical theory of viscosity solutions (e.g., [11]) does not apply directly. In this
work, we give a definition of viscosity solutions for (1.1) and show the uniqueness
and existence of continuous solutions.
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1.1. Motivations. Our problem is closely related to the mathematical models for
image processing. It is well-known that the following nonlinear equation in two
space dimensions has important applications in image denoising [1, 8]:

ut − |∇u|
∣∣∣∣div( ∇u

|∇u|

)∣∣∣∣α−1

div

(
∇u
|∇u|

)
= 0. (1.4)

This equation in two dimensions gives a level-set formulation of the motion of a
curve Γ governed by the law:

V = κα,

where V denotes the normal velocity and κ denotes the curvature of Γ; see [28, 29, 30]
for results related to this geometric motion.

The choice of the exponent α > 0 reflects a particular purpose for practical use
in image processing. For the purpose of shape analysis, we need to pick a small
α to cancel the pixel effect as fast as possible; on the other hand, if our aim is
image denoising, we may want to remove small details while keeping main features
unchanged, for which a large α seems more suitable. We are particularly interested
in the behavior of the operator when α → 0, which formally comes to the equation:

ut − |∇u| sgn
(
div

(
∇u
|∇u|

))
= 0. (1.5)

One may expect that the unique viscosity solution uα of (1.4) converges to the
solutions of (1.5). The proof of convergence is however not straightforward as in
the classical case, since the nonlinear operator in (1.4) does not converge locally
uniformly to the one in (1.5). Moreover, it is not clear whether continuous solutions
of (1.5) uniquely exist for any given continuous initial data.

A more general class of such equations can be written as

ut + F (∇u, sgn f(∇u,∇2u)) = 0,

where F : Rn × R → R and f : Rn × Sn → R are functions satisfying proper
assumptions. We denote by Sn the set of all n×n symmetric matrices. As shown in
the example (1.5), the difficulty of studying such equations lies in the discontinuities
of the sign function and of f(p,X) in p.

In this paper we focus our attention on the special case (1.1), where f only
depends continuously on the second space derivatives ∇2u, as exemplified by (1.3).
The example (1.3) can also be viewed as the formal limit, as α → 0, of the graph
version of (1.4):

ut − (1 + u2x)
1−3α

2 |uxx|α−1uxx = 0.

We adapt the viscosity solution theory to show existence and uniqueness of con-
tinuous solutions in the new circumstances. Concerning discontinuities appearing
in nonlinear PDEs, there are many related works using viscosity solution theory
in the literature. Some of them discuss Hamilton-Jacobi equations with discon-
tinuous Hamiltonians ([7, 6, 12, 9, 22, 23], etc.) and some others study second
order parabolic equations with discontinuity in the first derivatives including level-
set mean curvature flow equations and p-Laplace equations with 1 ≤ p ≤ ∞ (e.g.
[10, 13, 15, 24, 19]). But there are few results on well-posedness for second order
equations with discontinuities in the highest order like (1.1).
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1.2. Assumptions and main results. Here and in the sequel, F and f are as-
sumed to satisfy the following conditions:

(H1) F is degenerate elliptic, i.e.,

F (p, y1) ≤ F (p, y2)

for all y1 ≥ y2 and p ∈ Rn.
(H2) F (p, y) is Lipschitz continuous, i.e., there exists an L > 0 such that

|F (p1, y1)− F (p2, y2)| ≤ L(|p1 − p2|+ |y1 − y2|)

for all p1, p2 ∈ Rn and y1, y2 ∈ R.
(H3) f is uniformly elliptic; namely, there exists a µ > 0 such that

f(X1)− f(X2) ≥ µ tr(X1 −X2)

for all X1 ≥ X2 in Sn.
(H4) f is locally Lipschitz continuous in Sn, i.e., for any R > 0, there exists a KR

such that
|f(X1)− f(X2)| ≤ KR∥X1 −X2∥

for all X1, X2 ∈ Sn with ∥X1∥, ∥X2∥ ≤ R.
(H5) f(O) = 0; in other words, any constant is a solution of f(∇2u) = 0 in Tn.

Under the assumptions, we give a definition (Definition 2.1) of viscosity solutions
by adapting the usual solutions involving upper and lower semicontinuous envelopes
(cf. [11, 3, 21]) for discontinuous equations. We remark that those usual definitions
cannot directly guarantee the uniqueness of continuous solutions in our current
situation. For example, in the simplest case of (1.1) such as

ut − sgn(uxx) = 0 in T× (0,∞), (1.6)

one is tempted to define an envelope subsolution u (resp., supersolution) in the
following way: whenever u − ϕ attains a maximum (resp., minimum) at (x0, t0) ∈
T× (0,∞) for some smooth function ϕ : T× [0,∞) → R, we have

ϕt(x0, t0)− sgn∗(ϕxx(x0, t0)) ≤ 0 (resp., ϕt(x0, t0)− sgn∗(ϕxx(x0, t0)) ≥ 0).

Here

sgn∗(a) =

{
1 if a ≥ 0

−1 if a < 0
and sgn∗(a) =

{
1 if a > 0

−1 if a ≤ 0.
(1.7)

We call u is an envelope solution if it is both an envelope subsolution and an envelope
supersolution.

However, such envelope solutions are not unique when u(·, 0) is identically equal
to any constant C ∈ R. In fact, it is easy to see that

u(x, t) = C + bt

satisfy the definitions of both sub- and supersolutions above for any b ∈ [−1, 1]. It
is natural to expect that the only correct solution is u ≡ C in T× [0,∞).

Hence, we need to modify the definitions to fix the uniqueness issue. It turns out
that the diffusion is so fast that solutions turn to be constant in space in finite time;
we discuss this flattening behavior in more details later. Given any non-constant
initial value for (1.1), one can still obtain the uniqueness of solutions up to the
moment when they become constant in space. In order to get the uniqueness global
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in time, we only need to force the correct solution to keep its velocity equal to
F (0, 0) after being completely flattened; see Definition 2.1.

Our main theorem of this work is the existence and uniqueness of our adapted
viscosity solutions described above.

Theorem 1.1. Assume that F and f satisfy (H1)–(H5). Let u0 be Lipschitz con-
tinuous. Then there exists a unique Lipschitz continuous solution of (1.1) with
u(x, 0) = u0(x) for all x ∈ Tn.

We also discuss the wellposedness problem in a less regular function space, i.e. the
space of continuous functions. We can show that with an additional boundedness
assumption (cf. Remark 4.4), one is able to construct a unique continuous solution
from any continuous initial data.

In Section 3, we prove the uniqueness by showing a comparison principle for con-
tinuous sub- and supersolutions. As mentioned above, we first establish comparison
between a subsolution u and a supersolution v up to their first flattening moment.

The key issue in the proof is clearly how to avoid situations when the second
derivatives of both u and v equal to zero, since comparison will be completely lost
due to the semicontinuity envelopes taken in the definitions. It turns out that one
may apply a perturbation technique for test functions with proper small quadratic
terms so that a strict ordering of second derivatives is maintained.

A formal argument in one space dimension is given in what follows. Suppose u
and v are smooth and u− v is positive somewhere in T× (0, T0). Then

Φ(x, t) = u(x, t)− v(x, t)− σ

T ∧ T0 − t

attains a maximum at (x0, t0) ∈ T × (0, T0), where T > 0, σ > 0 are fixed and T0
denotes the first moment that both u and v become constant in space. If Φ(·, t0) is
not identically equal to the maximum in space, then for any h > 0, one may take
a > 0 small such that there exists a local maximizer (x̂, t̂) of

u(x, t)− v(x, t)− σ

T ∧ T0 − t
− h(t− t0)

2 + a|x− x0|2,

which yields,

uxx(x̂, t̂) ≤ vxx(x̂, t̂)− 2a.

