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ABSTRACT. The µ-Camassa-Holm (µCH) equation is a nonlinear integrable partial differ-
ential equation closely related to the Camassa-Holm equation. We prove that the periodic
peaked traveling wave solutions (peakons) of the µCH equation are orbitally stable.
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1. INTRODUCTION

The nonlinear partial differential equation

(1.1) µ(ut)− uxxt = −2µ(u)ux + 2uxuxx + uuxxx, t > 0, x ∈ S1 = R/Z,

where u(x, t) is a real-valued spatially periodic function and µ(u) =
∫
S1 u(x, t)dx denotes

its mean, was recently introduced in [13] as an integrable equation arising in the study of the
diffeomorphism group of the circle. It describes the propagation of self-interacting, weakly
nonlinear orientation waves in a massive nematic liquid crystal under the influence of an
external magnetic field. The closest relatives of (1.1) are the Camassa-Holm [1, 9] equation

(1.2) ut − utxx + 3uux = 2uxuxx + uuxxx,

and the Hunter-Saxton [11] equation

(1.3) −utxx = 2uxuxx + uuxxx.

In fact, each of the equations (1.1)-(1.3) can be written in the form

(1.4) mt + umx + 2uxm = 0, m = Au,

where the operator A is given by A = µ − ∂2x in the case of (1.1), A = 1 − ∂2x in the case
of (1.2), and A = −∂2x in the case of (1.3). Following [18], we will refer to equation (1.1) as
the µ-Camassa-Holm (µCH) equation.

Equations (1.1)-(1.3) share many remarkable properties: (a) They are all completely inte-
grable systems with a corresponding Lax pair formulation, a bi-Hamiltonian structure, and
an infinite sequence of conservation laws, see [1, 6, 12, 13]. (b) They all arise geometri-
cally as equations for geodesic flow in the context of the diffeomorphism group of the circle
Diff(S1) endowed with a right-invariant metric [13, 14, 15, 20]. (c) They are all models
for wave breaking (each equation admits initially smooth solutions which break in finite
time in such a way that the wave remains bounded while its slope becomes unbounded) cf.
[1, 3, 4, 6, 11, 13, 19].

A particularly interesting feature of the Camassa-Holm equation is that it admits peaked
soliton solutions [1]. These solutions (called peakons) are traveling waves with a peak at
their crest and they occur both in the periodic and in the non-periodic setting. It was noted in
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Figure 1. The periodic peakon ϕ(x) of the µCH equation.

[18] that the µCH equation also admits peakons: For any c ∈ R, the peaked traveling-wave
u(x, t) = cϕ(x− ct), where (see figure 1)

(1.5) ϕ(x) =
1

26
(12x2 + 23) for x ∈ [−1/2, 1/2]

and ϕ is extended periodically to the real line, is a solution of (1.1). Note that the height of
the peakon cϕ(x− ct) is proportional to its speed.

If waves such as the peakons are to be observable in nature, they need to be stable under
small perturbations. The stability of the peakons is therefore of great interest. Since a small
change in the height of a peakon yields another one traveling at a different speed, the correct
notion of stability here is that of orbital stability: a periodic wave with an initial profile close
to a peakon remains close to some translate of it for all later times. That is, the shape of the
wave remains approximately the same for all times.

The Camassa-Holm peakons are orbitally stable in the non-periodic setting [8] as well as
in the periodic case [16]. In this paper, we show that the periodic µCH peakons given by
(1.5) are also orbitally stable:

Theorem 1.1. The periodic peakons of equation (1.1) are orbitally stable in H1(S1).

An outline of the proof of thereom 1.1 is given in section 2, while a detailed proof is
presented in section 3. We conclude the paper with section 4 where we discuss some results
on the existence of solutions to (1.1).

