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Abstract. In this paper, we provide a blow-up mechanism to the modified
Camassa-Holm equation with varying linear dispersion. We first consider the
case when linear dispersion is absent and derive a finite-time blow-up result with
an initial data having a region of mild oscillation. A key feature of the analysis is
the development of the Burgers-type inequalities with focusing property on char-
acteristics, which can be deduced from tracing the ratio between solution and its
gradient. Using the continuity and monotonicity of the solutions, we then extend
this blow-up criterion to the case of negative linear dispersion, and determine that
the finite time blow-up can still occur if the initial momentum density is bounded
below by the magnitude of the linear dispersion and the initial datum has a local
mild-oscillation region. Finally, we demonstrate that in the case of non-negative
linear dispersion the formation of singularities can be induced by an initial datum
with a sufficiently steep profile. In contrast to the Camassa-Holm equation with
linear dispersion, the effect of linear dispersion of the modified Camassa-Holm
equation on the blow-up phenomena is rather delicate.
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1. Introduction

Wave motion is ubiquitous in nature and is one of the broadest subjects. Most
of wave phenomena might be described by mathematical models that are based
on certain hyperbolic-type, nonlinear dispersive partial differential equations. A
fundamental question in the study of those models is when and how a singularity
can form, or more precisely, whether a wave breaks (a wave profile remains bounded
while its slope becomes unbounded in finite time) in certain time. Breaking waves,
both whitecaps and surf, are commonly observed in the ocean, which provide a
source of turbulent energy to mix the upper layers of the ocean [25].

One common ingredient in all the current wave breaking techniques is to seek an
appropriate quantity depending on the information of the solution and to obtain a
differential inequality for it which can generate finite-time blow-up with well chosen
data. However the way of finding such a quantity is very much case-dependent [1, 7].
For quasilinear equations, in many cases the solution u remains well-defined at each
point, but its gradient ∇u may become infinite in finite time. Typical examples of
this situation can be found in the case of scalar conservation laws and some non-local
transport type equations, where blow-ups are due to focusing of characteristics.
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In this paper, we would like to investigate the blow-up mechanism of a cubic
quasilinear dispersive equation, namely the modified Camassa-Holm (mCH) equa-
tion: {

mt +
(
(u2 − u2x)m

)
x

+ γux = 0,

u(0, x) = u0(x),
t > 0, x ∈ R, (1.1)

where

m = (1− ∂2x)u = u− uxx (1.2)

represents momentum density of the system, and γ ∈ R characterizes the effect of
the linear dispersion.

The mCH equation (1.1) can be derived by applying the method of tri-Hamiltonian
duality to the bi-Hamiltonian representation of the focusing modified Korteweg-de
Vries (mKdV) equation [13, 15, 21]. To see this, consider the focusing mKdV equa-
tion

ut = uxxx +
3

2
u2ux.

In the bi-Hamiltonian form it can be written as

ut = J1
δH2

δu
= J2

δH1

δu
,

where the Hamiltonian operators J1 and J2 are expressed as

J1 = ∂x, and J2 = ∂3x + ∂xu∂
−1
x u∂x

with the Hamiltonians

H1 =
1

2

∫
R
u2dx, and H2 =

1

2

∫
R

(
1

4
u4 − u2x

)
dx.

Now define two new Hamiltonian operators

Ĵ1 = ∂x − ∂3x, and Ĵ2 = α1∂x + α2∂
3
x + α3∂xu∂

−1
x u∂x.

Applying the recursion operator R = Ĵ2Ĵ
−1
1 to the seed equation ut = ux we deduce

a hierarchy of an integrable system, namely,

ut = Rnux = (Ĵ2Ĵ
−1
1 )nux.

Let u = (1− ∂2x)v and choose n = 1. Then the above system becomes

ut = Ĵ2Ĵ
−1
1 ux = Ĵ2v =

α3

2

[
u(v2 − v2x)

]
x

+ α1vx + α2vxxx.

The mCH equation (1.1) is then obtained from the above equation by letting α1 =
−γ, α2 = 0, α3 = −2. Therefore the mCH equation is formally integrable possessing
a bi-Hamiltonian structure. A Lax representation of (1.1) was later constructed
[22, 24], making the mCH equation amenable to the method of inverse scattering.
Physically, the mCH equation (1.1) models the unidirectional propagation of surface
waves in shallow water over a flat bottom [12], where u(t, x) represents the free
surface elevation in dimensionless variables.