This inequality implies sgn∗ f(uxx(x̂, t̂)) ≤ sgn∗ f(vxx(x̂, t̂)), which allows us to pro-
ceed to the usual comparison arguments of deriving a contradiction.

If, on the other hand, Φ(x, t0) is constant in space, then it implies formally that
uxx(x, t0) ≡ vxx(x, t0) for all x ∈ T. We will completely avoid the difficulty caused
by the discontinuity of equations provided that f(uxx(x, t0)) = f(vxx(x, t0)) ̸= 0 for
some x ∈ T. The remaining case is that f(uxx) = f(vxx) ≡ 0 and therefore uxx = vxx
in T×{t0}, which cannot occur, since either u or v has not become constant in space
yet.

Our formal proof above can be made rigorous in the framework of viscosity solu-
tion theory under the assumptions that u and v are continuous in time. The global
uniqueness of solutions with time continuity follows from the extra restriction in our
modified definition mentioned above.



A PARABOLIC EQUATION WITH DISCONTINUITY 5

In Section 4, we obtain the existence of continuous solutions by considering the
limit for a sequence of approximating equations:

ut + F (∇u, |f(∇2u)|α−1f(∇2u)) = 0 (1.8)

with α > 0. Noticing that there are no singularities in (1.8), we may apply the
classical viscosity solution theory to show the existence of a unique solution uα. We
get a solution u of (1.1) by passing to the limit of uα as α→ 0+.

The rigorous proof for existence is more or less similar to the standard stability
theory of viscosity solutions, since comparison principle is available. But it is worth
pointing out that one needs to include an argument to show the continuity of (semi-)
limits of uα, as required in our comparison principle. While the continuity in space
is shown in a standard way, the continuity in time relies much on the boundedness
of the sign function which is inherent in the special structure of our equation (1.1).
For instance, one can easily see that any solution u of (1.6) formally satisfies

|ut| = | sgn(uxx)| ≤ 1,

from which the Lipschitz bound of u in time follows immediately.
By an argument similar to the existence proof, we show that the unique solution

u of (1.1)–(1.2) is stable with respect to u0 in the class of Lipschitz functions; see
Section 5.

1.3. Connections with total variation flow. A different viewpoint of our prob-
lem is related to the total variation flow. Let us take (1.6) as an example. By
formally differentiating it with respect to x and substituting ux with a new un-
known function v, we obtain the one-dimensional total variation flow.

vt − (sgn(vx))x = 0, in T× (0,∞). (1.9)

(The second derivative w = uxx formally satisfies the so-called sign fast diffusion [5]

wt − sgn(w)xx = 0.)

It is well known that (1.9) is nonlocal and facets (pieces where vx = 0) appear
during the evolution. Among many works on this equation, Giga et al. constructed
a viscosity solution theory for (1.9) over the years; see [15, 16, 20]. See also [2, 26, 17]
and related results in [18, 19] etc. The novelty of their definition of viscosity solutions
consists in extra nonlocal tests for facets; namely, the graphs of smooth test functions
themselves also contain facets. Such extra tests play an important role in the proof
of comparison principles.

In our definition for viscosity solutions of (1.6), we however do not need to include
any nonlocal tests. This is more or less natural, since, from the viewpoint of viscosity
solution theory, differentiating unknowns in space variables makes equations more
complicated. For example, the definition for viscosity solutions of Hamilton-Jacobi
equations is much simpler than that of Burger’s equation.

In Section 6, we discuss (1.6) in more details and show that the derivative of its
solution in space does satisfy (1.9) under certain regularity assumptions. Note that
evolutions of graphs with a non-smooth interface energy like (1.9) were first studied
by Fukui and Giga [14]. Our example (Example 6.6) suggests that it is also possible
to study discontinuous solutions of (1.9) by differentiating solutions of (1.6); see [27]
for recent results on discontinuous solutions of (1.9).
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2. Definition of Viscosity Solutions

Let us begin with the definition of subsolutions and supersolutions of (1.1) with
F and f satisfying (H1)–(H5).

Let sgn∗ and sgn∗ be defined as in (1.7). Here the notation ∗ is essentially consis-
tent with that of the semicontinuous envelopes. It is clear that sgn∗(x) ≤ sgn∗(x)
and

sgn∗(x) ≤ sgn∗(x+ a)

for any x ∈ R and a > 0.

Definition 2.1 (Definition of viscosity solutions). A locally bounded upper semi-
continuous (resp., lower semicontinuous) function u : Tn × [0,∞) → R is called a
subsolution (resp., supersolution) of (1.1) if the following two conditions hold:

(1) Whenever there exist ϕ ∈ C2(Tn × [0,∞)) and (x0, t0) ∈ T× (0,∞) such that

max
O

(u− ϕ) = (u− ϕ)(x0, t0), (resp., min
O

(u− ϕ) = (u− ϕ)(x0, t0), )

where O is an open set of Tn × (0,∞) containing (x0, t0), the function ϕ satisfies

ϕt + F (∇ϕ, sgn∗(f(∇2ϕ))) ≤ 0 at (x0, t0)(
resp., ϕt + F (∇ϕ, sgn∗(f(∇2ϕ))) ≥ 0 at (x0, t0)

)
.

(2) When u(·, t0) is constant in Tn for some t0 ≥ 0, one has

u(x, t) ≤ u(x, t0)− CF (t− t0) (resp., u(x, t) ≥ u(x, t0) + CF (t− t0))

for all x ∈ Rn and t ≥ t0, where CF = F (0, 0).
A locally bounded function u is a solution if it is both a subsolution and a super-

solution.

Our definition above implies that if a solution u is constant in space at t = t0,
then it is constant in space at any t ≥ t0; in particular, u(·, t) = u(·, t0)−CF (t− t0)
for all t ≥ t0.

Remark 2.1. Although our definition of subsolutions and supersolutions requires only
semicontinuity, we strengthen their regularity in our comparison principle (Theorem
3.1).

Remark 2.2. As usual, we may rewrite the condition (1) in the definition of sub- and
supersolutions involving the semijets [11, 21]:

τ + F (p, sgn∗(f(X))) ≤ 0

(resp., τ + F (p, sgn∗(f(X))) ≥ 0)
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for all (x, t) ∈ Tn × (0,∞) and (p,X) ∈ J2,+u(x, t) (resp., (p,X) ∈ J2,−u(x, t)).
Here we recall the definition of J2,±:

J2,+u(x, t) =

{
(τ, p,X) ∈ R× Rn × Sn : u(y, s)− u(x, t)

≤ τ(s− t) + ⟨p, (y − x)⟩+ 1

2
⟨X(y − x), y − x⟩+ o(|s− t|+ |y − x|2)

}
;

J2,−u(x, t) =

{
(τ, p,X) ∈ R× Rn × Sn : u(y, s)− u(x, t)

≥ τ(s− t) + ⟨p, (y − x)⟩+ 1

2
⟨X(y − x), y − x⟩+ o(|s− t|+ |y − x|2)

}
.

For example, if u− ϕ attains a maximum at (x0, t0) for some function ϕ(x, t) twice
differentiable in x and differentiable in t at (x0, t0), then

(ϕt(x0, t0),∇ϕ(x0, t0),∇2ϕ(x0, t0)) ∈ J2,+u(x0, t0).

For our later use, we also recall the definitions of the “closures” of J2,+u and J2,−u.
We set for any (x, t) ∈ Tn × (0,∞)

J
2,±
u(x, t) = {(τ, p,X) ∈ R× Rn × Sn : there exist (xn, tn) ∈ Tn × (0,∞) and

(τn, pn, Xn) ∈ J2,±u(xn, tn) with (τn, pn, Xn) → (τ, p,X) and u(xn, tn) → u(x, t)}.