2. OUTLINE OF PROOF

There are two standard methods for studying stability of a solution of a dispersive wave
equation. The first method consists of linearizing the equation around the solution. In many
cases, nonlinear stability is governed by the linearized equation. However, for the µCH
and CH equations, the nonlinearity plays the dominant role rather than being a higher-order
perturbation of the linear terms. Thus, it is not clear how to prove nonlinear stability of the
peakons using the linearized problem. Moreover, the peakons cϕ(x− ct) are continuous but
not differentiable, which makes it hard to analyze the spectrum of the operator linearized
around cϕ.

The second method is variational in nature. In this approach, the solution is realized as
an energy minimizer under appropriate constraints. Stability follows if the uniqueness of the
minimizer can be established (otherwise one only obtains the stability of the set of minima).
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A proof of the stability of the Camassa-Holm peakons using the variational approach is given
in [7] for the case on the line and in [17] for the periodic case.

In this paper, we prove stability of the peakon (1.5) using a method that is different from
both of the above methods. Taking c = 1 for simplicity, our approach can be described
as follows. To each function w : S1 → R, we associate a function Fw(M,m) of two
real variables (M,m) in such a way that the correspondence w 7→ Fw has the following
properties:

• If u(x, t) is a solution of (1.1) with maximal existence time T > 0, then

(2.1) Fu(t)(Mu(t),mu(t)) ≥ 0, t ∈ [0, T ),

where Mu(t) = maxx∈S1{u(x, t)} and mu(t) = minx∈S1{u(x, t)} denote the maxi-
mum and minimum of u at the time t, respectively.
• For the peakon, we have Fϕ ≡ Fϕ(·) = Fϕ(·−t) and Fϕ(M,m) ≤ 0 for all (M,m)

with equality if and only if (M,m) = (Mϕ,mϕ), see figure 2.
• If w : S1 → R is such that Hi[w] is close to Hi[ϕ], i = 0, 1, 2, where H0, H1, H2

are the conservation laws of (1.1) given by

H0[u] =

∫
udx, H1[u] =

1

2

∫
mudx, H2[u] =

∫ (
µ(u)u2 +

1

2
uu2x

)
dx,(2.2)

then the function Fw is a small perturbation of Fϕ.
Using the correspondence w 7→ Fw, stability of the peakon is proved as follows. If u is a
solution starting close to the peakon ϕ, the conserved quantities Hi[u] are close to Hi[ϕ],
i = 0, 1, 2, and hence Fu(t) is a small perturbation of Fϕ for any t ∈ [0, T ). This implies that
the set where Fu(t) ≥ 0 is contained in a small neighborhood of (Mϕ,mϕ) for any t ∈ [0, T ).
We conclude from (2.1) that (Mu(t),mu(t)) stays close to (Mϕ,mϕ) for all times. The proof
is completed by noting that if the maximum of u stays close to the maximum of the peakon,
then the shape of the whole wave remains close to that of the peakon.

Our proof is inspired by [16] where the stability of the periodic peakons of the Camassa-
Holm equation is proved.1 The approach here is similar, but there are differences. The
main difference is that in [16] the function Fu associated with a solution u(x, t) could be
chosen to be independent of time, whereas here the function Fu(t) depends on time. Indeed,
our definition of the function Fu(t)(M,m) involves the L2-norm ‖u(t)‖L2(S1), which is not
conserved in time. However, since this norm is controlled by the conservation law H1, we
can ensure that it remains bounded for all times. This turns out to be enough to ascertain that
the function Fu(t), despite its time-dependence, remains close to Fϕ for all t ∈ [0, T ).

3. PROOF OF STABILITY

We will identify S1 with the interval [0, 1) and view functions on S1 as periodic functions
on the real line of period one. For an integer n ≥ 1, we let Hn(S1) denote the Sobolev space
of all square integrable functions f ∈ L2(S1) with distributional derivatives ∂ixf ∈ L2(S1)
for i = 1, . . . , n. The norm on Hn(S1) is given by

‖f‖2Hn(S1) =
n∑
i=0

∫
S
(∂ixf)2(x)dx.