The mCH equation can be viewed as a cubic extension of the well-known Camassa-
Holm (CH) equation

mt + umx + 2mux = 0, m = u− uxx, (1.3)
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which was proposed as a model describing the uni-directional propagation of shallow
water waves [5, 10, 16] and axially symmetric waves in hyperelastic rods [9, 11]. The
CH equation was originally constructed by using the recursion operator method [16],
and can also be derived by applying tri-Hamiltonian duality to the bi-Hamiltonian
structure of the KdV equation [21]. One of the remarkable distinctive properties
that the CH equation has, in contrast to the KdV equation, is the wave-breaking
phenomenon: the solution u remains bounded while its slope ux becomes infinite in
finite time. It has been shown that the wave-breaking can be triggered by an initial
sign-changing momentum density

m0(x) = (1− ∂2x)u0 = u0(x)− u′′0(x).

On the other hand, it can be prevented if m0 does not change sign, c.f. [7, 8, 18,
20, 26]. In deriving such a blow-up, the global information of the data (such as
conservation laws, integrability, antisymmetry, etc.) is needed due to the non-local
feature of the equation.

The geometric formulation, integrability, local well-posedness, blow-up criteria
and singularity formation, existence of peaked solitons (peakons), and the stability
of single peakons and periodic peakons to the mCH equation (1.1) were studied
recently in [14, 17, 18, 23]. It is shown that even if the initial momentum density
m0(x) does not change sign, the solutions to the Cauchy problem (1.1) can still blow
up in finite time, in contrast to the CH equation.

It is noticed that a new type of blow-up criteria in the sense of the so called
“local-in-space” is recently established in [2, 3, 4], which illustrates that the blow-
up condition is merely imposed on a small neighborhood of a single point in space
variable, and hence local perturbation of data around that point does not prevent
the singularity formation. The main idea used there is to track the dynamics of
two linear combinations u ± βux (for the CH equation, β = 1) of u and ux along
the characteristics and to make use of some convolution estimates to bound the
non-local terms by the local quantities. The blow-up result then follows from the
continuity and monotonicity argument.

The goal of the present paper is two fold. First we want to understand how the
local structure of the initial profile can affect the singularity formation. Similar to
the case of the CH equation, where the blow-up is indicated from the loss of the
lower bound on ux, the blow-up criterion of the mCH equation asserts that blow-up
occurs if and only if mux becomes unbounded from below (c.f. [17]). Applying the
characteristics method we find that the evolution of mux along the trajectories of
the flow map involves competition between u and ux, along with some non-local
convolutions. If any kind of convolution estimates as in the case of the CH equation
is available, one may expect to produce a local-in-space blow-up. Unfortunately,
the cubic nonlinearity makes it hard to control the non-local convolution terms, and
hence the problem becomes more subtle and it is difficult to employ the approach in
[2, 3, 4] directly. However in the case when γ ≤ 0, the lower bound of the momentum
density m is preserved under the flow, c.f. (2.5) and (4.5), which can be used to
bound the non-local terms in terms of the local quantities. The resulting estimates
become an interplay between u and ux, which can in fact be measured by ux/u.
Physically, this quantity is related to the local oscillation of the datum. We are able
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to show that when the momentum density is bounded below by the weak dispersive
index, blow-up can be induced by “local mild oscillations”, independent of the size
of the oscillation region. Our main results on the oscillation-induced blow-up can
be formulated in the following two theorems.

Theorem 1.1 (Oscillation-induced blow-up: γ = 0). Suppose γ = 0. Let m0 ∈
Hs(R) ∩ L1(R) for s > 1/2 and m0(x) ≥ 0, ∀x ∈ R. Assume there exists a point
x0 ∈ R such that

m0(x0) > 0, and u0,x(x0) ≤ −
1√
2
u0(x0). (1.4)

Then the corresponding solution u(t, x) blows up in finite time with an estimate of
the blow-up time T ∗ as

T ∗ ≤ − 1

2m0(x0)u0,x(x0)
. (1.5)

Remark 1.2. (i) By the blow-up criterion in Lemma 2.2 and a symmetric argument
one can also investigate the formation of singularity with moment density data m0 ≤
0. More specifically, assume m0(x) ≤ 0, ∀x ∈ R. If there exists x0 ∈ R such that

m0(x0) < 0, and u0,x(x0) ≥ −
1√
2
u0(x0),

then the solution blows up in finite time and the estimate on the blow-up time T ∗ is
given in the same form as (1.5).