It is well-known that one may use the semicontinuous envelope to define viscosity
solutions for elliptic or parabolic equations with discontinuity. Our definition here
adapts that idea. Note that

G∗ (p,X) = F (p, sgn∗(f(X))) ,

G∗ (p,X) = F (p, sgn∗(f(X))) ,

for G(p,X) = F (p, sgn(f(X))), due to (H1),(H2) and (H4). However, as pointed
out in Section 1, uniqueness does not hold under such a definition of solutions. We
add the condition (2) for this purpose.

In fact, even if the initial condition is not a constant, it is still possible that
solutions become spatially constant in finite time. For any function u : T× [0,∞) →
R, we denote by T (u) the first time t for u(x, t) becoming constant in x, i.e,

T (u) = inf{t ∈ [0,∞), u(x, t) ≡ C for some C ∈ R}.

Note that in general T (u) might be infinity. The condition (2) in the definition of
subsolutions amounts to saying

u(x, t) ≤ u(x, T (u))− CF (t− T (u))

for any x ∈ Tn and t ≥ T (u).

3. Uniqueness of Solutions

Let us present a comparison theorem for (1.1) up to the first flattening time.

Theorem 3.1 (Comparison before flattening). Assume (H1)–(H5). Let u and v be
respectively a subsolution and a supersolution of (1.1). Assume in addition that u
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and v are uniformly continuous in time; that is, there exists modulus of continuity
ω such that

|u(x, t)− u(x, s)| ≤ ω(|t− s|), |v(x, t)− v(x, s)| ≤ ω(|t− s|) (3.1)

for all x ∈ Rn and t, s ∈ [0,∞). If u(x, 0) ≤ v(x, 0) for all x ∈ Tn, then u ≤ v in
Tn × [0, T ) for any T ∈ [0, T0], where T0 = max{T (u), T (v)}.

In the proof of Theorem 3.1, we need the following property about sup- and inf-
convolutions, which is a parabolic version of [11, Lemma A.5].

Proposition 3.2 (Properties of sup- and inf-convolutions). Let λ > 0 and u be an
upper (resp. lower) semicontinuous function in Rn × [0,∞). Let

uλ(x, t) = sup
ξ∈Rn

{
u(ξ, t)− λ

2
|x− ξ|2

}
(
resp., uλ(x, t) = inf

ξ∈Rn

{
u(ξ, t) +

λ

2
|x− ξ|2

})
.

If there exists (τ, p,X) ∈ J2,+uλ(x0, t0) (resp., (τ, p,X) ∈ J2,−uλ(x0, t0)) for some
(x0, t0) ∈ Rn × (0,∞), then

(τ, p,X) ∈ J2,+u(x0 + p/λ, t0)
(
resp., (τ, p,X) ∈ J2,−u(x0 − p/λ, t0)

)
.

Proof. We only prove the result on uλ; the proof for uλ is symmetric. If (τ, p,X) ∈
J2,+uλ(x0, t0), then

u(ξ, t)− λ

2
|x− ξ|2 ≤ uλ(x, t)

≤ uλ(x0, t0) + τ(t− t0) + ⟨p, x− x0⟩+
1

2
⟨X(x− x0), x− x0⟩

+ o(|x− x0|2) + o(|t− t0|)
(3.2)

for any x, ξ ∈ Rn. Let ξ0 ∈ Rn such that

uλ(x0, t0) = u(ξ0, t0)−
λ

2
|ξ0 − x0|2.

It follows from (3.2) that

u(ξ, t)− λ

2
|x− ξ|2 ≤u(ξ0, t0)−

λ

2
|ξ0 − x0|2 + τ(t− t0) + ⟨p, x− x0⟩

+
1

2
⟨X(x− x0), x− x0⟩+ o(|x− x0|2) + o(|t− t0|).

(3.3)

Setting x = ξ − ξ0 + x0, we get

u(ξ, t) ≤ u(ξ0, t0) + τ(t− t0) + ⟨p, ξ − ξ0⟩+
1

2
⟨X(ξ − ξ0), ξ − ξ0⟩

+ o(|ξ − ξ0|2) + o(|t− t0|).
It remains to show that ξ0 = x0+p/λ. We take ξ = ξ0, t = t0 and x = x0+β(λ(x0−
ξ0) + p) in (3.3) for an arbitrary β ∈ R small and get

0 ≤ β|λ(x0 − ξ0) + p|2 +O(β2).

This yields λ(x0 − ξ0) + p = 0. □
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The following result is elementary.

Lemma 3.3. Assume f : Sn → R is continuous and satisfies (H3)–(H5). If w ∈
C1,1(Tn) satisfies −f(∇2w) = 0 a.e. in Tn, then w is constant in Tn.

Proof. We claim that w is actually a viscosity solution of −f(∇2w) = 0 in Tn. We
only show the subsolution verification. The supersolution part is handled by a
symmetric argument.

Suppose there exists ϕ ∈ C2(Tn) and x0 ∈ Tn such that w−ϕ attains a maximum
at x0. Then by Jensen’s lemma (cf., [11, Lemma A.3]), for r, δ > 0, the set

{x ∈ Br(x0) : there exists p ∈ Bδ(0) for which

w(x)− ϕ(x)− ⟨p, x⟩ has a local maximum at x}
has a positive measure. We therefore can take xk → x0, pk → 0 as k → ∞ such
that w(x)−ϕ(x)−⟨p, x⟩ attains a local maximum at xk and f(∇2w(xk)) = 0. This
implies that

−f(∇2ϕ(xk)) ≤ 0.

Letting k → ∞, we get
−f(∇2ϕ(x0)) ≤ 0,

which indicates that f is a subsolution.
We conclude the proof of this lemma by noting that Lipschitz viscosity solutions

of −f(∇2w) = 0 in Tn must be constant, since the strong maximum principle [25, 4]
holds thanks to the assumptions (H3)–(H5).

□
We next present a proof of Theorem 3.1.

Proof of Theorem 3.1. Suppose by contradiction that u − v has a positive value in
Tn × (0, T ). Then we may assume that

Φ(x, t) = u(x, t)− v(x, t)− σ

T − t

attains a maximum δ > 0 for some small σ > 0. Take the sup-convolution uλ of u
and the inf-convolution vλ for λ > 0 in space; namely,

uλ(x, t) = sup
ξ∈Tn

{
u(ξ, t)− λ

2
|x− ξ|2

}
,

vλ(y, s) = inf
η∈Tn

{
v(η, s) +

λ

2
|y − η|2

}
.