Equation (1.1) can be recast in conservation form as

(3.1) ut + uux +A−1∂x

(
2µ(u)u+

1

2
u2x

)
= 0,

1The proof in [16] is in turn inspired by the proof of stability of the Camassa-Holm peakons on the line
presented in [8].

3



where A = µ − ∂2x is an isomorphism between Hs(S1) and Hs−2(S1) cf. [13]. By a weak
solution u of (1.1) on [0, T ) with T > 0, we mean a function u ∈ C([0, T );H1(S1)) such
that (3.1) holds in distributional sense and the functionals Hi[u], i = 0, 1, 2, defined in (2.2)
are independent of t ∈ [0, T ). The peakons defined in (1.5) are weak solutions in this sense
[18]. Our aim is to prove the following precise reformulation of the theorem stated in the
introduction.

Theorem 3.1. For every ε > 0 there is a δ > 0 such that if u ∈ C([0, T );H1(S1)) is a weak
solution of (1.1) with

‖u(·, 0)− cϕ‖H1(S1) < δ

then
‖u(·, t)− cϕ(· − ξ(t)− 1/2)‖H1(S1) < ε for t ∈ [0, T ),

where ξ(t) ∈ R is any point where the function u(·, t) attains its maximum.

The proof of theorem 3.1 will proceed through a series of lemmas. The first lemma sum-
marizes the properties of the peakon. For simplicity we henceforth take c = 1.

Lemma 3.2. The peakon ϕ(x) is continuous on S1 with peak at x = ±1/2. The extrema of
ϕ are

Mϕ = ϕ(1/2) = 1, mϕ = ϕ(0) =
23

26
.

Moreover,

lim
x↑1/2

ϕx(x) =
6

13
, lim

x↓−1/2
ϕx(x) = − 6

13
,

and

H0[ϕ] =
12

13
, H1[ϕ] = max

x∈S1
ϕx =

6

13
, H2[ϕ] =

9024

10985
.

Proof. These properties follow easily from the definition (1.5) of ϕ and the definition (2.2)
of {Hi}31. For example,

H0[ϕ] =

∫ 1/2

−1/2

12x2 + 23

26
dx =

12

13
.

�

We define the µ-inner product 〈·, ·〉µ and the associated µ-norm ‖ · ‖µ by
(3.2)

〈u, v〉µ = µ(u)µ(v) +

∫
S1

uxvxdx, ‖u‖2µ = 〈u, u〉µ = 2H1[u], u, v ∈ H1(S1).

First we show that the µ-norm is equivalent to the H1(S1)-norm.

Proposition 3.3. [2] If f ∈ H3(S) satisfies that µ(f) =
∫
S fdx = a0/2, then for every ε > 0

we have

(3.3) max
x∈S

f2(x) ≤ ε+ 2

24

∫
S
f2xdx+

ε+ 2

4ε
a20.

Remark 3.4. Since H3 is dense in H1, the above proposition also holds for f ∈ H1(S).
Moreover, if µ(f) =

∫
S fdx = 0, we have

(3.4) max
x∈S

f2(x) ≤ 1

12

∫
S
f2xdx, f ∈ H1(S).

Therefore from Proposition 3.3 we see that
4



Lemma 3.5. For every u ∈ H1(S) and every ε > 0,

(3.5) ‖u‖2µ ≤ ‖u‖2H1(S) ≤
ε+ 2

4ε
µ2(u) +

ε+ 26

24

∫
S
u2xdx.

In particular we have (for instance, taking ε = 1)

(3.6) ‖u‖2µ ≤ ‖u‖2H1(S) ≤
3

4
µ2(u) +

27

24

∫
S
u2xdx ≤ 2‖u‖2µ.

We next consider the expansion of the conservation law H1 around the peakon ϕ in the
µ-norm. The following lemma shows that the error term in this expansion is given by 12/13
times the difference between ϕ and the perturbed solution u at the point of the peak.

Lemma 3.6. For every u ∈ H1(S1) and ξ ∈ R,

H1[u]−H1[ϕ] =
1

2
‖u− ϕ(· − ξ)‖2µ +

12

13
(u(ξ + 1/2)−Mϕ).