(ii) Our blow-up result may in the mean time hint on some local information about
the global solutions. Suppose that u is a given global solution to (1.1) with initial
datum satisfying m0(x) > 0 for all x ∈ R. Then from the above theorem we know
that at any time t it follows that

ux(t, x) > − 1√
2
u(t, x), for all x ∈ R.

Hence define an auxiliary function φ(t, x) = e
x√
2u(t, x) and we can compute the

x-derivative to get

φx(t, x) = e
x√
2

(
ux +

1√
2
u

)
(t, x) > 0.

Thus for each fixed t, x 7→ φ(t, x) is strictly increasing, leading to the following
one-sided estimate of u(t, x) in terms of the information of u at x = 0:

u(t, x) > e
− x√

2u(t, 0), for x > 0; u(t, x) < e
− x√

2u(t, 0), for x < 0.

Moreover the sign condition m(t, x) > 0 implies |ux(t, x)| < u(t, x), and hence a
similar argument applied to the function ψ(t, x) = e−xu(t, x) yields

u(t, x) < exu(t, 0), for x > 0; u(t, x) > exu(t, 0), for x < 0.

Therefore u(t, x) can be bounded in terms of u(t, 0) as

e
− x√

2u(t, 0) < u(t, x) < exu(t, 0), for x > 0,

exu(t, 0) < u(t, x) < e
− x√

2u(t, 0), for x < 0.
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Blow-up issue in the case γ < 0 is more subtle. The sign-preservation property of
m is no longer available. It is interesting to note that the quantity n = m+

√
−γ/2

preserves its sign along the characteristics, which makes the previous analysis of the
γ = 0 case applicable. We now state the blow-up result with the negative linear
dispersion index in the following.

Theorem 1.3 (Oscillation-induced blow-up: γ < 0). Assume γ = −2β2 < 0. Let
m0 ∈ Hs(R) ∩ L1(R) for s > 1/2, m0(x) ≥ −β, ∀x ∈ R, and H1[u0] ≥ 3

√
2β, where

H1[u] is defined in (1.8). Suppose that there exists a point x0 ∈ R such that

m0(x0) > β, u0,x(x0) ≤ min

{
−4β,−3

4

(
1√
2
H1[u] + β

)}
, and

u0,x(x0) ≤ −
√

3

4
(u0(x0) + β) .

(1.6)

Then the corresponding solution u(t, x) blows up in finite time.

Remark 1.4. (i) It is found that the above results are different from the ones in
[2, 3, 4] for the CH equation. In the case of the CH equation, finite-time blow-
up is induced by “local fast oscillations” in the sense that u0,x(x0) < −|u0(x0)|,
which implies that |u0,x(x0)||u0(x0)| > 1. In the case of the mCH equation, however, we

have to include the global information m0 ≥ 0 (or n0 ≥ 0 when γ < 0) to obtain
estimates on the convolution terms. Such a requirement already excludes any local

fast oscillation, i. e. 1√
2
≤ |u0,x(x0)|

|u0(x0)| < 1 if m0 ≥ 0, for example. In other words, our

result asserts that finite time blow-up to the mCH equation can be triggered even by
mild local oscillations.

(ii) Our choice (1.6) of the initial data is not optimal in the sense of providing any
sort of a threshold between blow-up and global wellposedness. A more general con-
dition on u0,x(x0) can be derived from the discussion in Section 4.2 and formulated
as

u0,x(x0) ≤ min{−sβ,−δK}
where s and δ satisfy (4.20) and (4.24), and the relation between u0,x(x0) and
u0(x0) + β should satisfy (4.21). The numbers we use in the theorem is simply
for computational convenience.

(iii) The main difference between the two cases γ < 0 and γ = 0, which is also
the main difficulty, lies in the fact that γ 6= 0 introduces some extra nonlocal terms
in the dynamic equations of the key blow-up quantities which fail to be controlled in
terms of the local terms. Bounding such terms gives rise to the additional conditions
on the initial data in Theorem 1.3.