We then have

δλ := max
Tn×[0,T )

(
uλ(x, t)− vλ(x, t)−

σ

T − t

)
> 0

.
It is not difficult to see that the auxiliary function

Φε(x, y, t, s) = uλ(x, t)− vλ(y, s)−
|x− y|2

2ε
− |t− s|2

2ε
− σ

T − t

also attains a maximum at some (xε, yε, tε, sε) ∈ T2n × [0, T )2 with

max
T2n×[0,T )2

Φε = Φε(xε, yε, tε, sε) ≥ δ
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for all λ > 0. In addition, due to the maximum at (xε, yε, tε, sε), we have

|xε − yε|2

2ε
+

|tε − sε|2

2ε
≤ uλ(xε, tε)− vλ(yε, sε)−

σ

T − tε
− δλ. (3.4)

Note that the right hand side is bounded uniformly in ε. By taking a subsequence,
still indexed by ε, we get xε, yε → x0 and tε, sε → t0 for (x0, t0) ∈ Tn × [0, T ). It
follows from (3.4) that

lim sup
ε→0

|xε − yε|2

2ε
+

|tε − sε|2

2ε
≤ (uλ − vλ)(x0, t0)−

σ

T − t0
− δλ ≤ 0,

which implies that
|xε − yε|2

2ε
→ 0,

|tε − sε|2

2ε
→ 0 (3.5)

and

max
T2n×[0,T )2

Φε = Φε(xε, yε, tε, sε) → max
Tn×[0,T )

Φ(x, t) > 0, (3.6)

as ε→ 0.
For λ > 0 large, the comparison assumption on the initial values implies that

tε ̸= 0 and sε ̸= 0 when ε > 0 is sufficiently small. Indeed, let (x0, x0, t0, t0) be a
limit of (xε, yε, tε, sε) along a subsequence εk. Then we get

lim sup
k→∞

maxΦεk ≤ uλ(x0, 0)− vλ(x0, 0),

where the left hand side is greater than δ but the right hand side is small when
λ > 0 is taken large. Also it is easily seen that t0 = s0 < T .

Set
ϕ1(x) = max

(y,t,s)∈Tn×[0,T )2
Φε(x, y, t, s);

ϕ2(y) = max
(x,t,s)∈Tn×[0,T )2

Φε(x, y, t, s).

It is clear that

max
T

ϕ1 = max
T2n×[0,T )2

Φε.

We next discuss the following cases.
Case 1. Suppose that for any λ > 0 large, there exists a subsequence indexed by

εk with εk → 0 as k → ∞, such that for all k, either of the following holds:

M1
εk

= {x ∈ Tn : maxΦεk(x, y, t, s) = ϕ1(x)} ≠ Tn; (3.7)

M2
εk

= {y ∈ Tn : maxΦεk(x, y, t, s) = ϕ2(y)} ̸= Tn. (3.8)

For simplicity of notation, we use the index ε instead of εk. In what follows, we
derive a contradiction when (3.7) holds. The proof for the case (3.8) is similar.

We choose h > 0 to be determined later such that

max
y∈Tn

Φ(xε, y, tε, sε) > max
y∈Tn

Φε(x, y, t, s)− h(t− tε)
2 − h(s− sε)

2

for any t, s ∈ (0, T ) and any x ∈ M1
ε , which implies the existence of an a > 0

sufficiently small such that

max
y∈Tn

Φε(x, y, t, s)− h(t− tε)
2 − h(s− sε)

2 + a|x− xε|2
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attains a local maximum at (x̂, t̂, ŝ) ∈ Tn × (0, T )2 near the set M1
ε × {tε} × {tε};

see [21, Lemma 2.2.5]. It amounts to saying that

Φε(x, y, t, s)− h(t− tε)
2 − h(s− sε)

2 + a|x− xε|2

attains a local maximum at (x̂, ŷ, t̂, ŝ) for some ŷ ∈ Tn.
We then apply the Crandall-Ishii lemma (cf. [11]) to get

(τλ, pλ, Xλ) ∈ J
2,+
uλ(x̂, t̂) and (ρλ, qλ, Y λ) ∈ J

2,−
vλ(ŷ, ŝ)

satisfying

τλ =
t̂− ŝ

ε
+

σ

(T − t̂)2
+ 2h(t̂− tε), ρλ =

t̂− ŝ

ε
− 2h(ŝ− sε),

pλ =
x̂− ŷ

ε
− a(x̂− xε), qλ =

x̂− ŷ

ε
,

Xλ ≤ Y λ − 2aI.

The last inequality above implies that

f(Xλ) < f(Y λ). (3.9)

Take a sequence (xj, yj, tj, sj) ∈ T2n × [0, T )2 satisfying

(τj, pj, Xj) ∈ J2,+uλ(xj, tj), (ρj, qj, Yj) ∈ J2,−vλ(yj, sj)

(xj, yj, tj, sj) → (x̂, ŷ, t̂, ŝ)

(τj, pj, Xj) → (τλ, pλ, Xλ) and (ρj, qj, Yj) → (ρλ, qλ, Y λ) as j → ∞.

By Proposition 3.2, we get (τj, pj, Xj) ∈ J2,+u(xj + pj/λ, tj) and (ρj, qj, Yj) ∈
J2,−u(yj − qj/λ, sj).

We apply the definition of viscosity subsolutions and supersolutions to get

τj + F (pj, sgn
∗(f(Xj))) ≤ 0;

ρj + F (qj, sgn∗(f(Yj))) ≥ 0.

Letting j → ∞ and taking the difference of both inequalities, we have

τλ − ρλ ≤ F (qλ, sgn∗(f(Y
λ)))− F (pλ, sgn∗(f(Xλ))),

which yields by (3.9), (H1) and (H2),
σ

(T − t̂)2
+ 2h(t̂− tε) + 2h(ŝ− sε) ≤ L|pλ − qλ| = La|x̂− xε|.

Sending a→ 0 and choosing h ≤ σ
8T (T−t̂)2

, we reach a contradiction.

Case 2. Suppose that there exists λk → ∞ as k → ∞ such that M1
ε = Tn and

M2
ε = Tn for all λk and ε > 0. This means that

uλk(x, t)− vλk,ε(x, s)−
|t− s|2

2ε
− σ

T − t

attains a maximum at any point in Tn × {tε} × {sε}, where

vλk,ε(x, s) = inf
y∈Tn

{
vλk

(y, s) +
|x− y|2

2ε

}
.

In particular, we find that uλk(x, tε) − vλk,ε(x, sε) = C in Tn for some constant C,
which yields uλk(·, tε), vλk,ε(·, sε) ∈ C1,1(Tn).



12 R. M. CHEN AND Q. LIU

Case 2a. If uλk(·, tε) = vλk,ε(·, sε) + C is not constant in Tn for some λk and ε,
then by Lemma 3.3, there exists xε ∈ Tn such that uλk(·, tε) = vλk,ε(·, sε) is twice
differentiable at xε, and

pε = ∇uλk(xε, tε) = ∇vλk,ε(xε, sε);

Xε = ∇2uλk(xε, tε) = ∇2vλk,ε(xε, sε)

with f(Xε) ̸= 0. This implies that

(τε, pε, Xε) ∈ J2,+uλk(xε, tε)

(ρε, pε, Xε) ∈ J2,−vλk,ε(xε, sε),

where

τε =
tε − sε
ε

+
σ

(T − tε)2
and ρε =

tε − sε
ε

.

We again use Proposition 3.2 to obtain that

(τε, pε, Xε) ∈ J2,+u(xε +
pε
λk
, tε)

and
(ρε, pε, Xε) ∈ J2,−v(xε − εpε −

pε
λk
, sε).

We apply the definitions of sub- and supersolutions and get

τε + F (pε, sgn
∗(f(Xε))) ≤ 0,

ρε + F (pε, sgn∗(f(Xε))) ≥ 0.

Since sgn∗(f(Xε)) = sgn∗(f(Xε)) = sgn(f(Xε)), the difference of the inequalities
yields a contradiction.

Case 2b. If uλk(·, tε) and vλk,ε(·, sε) are both constants for all λk and ε, then
passing to a limit, we deduce, by the continuity assumption (3.1), that u(·, t0) and
v(·, s0) are both constants for t0 = s0 < T , which contradicts the definition of T .

□
Remark 3.1. Here we used the time-continuity assumption (3.1) on the solutions. In
the next section we provide sufficient conditions (cf. Proposition 4.1 and Remark
4.2) for the time-continuity of solutions to hold true.

An immediate consequence of Theorem 3.1 is the following uniqueness result.