Proof. We compute

1

2
‖u− ϕ(· − ξ)‖2µ = H1[u] +H1[ϕ(· − ξ)]− µ(u)µ(ϕ)−

∫
S1

ux(x)ϕx(x− ξ)dx

= H1[u] +H1[ϕ]− µ(u)µ(ϕ) +

∫
S1

u(x+ ξ)ϕxx(x)dx.

Since

(3.7) ϕxx =
12

13
− 12

13
δ(x− 1/2),

we find ∫
S1

u(x+ ξ)ϕxx(x)dx =
12

13

∫
S1

u(x)dx− 12

13
u(ξ + 1/2).

Using that H0[ϕ] = µ(ϕ) = 12
13 , we obtain

1

2
‖u− ϕ(· − ξ)‖2µ = H1[u]−H1[ϕ] +

12

13
(1− u(ξ + 1/2)).

This proves the lemma. �

Remark 3.7. For a wave profile u ∈ H1(S1), the functional H1[u] represents kinetic energy.
Lemma 3.6 implies that if a wave u ∈ H1(S1) has energy H1[u] and height Mu close to the
peakon’s energy and height, then the whole shape of u is close to that of the peakon. Another
physically relevant consequence of lemma 3.6 is that among all waves of fixed energy, the
peakon has maximal height. Indeed, if u ∈ H1(S1) ⊂ C(S1) is such that H1[u] = H1[ϕ]
and u(ξ) = maxx∈S1 u(x), then u(ξ) ≤Mϕ.

The peakon ϕ satisfies the differential equation

(3.8) ϕx =

 −
12
13

√
13
6 (ϕ−mϕ) −1/2 < x ≤ 0,

12
13

√
13
6 (ϕ−mϕ) 0 ≤ x < 1/2.

Let u ∈ H1(S1) ⊂ C(S1) and writeM = Mu = maxx∈S1{u(x)},m = mu = minx∈S1{u(x)}.
Let ξ and η be such that u(ξ) = M and u(η) = m. Inspired by (3.8), we define the real-
valued function g(x) by

g(x) =

 ux + 12
13

√
13
6 (u−m) ξ < x ≤ η,

ux − 12
13

√
13
6 (u−m) η ≤ x < ξ + 1,
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and extend it periodically to the real line. We compute∫
S1

g2(x)dx =

∫ η

ξ

(
ux +

12

13

√
13

6
(u−m)

)2

dx+

∫ ξ+1

η

(
ux −

12

13

√
13

6
(u−m)

)2

dx

=

∫ η

ξ
u2xdx+

24

13

∫ η

ξ
ux

√
13

6
(u−m)dx+

144

169

∫ η

ξ

13

6
(u−m)dx

+

∫ ξ+1

η
u2xdx−

24

13

∫ ξ+1

η
ux

√
13

6
(u−m)dx+

144

169

∫ ξ+1

η

13

6
(u−m)dx.

Notice that

d

dx

[
8

√
2

39
(u−m)3/2

]
=

24

13
ux

√
13

6
(u−m).

Hence, ∫ η

ξ
ux

√
13

6
(u−m)dx = −

∫ ξ+1

η
ux

√
13

6
(u−m)dx

and

24

13

∫ η

ξ
ux

√
13

6
(u−m)dx =

[
8

√
2

39
(u−m)3/2

]η
ξ

= −8

√
2

39
(M −m)3/2.

We conclude that

1

2

∫
S1

g2(x)dx = H1[u]− 1

2
µ(u)2 − 8

√
2

39
(M −m)3/2 +

12

13
(µ(u)−m).(3.9)

In the same way, we compute∫
S1

ug2(x)dx

=

∫ η

ξ
u

(
ux +

12

13

√
13

6
(u−m)

)2

dx+

∫ ξ+1

η
u

(
ux −

12

13

√
13

6
(u−m)

)2

dx

=

∫ η

ξ
uu2xdx+

24

13

∫ η

ξ
uux

√
13

6
(u−m)dx+

144

169

∫ η

ξ
u

13

6
(u−m)dx

+

∫ ξ+1

η
uu2xdx−

24

13

∫ ξ+1

η
uux

√
13

6
(u−m)dx+

144

169

∫ ξ+1

η
u

13

6
(u−m)dx.