Our second aim in the present paper is to seek initial datum with a sign-changing
momentum density m which can generate finite time blow-up. This is discussed in
the case of non-negative dispersion γ ≥ 0. At this moment we do not have a clear
picture of how to produce an oscillation-induced blow-up criterion when γ > 0.
But with the help of an additional conservation law, the nonlocal terms can still be
bounded by some globally conserved quantities, which hints for the blow-up data
with sufficiently steep profiles. If we set r =

√
m2 + γ/2, the mCH equation (1.1)
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can be rewritten as the form of conservation laws [19]

rt +
(
(u2 − u2x)r

)
x

= 0. (1.7)

The three basic conserved quantities

H0[u] =

∫
R
u dx,

H1[u] =

∫
R
mu dx =

∫
R
(u2 + u2x) dx,

H2[u] =
1

4

∫
R
(u4 + 2u2u2x − 1

3
u4x + 2γu2) dx,

(1.8)

are well-known and play an important role in all analysis of the solutions. Suppose
the linear dispersion parameter γ ≥ 0. If we denote

w(t, x) = r(t, x)−
√
γ/2 =

√
m2 + γ/2−

√
γ/2 ≥ 0,

we may have the following new conservation law [19]∫
R
w(t, x) dx =

∫
R
w0(x) dx, (1.9)

which is crucial in controlling the solution u and its slope ux. This observation allows
us to improve the blow-up results in [17, 18] to include the case of a sign-changing
initial momentum density and the effect of the linear dispersion with γ ≥ 0.

Theorem 1.5 (Blow-up for a sign-changing momentum density). Let γ ≥ 0, and
suppose m0 ∈ Hs(R), s > 1

2
and w0 ∈ L1(R). Assume further that there exists an

x1 ∈ R such that

m0(x1) 6= 0 and m0(x1)u0,x(x1) ≤ −

√
|m0(x1)|

(
2γA0 +

11

12
A3

0

)
, (1.10)

where

A0 = (
√

1 + γ/2 +
√
γ/2)‖w0‖L1 + 2.

Then the solution u(t, x) blows up in finite time with an estimate of the blow-up time
T ∗ as

T ∗ ≤ 12

24γA0 + 11A3
0

(
|u0,x(x1)| −

√
u20,x(x1)−

24γA0 + 11A3
0

12 |m0(x1)|

)
. (1.11)

The rest of the paper is organized as follows. In Section 2, some preliminary
estimates and results are recalled and presented. In Section 3 the evolution equations
of various quantities related to finite time blow-up analysis along the characteristics
are established. Last section, Section 4, is devoted to the proofs to our main blow-up
results, Theorem 1.1, Theorem 1.3, and Theorem 1.5.

Notation. For convenience, in the following, given a Banach space X, we denote
its norm by ‖ · ‖X . If there is no ambiguity, we omit the domain of function spaces.
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2. Preliminaries

Let us recall some basic results concerning the formation of singularities in the
mCH equation (1.1). Note that the mCH equation (1.1) can be rewritten as a
transport equation for the momentum density, that is,

mt + (u2 − u2x)mx = −2m2ux − γux. (2.1)

The theory of transport equations implies that the blow-up is determined by the
slope of the transport velocity

(u2 − u2x)x = 2mux = 2ux(u− uxx) (2.2)

In fact the local well-posedness and a blow-up criterion can be formulated as follows.
The details of proof can be found in [17].

Lemma 2.1. Let u0 ∈ Hs(R) with s > 5
2
. Then there exists a time T > 0 such that

the initial-value problem (1.1) has a unique strong solution u ∈ C([0, T ];Hs(R)) ∩
C1([0, T ];Hs−1(R)). Moreover, the map u0 7→ u is continuous from a neighbor-
hood of the initial data u0 in Hs(R) into C([0, T ];Hs(R)) ∩ C1([0, T ];Hs−1(R)). In
addition, if the corresponding solution u has maximum time T of existence with
0 < T <∞, then ∫ T

0

‖(mux)(t)‖L∞dt =∞.

Using the preceding criterion, one can derive the following precise blow-up condi-
tion [17].

Lemma 2.2. Suppose that u0 ∈ Hs(R) with s > 5
2
. Then the corresponding solution

u to the initial value problem (1.1) blows up in finite time T > 0 if and only if

lim
t→T

inf
x∈R

{
m(t, x)ux(t, x)

}
= −∞.