Corollary 3.4 (Uniqueness before flattening). Assume (H1)–(H5). If u1 and u2
are both solutions of (1.1) with u1(·, 0) = u2(·, 0) = u0, and u1 and u2 are uniformly
continuous in time, then u1 = u2 in Tn × [0, T0) with T0 = max{T (u), T (v)}.

The uniqueness after solutions becoming flat requires the extra condition (2) in
the definition and their continuity near the first flattening time.

Theorem 3.5 (Global uniqueness). Assume (H1)–(H5). Then the solutions of
(1.1)–(1.2) satisfying (3.1) are unique.

Proof. Suppose that u1 and u2 are both solutions of (1.1). Assume that u1 and
u2 satisfy the continuity assumption (3.1). By Corollary 3.4, we have u1 ≤ u2 in
Tn × [0, T0), where T0 = max{T (u), T (v)}. Our proof is complete if T0 = ∞. If
T0 < ∞, it follows from the time-continuity assumption that T (u1) = T (u2) = T0
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and therefore u1(·, T0) and u2(·, T0) are both constant in Tn. By Definition 2.1, we
have, for all x ∈ Tn and t ≥ T0,

u1(x, t) = u2(x, t) = u1(x, T0)− CF (t− T0).

□

4. Existence of Solutions

In order to show the existence of solutions of (1.1) with u(x, 0) = u0(x) for all
x ∈ Tn, we consider an approximation with α > 0:

ut + F
(
∇u, |g(∇u,∇2u)|α−1g(∇u,∇2u)

)
= 0 in Tn × (0,∞) (4.1)

with

u(x, 0) = u0(x) for x ∈ Tn,

where g : Rn × Sn → R is a continuous function such that

sgn g(p,X) = sgn f(X) for any p ∈ Rn and X ∈ Sn. (4.2)

The simplest choice of g is certainly

g(p,X) = f(X)

for all p ∈ Rn and X ∈ Sn. We however allow g to depend also on p for our general
applications later.

It is clear that (4.2), together with (H3), implies that g(p,O) = 0 for any p ∈ Rn.
Note that (4.1) is not singular when α > 0. Therefore the classical theory of viscosity
solutions applies under the assumptions below:

(H3’) g(p,X) is elliptic locally in p, i.e., for any R > 0, there exists a µ > 0 such
that

g(p,X1)− g(p,X2) ≥ µ tr(X1 −X2)

for all X1 ≥ X2 in Sn and p ∈ BR.
(H4’) g : Rn × Sn → R is continuous and g(p,X) are locally Lipschitz continuous;

that is, for any R > 0, there exists an LR > 0 such that

|g(p1, X)− g(p2, X)| ≤ KR(|p1 − p2|+ ∥X1 −X2∥)

for all p1, p2 ∈ BR and ∥X1∥, ∥X2∥ ≤ R.

In particular, the usual comparison principle holds in this case and there exists a
unique continuous viscosity solution uα of (4.1) if u0 is continuous in Tn; consult
[11] for more details.

We intend to send the limit, as α → 0+, to get a solution of (1.1) with the same
initial condition. For later use, let us recall the relaxed half limits of uα [11] for any
given (x, t) ∈ Tn × [0,∞):

u(x, t) = limsup∗

α→0
uα(x, t)

= lim
δ→0

sup {uα(y, s) : (y, s) ∈ Tn × [0,∞), |x− y|+ |t− s| ≤ δ, α ≤ δ} ;

u(x, t) = liminf∗
α→0

uα(x, t)

= lim
δ→0

inf {uα(y, s) : (y, s) ∈ Tn × [0,∞), |x− y|+ |t− s| ≤ δ, α ≤ δ} .
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Proposition 4.1 (Lipschitz continuity). Assume (H1), (H2), (H3’) and (H4’). Let
uα be the solution of (4.1) with Lipschitz initial value u0, i.e., there exists L > 0
such that

u0(x)− u0(y) ≤ L|x− y| for all x, y ∈ Tn.

Then
|u(x, t)− u(y, s)| ≤ L|x− y|+MF |t− s|,
|u(x, t)− u(y, s)| ≤ L|x− y|+MF |t− s|,

for all x, y ∈ Tn and t, s ≥ 0, where

MF = max{|F (p, θ)| : |p| ≤ L, |θ| ≤ 1}. (4.3)

Proof. 1. We first show the Lipschitz continuity in space. For any h ∈ Tn, let
vα(x, t) := uα(x+h, t)+L|h|. It is clear that v is a viscosity solution of (1.1). Since
u0 is Lipschitz continuous and

v(x, 0) = u0(x+ h) + Lh ≥ u0(x),

by comparison principle, we have vα(x, t) ≥ uα(x, t), which implies

uα(x+ h, t)− uα(x, t) ≥ −L|h|
for any x, h ∈ Tn and α > 0. A symmetric argument yields

uα(x+ h, t)− uα(x, t) ≤ L|h|.
Taking the relaxed limits, we get the desired Lipschitz continuity for u and u in
space.

2. We next prove the Lipschitz continuity in time. We approximate u0 by a
smooth function w0 such that there exists a δ > 0 satisfying

w0 − δ ≤ u0 ≤ w0 + δ and max
Tn

|∇w0| ≤ L+ δ.

Since g is continuous, we may assume maxTn |g(∇w0,∇2w0)| ≤ C for some C > 0.
Set

Mα
δ := max{|F (p, θα)| : |p| ≤ L+ δ, |θ| ≤ C}.

It is not difficult to see that

wδ(x, t) = w0(x)− δ −Mα
δ t

is a subsolution of (4.1). Indeed we have

|∇wδ| ≤ L+ δ, (4.4)

and therefore

F (∇wδ, |g(∇wδ,∇2wδ)|α−1g(∇wδ,∇2wδ)) ≤Mα
δ . (4.5)

Hence by comparison principle for (4.1), we get

uα(x, t) ≥ wδ(x, t) = w0(x)− δ −Mα
δ t ≥ u0(x)− 2δ −Mα

δ t. (4.6)

One may construct in a similar way a supersolution to show

uα(x, t) ≤ u0(x) + 2δ +Mα
δ t. (4.7)

We next fix any τ ≥ 0. It is clear that the function

(x, t) 7→ uα(x, t+ τ) + 2δ +Mα
δ τ
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satisfies the equation (4.1) and its initial value is not less than u0 due to (4.6). By
comparison principle, we have for any x ∈ Tn and t ≥ 0,

uα(x, t+ τ) ≥ uα(x, t)−Mα
δ τ − 2δ.

Analogously, we deduce

uα(x, t+ τ) ≤ uα(x, t) +Mα
δ τ + 2δ,

which amounts to saying that for any x ∈ Tn, t ≥ τ , and α > 0,

uα(x, t− τ) ≥ uα(x, t)−Mα
δ τ − 2δ.

Passing to the half relaxed limits as α→ 0, we obtain, by the continuity assump-
tions (H2) and (H4’),

u(x, t) ≥ u(x, s)−Mδ|t− s| − 2δ,

u(x, t) ≤ u(x, s) +Mδ|t− s|+ 2δ,

where Mδ = max{|F (p, θ)| : |p| ≤ L+ δ, |θ| ≤ 1}. We finally let δ → 0 and get

|u(x, t)− u(x, s)| ≤MF |t− s|,
where MF is given as in (4.3). One may similarly get

|u(x, t)− u(x, s)| ≤MF |t− s|.
□

Remark 4.1. It follows from (4.6) and (4.7) that for all x ∈ Tn

u(x, 0) ≤ u0(x) and u(x, 0) ≥ u0(x).