Since

d

dx

[
8

5

√
2

39
(u−m)3/2(2m+ 3u)

]
=

24

13
uux

√
13

6
(u−m),

we find ∫ η

ξ
uux

√
13

6
(u−m)dx = −

∫ ξ+1

η
uux

√
13

6
(u−m)dx

and

24

13

∫ η

ξ
uux

√
13

6
(u−m)dx = −8

5

√
2

39
(M −m)3/2(2m+ 3M).
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Therefore,
1

2

∫
S1

ug2(x)dx = H2[u]−
(
H0[u]− 12

13

)∫
S1

u2dx− 12

13
mH0[u](3.10)

− 8

5

√
2

39
(M −m)3/2(2m+ 3M).

Combining (3.10) with (3.9), we find

H2[u] =
1

2

∫
S1

ug2(x)dx+

(
H0[u]− 12

13

)∫
S1

u2dx+
12

13
mH0[u]

+
8

5

√
2

39
(M −m)3/2(2m+ 3M)

≤ M

2

∫
S1

g2(x)dx+

(
H0[u]− 12

13

)∫
S1

u2dx+
12

13
mH0[u](3.11)

+
8

5

√
2

39
(M −m)3/2(2m+ 3M)

= M

[
H1[u]− 1

2
µ(u)2 − 8

√
2

39
(M −m)3/2 +

12

13
(µ(u)−m)

]
+

(
H0[u]− 12

13

)∫
S1

u2dx+
12

13
mH0[u] +

8

5

√
2

39
(M −m)3/2(2m+ 3M).

We have actually proved the following lemma.

Lemma 3.8. For any positive u ∈ H1(S1), define a function

Fu : {(M,m) ∈ R2 : M ≥ m > 0} → R

by

Fu(M,m) = M

[
H1[u]− 1

2
H0[u]2 − 8

√
2

39
(M −m)3/2 +

12

13
(H0[u]−m)

]
+

(
H0[u]− 12

13

)∫
S1

u2dx+
12

13
mH0[u]

+
8

5

√
2

39
(M −m)3/2(2m+ 3M)−H2[u].

Then
Fu(Mu,mu) ≥ 0,

where Mu = maxx∈S1{u(x)} and mu = minx∈S1{u(x)}.

Note that the function Fu depends on u only through the three conservation laws H0[u],
H1[u], and H2[u], and the L2-norm of u.

The next lemma highlights some properties of the function Fϕ(M,m) associated to the
peakon. The graph of Fϕ(M,m) is shown in figure 2.

Lemma 3.9. For the peakon ϕ, we have

Fϕ(Mϕ,mϕ) = 0,

∂Fϕ
∂M

(Mϕ,mϕ) = 0,
∂Fϕ
∂m

(Mϕ,mϕ) = 0,

∂2Fϕ
∂M2

(Mϕ,mϕ) = −12

13
,

∂2Fϕ
∂M∂m

(Mϕ,mϕ) = 0,
∂2Fϕ
∂m2

(Mϕ,mϕ) = −12

13
.
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Figure 2. The graph of the function Fϕ(M,m) near the point (Mϕ,mϕ).

Proof. It follows from (3.8) that the function g(x) corresponding to the peakon is identically
zero. Thus the inequality (3.11) is an equality in the case of the peakon. This means that
Fϕ(Mϕ,mϕ) = 0.