Certain conservative properties of the momentum density m will play a key role in
establishing our new blow-up criteria. First, note that an application of the method
of characteristics to the transport equation (2.1) for m requires analyzing the flow
governed by the effective wave speed u2 − u2x, namely the solution q(t, x) to the
parametrized family of ordinary differential equations

dq(t, x)

dt
= u2(t, q(t, x))− u2x(t, q(t, x))

q(0, x) = x, x ∈ R.
x ∈ R, t ∈ [0, T ). (2.3)

One can easily check that

Proposition 2.1. Suppose u0 ∈ Hs(R) with s > 5
2
, and let T > 0 be the maximal

existence time of the strong solution u to the corresponding initial value problem
(1.1). Then (2.3) has a unique solution q ∈ C1([0, T )× R,R) such that q(t, ·) is an
increasing diffeomorphism of R with

qx(t, x) = exp

(
2

∫ t

0

m(s, q(s, x))ux(s, q(s, x)) ds

)
> 0 (2.4)

for all (t, x) ∈ [0, T )× R.
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Furthermore, in the case when γ = 0, the potential m = u− uxx satisfies

m(t, q(t, x))qx(t, x) = m0(x), (t, x) ∈ [0, T )× R, (2.5)

which implies that the zeros and the sign of m are preserved under the flow, whereas
in the general case when γ 6= 0 one has

d

dt
[m(t, q(t, x))qx(t, x)] = −γuxqx. (2.6)

We are now in a position to present the following unusual conservation law which
plays a crucial role in our proof of Theorem 1.5.

Proposition 2.2. Assume m0 ∈ Hs(R) ∩ L1(R) with s > 1
2

and γ ≥ 0. Suppose u
is the corresponding solution to (1.1) with the initial data u0. Then

‖w(t)‖L1 = ‖w0‖L1 =

∫ ∞
−∞

(√
m2

0(x) + γ/2−
√
γ/2

)
dx, 0 ≤ t < T. (2.7)

Proof. Indeed, note that wt(t, x) = rt(t, x). We can easily deduce from (1.7) that

wt +
(
(u2 − u2x)(w +

√
γ/2)

)
x

= 0,

from which (2.7) holds true. �

Denote p(x) = 1
2
e−|x|, the fundamental solution of 1 − ∂2x on R, that is, (1 −

∂2x)
−1f = p ∗ f , and define the two convolution operators p+, p− as

p+ ∗ f(x) =
e−x

2

∫ x

−∞
eyf(y)dy

p− ∗ f(x) =
ex

2

∫ ∞
x

e−yf(y)dy.

(2.8)

Then we have the relation

p = p+ + p−, px = p− − p+. (2.9)

3. Dynamics along the characteristics

It is known from most of the literatures that finite-time blow-up analysis is often
carried out along the characteristics. The following lemmas give explicit information
of how the blow-up quantities evolve along the characteristics.

Lemma 3.1. Let u0 ∈ Hs(R), s ≥ 3. Then u(t, x) and ux(t, x) satisfy the following
integro-differential equations:

ut + (u2 − u2x)ux = −γpx ∗ u−
2

3
u3x +

1

3

[
p+ ∗ (u− ux)3 − p− ∗ (u+ ux)

3
]
. (3.1)

utx + (u2 − u2x)uxx

= γ(u− p ∗ u) +

(
2

3
u3 − uu2x

)
− 1

3
p+ ∗

(
2u3 + 3uu2x − u3x

)
− 1

3
p− ∗

(
2u3 + 3uu2x + u3x

)
= γ(u− p ∗ u) +

(
1

3
u3 − uu2x

)
− 1

3

[
p+ ∗ (u− ux)3 + p− ∗ (u+ ux)

3
]
.