Remark 4.2. Note that our result for the Lipschitz time-continuity of solutions still
holds even when the initial value u0 is merely continuous, provided that in addition
to the assumptions in Proposition 4.1, we also assume the local boundedness of F ,
that is, for any R ≤ 0, there exists a CR depending on R such that

|F (p, y)| ≤ CR, for any p ∈ Rn, |y| ≤ R. (4.8)

In this case, we still have (4.5) without using (4.4), and the rest of the proof goes
the same way.

Proposition 4.2 (Existence of subsolutions and supersolutions). Assume (H1),
(H2), (H3’) and (H4’). Assume (4.2). Let uα be the solution of (4.1) with continuous
initial value u0. Then u and u are respectively a subsolution and a supersolution of
(1.1).

Proof. Let us prove u is a subsolution. The proof for u being a supersolution is
symmetric.
Step 1. We first verify the condition (1) in the definition of subsolutions. Suppose
that u−ϕ attains a maximum at some (x0, t0) ∈ Tn× (0,∞). Then our verification
follows the classical stability theorem of viscosity solutions. Indeed, suppose that
f(∇2ϕ) ≥ 0 at (x0, t0). Then we aim to show that

ϕt(x0, t0) + F (∇ϕ(x0, t0), 1) ≤ 0. (4.9)

To this end, we set

ϕ̃(x, t) = ϕ(x, t) + a|x− x0|2
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for a > 0. Then u− ϕ̃ attains a strict maximum at (x0, t0) and

sgn f(∇2ϕ̃(x0, t0)) = sgn g
(
∇ϕ̃(x0, t0),∇2ϕ̃(x0, t0)

)
= 1

due to (H2) and (4.2).

Then there exist (xα, tα) → (x0, t0) as α→ 0 such that uα− ϕ̃ attains a maximum
at (xα, tα). It is obvious that there exist α0 and σ > 0 such that

g(∇ϕ̃(xα, tα),∇2ϕ̃(xα, tα)) > σ

for all 0 < α < α0. Since u
α is a subsolution of (4.1), we have

ϕ̃t + F (∇ϕ̃, |g(∇ϕ̃,∇2ϕ̃)|α−1g(∇ϕ̃,∇2ϕ̃)) ≤ 0,

at (xα, tα). Passing to the limit α → 0, we get at (x0, t0)

ϕ̃t + F (∇ϕ̃, sgn(g(∇ϕ̃,∇2ϕ̃))) ≤ 0,

which is essentially (4.9), since ∇ϕ̃(x0, t0) = ∇ϕ(x0, t0) and

sgn g(∇ϕ̃,∇2ϕ̃) = 1 at (x0, t0).

Step 2. We next show that whenever there exists a t0 ≥ 0 such that u(·, t0) is a
constant, then

u(x, t) ≤ u(x, t0)− CF (t− t0) for any x ∈ Tn and t ≥ t0. (4.10)

In fact, u(·, t0) being a constant implies, due to compactness of Tn, that for any
δ > 0, there is an αδ > 0 such that uα(·, t0) ≤ u(·, t0) + δ for any α ∈ (0, αδ). It is
clear that w(x, t) = u(x, t0) − CF (t − t0) + δ is a solution of (4.1) in Tn × (T,∞)
with w(x, t0) ≥ uα(x, t0) when α < αδ. Then, by comparison, we have

uα(x, t) ≤ u(x, t0)− CF (t− t0) + δ

for any (x, t) ∈ T× [t0,∞) and α ∈ (0, αδ), which yields

u(x, t) ≤ u(x, t0)− CF (t− t0) + δ.

By sending δ → 0, we get (4.10). □

Theorem 4.3 (Convergence). Assume that F, f, g satisfy (H1)–(H5), (H3’), (H4’)
and (4.2). Let uα be the unique solution of (4.1) with Lipschitz initial value u0.
Then uα → u locally uniformly in Tn × [0,∞) as α → 0+, where u is the unique
Lipschitz continuous solution of (1.1) with u(x, 0) = u0(x) for all x ∈ Tn.

Remark 4.3. As stated in the following corollary, the assumptions (H3’)–(H4’) and
(4.2) are not needed if one chooses g(p,X) = f(X). It is clear that they are implied
by (H3)–(H4).

Corollary 4.4 (Convergence and Existence). Assume that F and f satisfy (H1)–
(H5). Let uα be the unique solution of (4.1) with Lipschitz initial value u0 and
g(p,X) = f(X). Then uα → u locally uniformly in Tn × [0,∞) as α → 0+, where
u is the unique Lipschitz continuous solution of (1.1) with u(x, 0) = u0(x) for all
x ∈ Tn.
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Proof of Theorem 4.3. By Proposition 4.2, the semi relaxed limits u and u are re-
spectively a supersolution and a subsolution of (1.1). Moreover it follows from
Proposition 4.1 that u and u are continuous in time.

Since u(x, 0) ≤ u0(x, 0) ≤ u(x, 0), it follows from Theorem 3.1, that u ≤ u in
Tn × [0, T0), where T0 = max{T (u), T (u)}. The proof is completed if T0 = ∞.

If instead T0 ̸= ∞, we have u = u in Tn × [0, T0] due to the continuity of u and u
in time. This implies that u = u is a continuous solution in Tn × [0, T0). It is also
clear that T (u) = T (u) = T0, which implies that

u(·, T0) = u(·, T0) ≡ C in Tn

for some C ∈ R. By applying Definition 2.1(2) to u and u respectively, we obtain
that

u(x, t) = u(x, t) ≡ C − CF (t− T0)

for all x ∈ Tn and t ≥ T0. It is easily seen that u = u = u is now the unique
solution.

□

Remark 4.4. As mentioned in Remark 4.2, by adding the assumption (4.8), we are
able to construct viscosity solutions which are Lipschitz continuous in time and
continuous in space, with continuous initial data.

Example 4.5. One important example is the motion of graph by the sign of mean
curvature in one space dimension:

{
ut −

√
1 + u2x sgn(uxx) = 0 in T× (0,∞), (4.11)

u(x, 0) = u0(x) in T. (4.12)

In order to apply our general results above, we let

F (p, y) = −
√
1 + |p|2y

and

f(X) = trX = X

for any p ∈ Rn, y ∈ R and X ∈ R. It is not difficult to verify that such F and f
satisfy (H1)–(H5). Indeed,

F (p, y1)− F (p, y2) ≤ −
√

1 + |p|2(y1 − y2) ≤ 0

if y1 ≥ y2 and

f(X1)− f(X2) ≥ tr(X1 −X2)

for all X1 ≥ X2. Therefore Theorem 3.1 and Theorem 3.5 hold in this special case.
In order to get the existence of a unique continuous solution, we need to approximate
sgn f and then apply Theorem 4.3. There are multiple choices of the approximation
function g : R× R → R. We take the one most consistent with our motivation:

g(p,X) =
X

(1 + p2)
3
2

, (4.13)
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because the approximating equation (4.1) in this case describes the motion of graph
by curvature raised to the power α:

ut −
√
1 + u2x

(
uxx

(1 + u2x)
3
2

)α

= 0.

(Rigorously speaking, the power function xα should be understood as |x|α−1x to main-
tain the parabolicity.)

Note that (4.2) is fulfilled, since sgn g(p,X) = sgnX = sgn f(X). It is also easily
seen that (H3’) and (H4’) are satisfied as well. We may apply Theorem 4.3 to get
the existence as well. We conclude this example by presenting the following theorem:

Theorem 4.6. Assume that u0 is Lipschitz continuous in T. Then there exists
a unique Lipschitz continuous solution u of (4.11)–(4.12). Moreover, if uα is the
solution of (4.1) with g given in (4.13), then uα → u locally uniformly in T× [0,∞)
as α → 0.