On the other hand, differentiation gives

∂Fu
∂M

=

[
H1[u]− 1

2
H0[u]2 − 8

√
2

39
(M −m)3/2 +

12

13
(H0[u]−m)

]
− 12

√
2

39
M(M −m)1/2 +

12

5

√
2

39
(M −m)1/2(2m+ 3M) +

24

5

√
2

39
(M −m)3/2

=

[
H1[u]− 1

2
H0[u]2 − 8

√
2

39
(M −m)3/2 +

12

13
(H0[u]−m)

]
,

and

∂Fu
∂m

= 12

√
2

39
M(M −m)1/2 − 12

13
M +

12

13
H0[u]

+
8

5

√
2

39

[
−3

2
(M −m)1/2(2m+ 3M) + 2(M −m)3/2

]
=

12

13
(H0[u]−M) + 8

√
2

39
(M −m)3/2.

Further differentiation yields

∂2Fu
∂M∂m

= −12

13
+ 12

√
2

39
(M −m)1/2,

∂2Fu
∂M2

=
∂2Fu
∂m2

= −12

√
2

39
(M −m)1/2.

To complete the proof, take Fu = Fϕ, M = Mϕ, and m = mϕ in the above expressions for
the partial derivatives of F and use lemma 3.2. �

Lemma 3.10. We have

(3.12) max
x∈S
|f(x)| ≤

√
13

12
‖f‖µ, f ∈ H1(S),
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where the µ-norm is defined in (3.2). Moreover,
√

13
12 is the best constant and equality holds

in (3.12) if and only if f = cϕ(· − ξ) for some c, ξ ∈ R, i.e. if and only if f has the shape of
a peakon.

Proof. For x ∈ S, from (3.2) and (3.7) we have

13

12
〈ϕ(· − x+ 1/2), f〉µ =

13

12
µ(ϕ(· − x+ 1/2))µ(f) +

1

2

∫
S
ϕ′(y − x+ 1/2)f ′(y)dy

=
13

12

∫
S

(µ− ∂2y)ϕ(y − x+ 1/2)f(y)dy =

∫
S
δ(y − x)f(y)dy = f(x)

Thus, since

H1[ϕ] =
1

2
‖ϕ‖2µ =

6

13
,

we get

(3.13) f(x) =
13

12
〈ϕ(· − x), f〉µ ≤

13

12
‖ϕ‖µ‖f‖µ =

√
13

12
‖f‖µ,

with equality if and only if f and ϕ(· − x) are proportional. Taking the maximum of (3.13)
over S proves the lemma. �

Remark 3.11. Lemma 3.10 again indicates that among all travelling waves of fixed energy,
the peakon has maximal height (see also [8, 16]).

Lemma 3.12. [16] If u ∈ C([0, T );H1(S1)), then

Mu(t) = max
x∈S1

u(x, t) and mu(t) = min
x∈S1

u(x, t)

are continuous functions of t ∈ [0, T ).

Lemma 3.13. Let u ∈ C([0, T );H1(S1)) be a solution of (1.1). Given a small neighborhood
U of (Mϕ,mϕ) in R2, there is a δ > 0 such that

(3.14) (Mu(t),mu(t)) ∈ U for t ∈ [0, T ) if ‖u(·, 0)− ϕ‖H1(S1) < δ.

Proof. Suppose w ∈ H1(S1) is a small perturbation of ϕ such that Hi[w] = Hi[ϕ] + εi,
i = 0, 1, 2. Then

Fw(M,m) = Fϕ(M,m) +M

[
ε1 −H0[ϕ]ε0 −

1

2
ε20 +

12

13
ε0

]
+ ε0

∫
S
w2dx+

12

13
mε0 − ε2.

Suppose ε1 < 6/13 so that H1[w] ≤ 2H1[ϕ]. Then, by (3.6) in Lemma 3.5,

(3.15)
∫
S
w2dx ≤ ‖w‖2H1 ≤ 2‖w‖2µ = 4H1[w] ≤ 8H1[ϕ] =

48

13
.