(3.2)
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Proof. From (1.1), we have

(1− ∂2x)
(
ut + (u2 − u2x)ux

)
= −(u2 − u2x)mx − 2m2ux − γux + (u2 − u2x)ux − ∂2x

(
(u2 − u2x)ux

)
= −(u2 − u2x)mx − 2m2ux − γux + (u2 − u2x)ux − 6uxuxxm− 2u2xmx

− (u2 − u2x)uxxx
= −2m2ux − γux − 6uxuxxm− 2u2xmx,

(3.3)

which implies

ut + (u2 − u2x)ux = −p ∗ (2m2ux + γux + 6uxuxxm+ 2u2xmx)

= −p ∗ (2muux + 2(u2xm)x + γux).
(3.4)

Taking derivative to (3.4) with respect to x yields

utx + (u2 − u2x)uxx
= −2mu2x − px ∗ (2muux + 2(u2xm)x + γux)

= −2mu2x − 2px ∗ (muux) + 2
[
u2xm− p ∗ (u2xm)

]
+ γ (u− p ∗ u)

= γ (u− p ∗ u)− 2px ∗ (muux)− 2p ∗ (u2xm).

(3.5)

In view of proof in Lemma 3.1 [18], we know

p+ ∗ (mu2x) = −1

6
u3x +

1

3
p+ ∗ (3uu2x + u3x),

p− ∗ (mu2x) =
1

6
u3x +

1

3
p− ∗ (3uu2x − u3x),

p+ ∗ (muux) =
1

6
u3 − 1

3
p+ ∗ u3 −

1

4
uu2x +

1

2
p+ ∗ (uu2x + u3x),

p− ∗ (muux) = −1

6
u3 +

1

3
p− ∗ u3 +

1

4
uu2x −

1

2
p− ∗ (uu2x − u3x).

It then follows from (2.9) that

2p∗(muux) + 2px ∗ (u2xm)

=
2

3
u3x −

1

3
p+ ∗

(
2u3 + 3uu2x − u3x

)
+

1

3
p− ∗

(
2u3 + 3uu2x + u3x

)
=

2

3
u3x −

1

3

[
p+ ∗ (u− ux)3 − p− ∗ (u+ ux)

3
]
,

(3.6)

and

2px∗(muux) + 2p ∗ (u2xm)

= uu2x −
2

3
u3 +

1

3
p+ ∗

(
2u3 + 3uu2x − u3x

)
+

1

3
p− ∗

(
2u3 + 3uu2x + u3x

)
= uu2x −

1

3
u3 +

1

3

[
p+ ∗ (u− ux)3 + p− ∗ (u+ ux)

3
]
.

(3.7)

Combining (3.4) with (3.6), and (3.5) with (3.7), we complete the proofs of (3.1)
and (3.2). �

Next we focus on the dynamics of M := mux along the characteristics.
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Lemma 3.2. Assume that the initial data m0 ∈ Hs(R), s ≥ 3. Let T > 0 be the
maximal existence time of the resulting solution m(t, x) to the initial value problem
(1.1). Then M := mux satisfies

Mt + (u2 − u2x)Mx = −2M2 − γu2x + γm(u− p ∗ u)

− 2mpx ∗ (muux)− 2mp ∗ (u2xm)

= −2M2 − γu2x + γm(u− p ∗ u)

+m

(
1

3
u3 − uu2x

)
− 1

3
m
[
p+ ∗ (u− ux)3 + p− ∗ (u+ ux)

3
]
.

(3.8)

Proof. By simple computation, we know that

Mt + (u2 − u2x)Mx = m
(
utx + (u2 − u2x)uxx

)
+
(
mt + (u2 − u2x)mx

)
ux.

Now, multiplying (3.5) and (2.1) with m and ux respectively, then combining them
together with (3.2), we finish the proof of (3.8). �

4. Finite-time blow-up data

In this section we will investigate the blow-up conditions for the initial data to
the mCH equation (1.1) in various cases corresponding to different sign of γ. We
emphasize two different blow-up mechanisms. The first one stems from the idea of
local-in-space blow-up [2, 3, 4] in the study of Camassa-Holm and hyperelastic rod
equations, where the blow-up criteria assert that local perturbation of data around
a single point does not prevent the singularity formation. Such type of blow-up can
also be viewed as induced by “local fast oscillations” which is independent of the size
of the oscillation region. The second mechanism involves the global information of
the data, which relies on controlling the non-local terms in the transport formulation
of the PDE by certain conservation laws.