5. Stability of Solutions

Let us consider the stability of the Lipschitz solution of (1.1)–(1.2) with respect
to Lipschitz continuous initial data u0.

Theorem 5.1 (Stability with respect to Lipschitz initial value). Assume that F
and f satisfy (H1)–(H5). Let uε be the unique solution of (1.1) with initial value
u(·, 0) = uε0 in Tn. Assume that

|uε0(x)− uε0(y)| ≤ Lε|x− y| (5.1)

for all x, y ∈ Tn with Lε > 0 bounded in ε > 0. If uε0 → u0 uniformly in Tn as
ε→ 0, then uε → u locally uniformly in Tn× [0,∞) as ε→ 0, where u is the unique
Lipschitz continuous solution of (1.1) with u(x, 0) = u0(x) for all x ∈ Tn.

Proof. We take the relaxed limits

u = limsup∗

ε→0
uε and u = liminf∗

ε→0
uε.

By Proposition 4.1, we obtain

|uε(x, t)− uε(y, s)| ≤ Lε|x− y|+M ε
F |t− s|

for all x, y ∈ Tn and t, s ∈ [0,∞), where

M ε
F = max{|F (p, θ)| : |p| ≤ Lε, |θ| ≤ 1}.

It is then clear that M ε
F > 0 is uniformly bounded in ε > 0, which implies that u

and u are both Lipschitz continuous in Tn × [0,∞) and u(·, 0) = u(·, 0) = u0 in Tn.
We next show that u is a subsolution of (1.1) and u is a supersolution of (1.1).

We again only prove the former. Note that it is standard to show that u satisfies
(1) in Definition 2.1, since under the assumptions on F and f , we have

F∗(p, sgn(f(X))) = F (p, sgn∗(f(X)))

for all p ∈ Rn and X ∈ Sn. The verification of (2) in Definition 2.1 is essentially the
same as Step 2 in the proof of Proposition 4.2.

Following the proof of Theorem 4.3, we immediately obtain that u = u in Tn ×
[0,∞), which implies the locally uniform convergence uε → u as ε→ 0. □
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6. Diffusion Driven by Sign in 1D

Our analysis applies to the diffusion by the sign of second derivative in one space
dimension: {

ut − sgn(uxx) = 0 in T× (0,∞), (6.1)

u(x, 0) = u0(x) for all x ∈ T. (6.2)

Uniqueness and existence of solutions are immediate consequences of Theorem 3.1
and Theorem 4.3.

Theorem 6.1. Let uα be the solution of the following equation{
ut − |uxx|α−1uxx = 0 in T× (0,∞), (6.3)

u(x, 0) = u0(x) for all x ∈ T (6.4)

with u0 Lipschitz continuous. Then uα converges uniformly, as α → 0+, to the
unique solution u of (6.1)–(6.2).

Proposition 6.2. Let u be the solution of (6.1)–(6.2) with u0 Lipschitz continuous
in T.Then u is Lipschitz continuous with Lipschitz constant 1, i.e.,

|u(x, t)− u(x, s)| ≤ |t− s|
for all t, s ≥ 0.

Proposition 6.3. Suppose that u ∈ C(T× [0,∞)) is the solution of (6.1). Then

min
x∈T

u(x, t)−min
x∈T

u(x, s) ≥ t− s (6.5)

for any 0 ≤ s ≤ t ≤ T (u). Similarly, u satisfies

max
x∈T

u(x, t)−max
x∈T

u(x, s) ≤ −(t− s) (6.6)

for any 0 ≤ s ≤ t ≤ T (u).

Proof. Let ψ(t) = minx∈T u(x, t). If there exists ϕ ∈ C1([0,∞)) such that ψ(t)−ϕ(t)
attains a minimum at t0 ∈ (0, T (u)), then u(x, t)− ϕ(t) also attains a minimum at
I × {t0}, where

I = {x ∈ T : u(x, t0) = minu(x, t0)}.
Since I ̸= T, we may take β, h ∈ R and a > 0 such that

u(x, t)− ϕ(t) + β(t− t0)
2 + h(x− x0)− a(x− x0)

2

attains a minimum at (x̂, t̂), where

(x̂, t̂) → (x0, t0) for some x0 ∈ I as β, h, a→ 0.

Since u is a supersolution of (6.1), we get

ϕt(t̂)− β(t̂− t0) ≥ 1.

Sending β, h, a→ 0, we end up with

ϕt(t0) ≥ 1.

Our argument above shows that ψ is a viscosity supersolution of

ψt ≥ 1 in (0, T (u)).

Hence, it is clear that ψ(t)− t is increasing, which completes the proof of (6.5). A
symmetric argument works for (6.6) as well. □
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Proposition 6.4. Let u be the solution of (6.1)–(6.2) with u(x, 0) = u0(x). Then

min
x∈T

u(x, t) = min
x∈T

u0(x) + t for all t ∈ [0, T (u)) (6.7)

and
max
x∈T

u(x, t) = max
x∈T

u0(x)− t for all t ∈ [0, T (u)). (6.8)

Moreover, if u(x0, s) = minx∈T u(x, s) (resp., u(x0, s) = maxx∈T u(x, s)) for some
x0 ∈ T and s < T (u), then

u(x0, t) = min
x∈T

u(x, t) for all t ∈ [s, T (u)).

(Resp.,
u(x0, t) = max

x∈T
u(x, t) for all t ∈ [0, T (u)).)

Proof. By Proposition 6.3, we get

minu(x, t) ≥ minu(x, s) + t− s

for all s ≤ t ≤ T (u). On the other hand, by the Lipschitz continuity, we have

minu(x, t) ≤ minu(x, s) + t− s

for all t, s ≥ 0. Combining these two inequalities, we get

min u(x, t) = minu(x, s) + t− s

for all t, s ≥ 0. Taking s = 0, we get (6.7).
The other statements in this proposition follow easily. Suppose that u(x0, s) =

minx∈T u(x, s) for some x0 ∈ T and s < T (u). Then by Proposition 6.2 again, we
have

u(x0, t) ≤ u(x0, s) + t− s = min
x∈T

u(x, s) + t− s

for any s ≤ t < T (u), which by (6.7) implies

u(x0, t) = min
x∈T

u(x, t).

The proof for the remaining part follows in an analogous way.
□

The proposition above shows very important properties of the limit u. It turns
out that the solution u ∈ C([0, T )) satisfies the minimizer/maximizer increasing
property: whenever u(x0, s) = minx∈T u(x, s) (or u(x0, s) = maxx∈T u(x, s)) for
some x0 ∈ T and 0 ≤ s < T , we have

u(x0, t) = min
x∈T

u(x, t) or u(x0, t) = max
x∈T

u(x, t) for all t ∈ [s, T ).

Obviously, the minimizer/maximizer increasing property implies that u(x, t) is
constant in x for all t ≥ s provided that u(x, s) is constant in x.

As mentioned in Introduction, the space derivative of the solution of (6.1)–(6.2)
is formally the unique solution of the one dimensional total variation flow equation.
We justify this observation in the following special case.

Proposition 6.5. Let u0 ∈ C1,1(R) be periodic with the least period 1. Assume
further that u0 is of class piecewise C2 in the following sense: there exist open
intervals I1 = (a0, b0) and I2 = (c0, d0) such that u0 is of C2 in Ii with i = 1, 2 and
in I3 = [b0, c0] ∪ [d0, a0 + 1], and satisfies
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(1) u′′0 < 0 in I1,
(2) u′′0 > 0 in I2,
(3) u′′0 = 0 in I3.