The point is that
∫
Sw

2dx is bounded. Thus, Fw is a small perturbation of Fϕ. The effect of
the perturbation near the point (Mϕ,mϕ) can be made arbitrarily small by choosing the εi’s
small. Lemma 3.9 says that Fϕ(Mϕ,mϕ) = 0 and that Fϕ has a critical point with negative
definite second derivative at (Mϕ,mϕ). By continuity of the second derivative, there is a
neighborhood around (Mϕ,mϕ) where Fϕ is concave with curvature bounded away from
zero. Therefore, the set where Fw ≥ 0 near (Mϕ,mϕ) will be contained in a neighborhood
of (Mϕ,mϕ).

Now let U be given as in the statement of the lemma. Shrinking U if necessary, we infer
the existence of a δ′ > 0 such that for u ∈ C([0, T );H1(S1)) with

(3.16) |Hi[u]−Hi[ϕ]| < δ′, i = 0, 1, 2,
9



it holds that the set where Fu(t) ≥ 0 near (Mϕ,mϕ) is contained in U for each t ∈ [0, T ).
By lemma 3.8 and lemma 3.12, Mu(t) and mu(t) are continuous functions of t ∈ [0, T ) and
Fu(t)(Mu(t),mu(t)) ≥ 0 for t ∈ [0, T ). We conclude that for u satisfying (3.16), we have

(Mu(t),mu(t)) ∈ U for t ∈ [0, T ) if (Mu(0),mu(0)) ∈ U .

However, the continuity of the conserved functionals Hi : H1(S1) → R, i = 0, 1, 2, shows
that there is a δ > 0 such that (3.16) holds for all u with

‖u(·, 0)− ϕ‖H1(S1) < δ.

Moreover, in view of the inequality (3.3), taking a smaller δ if necessary, we may also assume
that (Mu(0),mu(0)) ∈ U if ‖u(·, 0)− ϕ‖H1(S1) < δ. This proves the lemma. �

Proof of theorem 3.1. Let u ∈ C([0, T );H1(S1)) be a solution of (1.1) and suppose we are
given an ε > 0. Pick a neighborhood U of (Mϕ,mϕ) small enough that |M −Mϕ| < 13ε2

144
if (M,m) ∈ U . Choose a δ > 0 as in lemma 3.13 so that (3.14) holds. Taking a smaller δ if
necessary we may also assume that

|H1[u]−H1[ϕ]| < ε2

12
if ‖u(·, 0)− ϕ‖H1(S1) < δ.

Applying lemma 3.5 and lemma 3.6, we conclude that

‖u(·, t)− ϕ(· − ξ(t))‖2H1(S1) ≤ 3‖u(·, t)− ϕ(· − ξ(t))‖2µ

= 6(H1[u]−H1[ϕ]) +
72

13
(Mϕ −Mu(t)) < ε2, t ∈ [0, T ),

where ξ(t) ∈ R is any point where u(ξ(t) + 1/2, t) = Mu(t). This completes the proof of
the theorem. 2

Remark 3.14. Note that our proof of stability applies to any u ∈ C([0, T );H1(S1)) such
that Hi[u], i = 0, 1, 2, are independent of time. The fact that u satisfies (3.1) in distributional
sense was actually never used.

4. COMMENTS

Some classical solutions of (1.1) exist for all time while others develop into breaking
waves [10, 13, 18]. If u0 ∈ H3(S1), then there exists a maximal time T = T (u0) > 0
such that (1.1) has a unique solution u ∈ C([0, T );H3(S1)) ∩ C1([0, T );H2(S1)) with
H0, H1, H2 conserved. For u0 ∈ Hr(S1) with r > 3/2, it is known [18] that (1.1) has a
unique strong solution u ∈ C([0, T );Hr(S1)) for some T > 0, with H0, H1, H2 conserved.
However, the peakons do not belong to the space Hr(S1) for r > 3/2. Thus, to describe
the peakons one has to study weak solutions of (1.1). The existence and uniqueness of
weak solutions to (1.1) is still open at point. Therefore, close to a peakon, there may exist
profiles that develop into breaking waves and profiles that lead to globally existing waves.
Our stability theorem is applicable in both cases up to breaking time.
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