Let u be the solution of (6.1)–(6.2). Then v = ux is a Lipschitz function in R×(0,∞)
and it is the unique solution of

vt = (sgn(vx))x in T× (0,∞) (6.9)

with v(·, 0) = u′0.

Proof. The solution u can be explicitly expressed. Set T = 1
2
(maxu0 −minu0). By

the implicit function theorem, there exist C1 functions a, b : [0,∞) → (a0, b0) and
c, d : [0,∞) → (c0, d0) with a ≤ b and c ≤ d satisfying, for any t ∈ [0, T ),

u0(c(t))− u0(b(t)) + 2t = u′0(b(t))(c(t)− b(t))

= u′0(c(t))(c(t)− b(t));

u0(a(t) + 1)− u0(d(t))− 2t = u′0(d(t))(a(t)− d(t) + 1)

= u′0(a(t) + 1)(a(t)− d(t) + 1).

(6.10)

Also, we have a(0) = a0, b(0) = b0, c(0) = c0, d(0) = d0 and

a(t)− b(t) → 0, c(t)− d(t) → 0 as t→ T .

It is not difficult to find that the unique solution u in one period [a(t), a(t) + 1) is

u(x, t) =



u0(x)− t, for (x, t) ∈ (a(t), b(t))× [0, T ),

u0(x) + t, for (x, t) ∈ (c(t), d(t))× [0, T ),

u0(b(t)) + u′0(b(t))(x− b(t))− t for (x, t) ∈ [b(t), c(t)]× [0, T ),

u0(d(t)) + u′0(d(t))(x− d(t)) + t for (x, t) ∈ [d(t), a(t) + 1]× [0, T ),
1
2
maxu0 +

1
2
minu0 for (x, t) ∈ [a(t), a(t) + 1)× [T,∞).

Therefore

v(x, t) = ux(x, t) =


v0(x) for x ∈ (a(t), b(t)) ∪ (c(t), d(t)) and t ∈ [0, T ),

v0(b(t)) for x ∈ [b(t), c(t)] and t ∈ [0, T ),

v0(d(t)) for x ∈ [d(t), a(t) + 1] and t ∈ [0, T ),

0 for x ∈ [a(t), a(t) + 1] and t ≥ T ,

where v0 = u′0 in R. One can show that v is the unique viscosity solution of (6.9);
see [15, Example 2.12 ]. Indeed, it suffices to show that∫ h(t)

h0

(
B−1(η)− A−1(η)

)
dη = 2t, (6.11)

where h(t) = v0(b(t)) = v0(c(t)), h0 = h(0) and

A(x) = v0(x) for all x ∈ [a0, b0];

B(x) = v0(x) for all x ∈ [c0, d0].
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Note that a(t), b(t), c(t) and d(t) are all monotone in t. By change of variable
η = h(s) = v0(c(s)) and integration by parts, we have∫ h(t)

h0

B−1(η) dη =v−1
0 (h(t))h(t)− v−1

0 (h0)h0 −
∫ t

0

u′0(c(s))c
′(s) ds

=c(t)u′0(c(t))− c0u
′
0(c0)− u0(c(t)) + u0(c0).

Similarly, we get∫ h(t)

h0

A−1(η) dη = b(t)u′0(b(t))− b0u
′
0(b0)− u0(b(t)) + u0(b0).

In view of (6.10), we obtain (6.11) by combining the equalities above.
□

Remark 6.1. The proof above shows that C1,1 is the highest possible regularity of u
that can be expected in general, even when u0 is smooth.

We conjecture that the space derivative of the Lipschitz continuous solution u
corresponds to a (discontinuous) solution of (6.9) also for general Lipschitz contin-
uous function u0. An example is given below in this case. We also refer the reader
to [27] for a direct analysis on discontinuous solutions of this equation.

Example 6.6. Let

u0(x) =

{
4m+ 1− 2x if x ∈ [2m, 2m+ 1) for all m ∈ Z,
2x− 4m− 3 if x ∈ [2m+ 1, 2m+ 2] for all m ∈ Z.

One may easily verify that the function u below is a solution of (6.1)–(6.2):

u(x, t) =


(t− 1)(2x− 4m− 1) if (x, t) ∈ [2m, 2m+ 1)× [0, 1] for m ∈ Z,
(1− t)(2x− 4m− 3) if (x, t) ∈ [2m+ 1, 2m+ 2]× [0, 1] for m ∈ Z,
0 for (x, t) ∈ R× (1,∞).

(6.12)
By Theorem 3.5, u is also the unique Lipschitz continuous solution of (6.1)–(6.2).
It is clear that v = ux exists almost everywhere in R× (0,∞) and

v(x, t) =


2t− 2 if (x, t) ∈ (2m, 2m+ 1)× [0, 1] for m ∈ Z,
2− 2t if (x, t) ∈ (2m+ 1, 2m+ 2)× [0, 1] for m ∈ Z,
0 for (x, t) ∈ R× (1,∞),

which coincides with the solution of (6.9) with

v(x, 0) =

{
−2 if x ∈ (2m, 2m+ 1) for m ∈ Z,
2 if x ∈ (2m+ 1, 2m+ 2) for m ∈ Z;

see, for example, the behavior of step-like solutions to (6.9) in [5].
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[19] M.-H. Giga, Y. Giga, and N. Požár. Periodic total variation flow of non-divergence type in
Rn. J. Math. Pures Appl. (9), 102(1):203–233, 2014.



24 R. M. CHEN AND Q. LIU

[20] M.-H. Giga, Y. Giga, and P. Rybka. A comparison principle for singular diffusion equations
with spatially inhomogeneous driving force for graphs. Arch. Ration. Mech. Anal., 211(2):419–
453, 2014.

[21] Y. Giga. Surface evolution equations, volume 99 of Monographs in Mathematics. Birkhäuser
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[22] Y. Giga, P. Górka, and P. Rybka. A comparison principle for Hamilton-Jacobi equations with
discontinuous Hamiltonians. Proc. Amer. Math. Soc., 139(5):1777–1785, 2011.

[23] Y. Giga and N. Hamamuki. Hamilton-Jacobi equations with discontinuous source terms.
Comm. Partial Differential Equations, 38(2):199–243, 2013.

[24] P. Juutinen, P. Lindqvist, and J. J. Manfredi. On the equivalence of viscosity solutions and
weak solutions for a quasi-linear equation. SIAM J. Math. Anal., 33(3):699–717 (electronic),
2001.

[25] B. Kawohl and N. Kutev. Strong maximum principle for semicontinuous viscosity solutions of
nonlinear partial differential equations. Arch. Math. (Basel), 70(6):470–478, 1998.

[26] R. Kobayashi and Y. Giga. Equations with singular diffusivity. J. Statist. Phys., 95(5-6):1187–
1220, 1999.

[27] M. Matusik and P. Rybka. Oscillating facets. ArXiv e-prints， available at
http://arxiv.org/pdf/1407.3629v1.pdf, 2014.

[28] F. Schulze. Evolution of convex hypersurfaces by powers of the mean curvature. Math. Z.,
251(4):721–733, 2005.

[29] F. Schulze. Convexity estimates for flows by powers of the mean curvature. Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5), 5(2):261–277, 2006.

[30] F. Schulze. Nonlinear evolution by mean curvature and isoperimetric inequalities. J. Differ-
ential Geom., 79(2):197–241, 2008.

Robin Ming Chen, Department of Mathematics, University of Pittsburgh, Pitts-
burgh, PA 15260, mingchen@pitt.edu

Qing Liu, Department of Applied Mathematics, Faculty of Science, Fukuoka Uni-
versity, Fukuoka 814-0180, Japan, qingliu@fukuoka-u.ac.jp