In view of Lemma 2.2, an approach toward the the blow-up of (1.1) is to track the
evolution of M , which is given in (3.8). Apparently, the convolution terms in (3.8)
contain non-local information, and do not seem to be easily controlled by any local
quantity. However in the case when γ = 0, one has the sign-preservation property of
the momentum m(t, x) (c.f. (2.5)). When m does not change sign, the convolution
terms have a determined sign, making it possible to obtain the oscillation-induced
blow-up. In fact, the oscillation mechanism can be measured by ux/u. When γ = 0
and the sign of m remains fixed, fast oscillation is automatically excluded. But it
is possible to preserve mild oscillations along the characteristics, which is enough to
lead to a blow-up.

For the case of general γ, one loses the sign preservation of m(t, x). Therefore it
becomes difficult to control the nonlocal terms in equations (3.1), (3.2) and (3.8) in
terms of the local terms directly. When γ < 0, however, we find a transformation
that “absorbs” this term, making it fit in a similar structure as of the γ = 0 case,
and hence an oscillation-induced blow-up follows. At this moment we don’t have
a clear picture of how to generate the oscillation-induced blow-up criterion when
γ > 0. But with the help of the additional conservation law (2.7), the nonlocal
terms can still be bounded by some globally conserved quantities, which makes it
possible to obtain a finite time blow-up for data with sufficiently steep profiles.
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4.1. Oscillation-induced blow-up when γ = 0. We are now in a position to
prove the oscillation-induced blow-up result for γ = 0.

Proof of Theorem 1.1. As is explained before, we will trace the dynamics along the
characteristics emanating from x0. Denote

û(t) = u(t, q(t, x0)), ûx(t) = ux(t, q(t, x0)),

m̂(t) = m(t, q(t, x0)), M̂(t) = (mux)(t, q(t, x0)),
(4.1)

and let “ ′ ” denote the derivative along the characteristics q(t, x0). Then from

(3.1), (3.2), and (3.8) we have the following ODE system for û, ûx, and M̂ .

û′(t) = −2

3
ûx

3(t) +
1

3

[
p+ ∗ (u− ux)3 − p− ∗ (u+ ux)

3
]

(t, q(t, x0)),

ûx
′(t) =

(
1

3
û3 − ûûx2

)
(t)− 1

3

[
p+ ∗ (u− ux)3 + p− ∗ (u+ ux)

3
]

(t, q(t, x0)),

M̂ ′(t) = −2M̂2(t) + m̂

(
1

3
û3 − ûûx2

)
(t)

− 1

3
m̂(t)

[
p+ ∗ (u− ux)3 + p− ∗ (u+ ux)

3
]

(t, q(t, x0)).

Since we know that m0 ≥ 0,∀x ∈ R, in particular, m0(x0) > 0. So from (2.5), we
know m(t, x) ≥ 0,∀x ∈ R and m(t, q(t, x0)) > 0. Therefore from the fact that

u(t, x) = p ∗m(t, x) =
1

2

∫
R
e−|x−y|m(y) dy, ux(t, x) = px ∗m(t, x).

we have u(t, x) ≥ 0 and û(t) = u(t, q(t, x0)) > 0. Moreover

u− ux = 2p+ ∗m ≥ 0, u+ ux = 2p− ∗m ≥ 0.

Hence we know |ux(x, t)| ≤ u(x, t). Since û(t) > 0, we can track the dynamics of
ûx/û along the characteristics.(

ûx
û

)′
(t) =

(û2 − ûx2)(û2 − 2ûx
2)

3û2
− û+ ûx

3û2
p+ ∗ (u− ux)3(t, q(t, x0))

− û− ûx
3û2

p− ∗ (u+ ux)
3(t, q(t, x0))

<
(û2 − ûx2)(û2 − 2ûx

2)

3û2
.

(4.2)

So if initially ûx(0) ≤ − 1√
2
û(0), we see that the right-hand side of the above estimate

is non-positive. Hence ûx/û decreases, and thus(
ûx
û

)
(t) <

ûx
û

(0) ≤ − 1√
2
,

which implies that û(t) +
√

2ûx(t) < 0. It is then inferred that û(t) +
√

3ûx(t) < 0.
Meanwhile it is also found that û(t)−

√
3ûx(t) > 0. Hence it is concluded that

û2(t)− 3ûx
2(t) < 0.
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Plugging this into the ODE for M̂ we have

M̂ ′(t) ≤ −2M̂2(t) + m̂

(
1

3
û3 − ûûx2

)
(t) = −2M̂2(t) +

1

3
m̂û(û2 − 3ûx

2)(t) < −2M̂2(t),

which generates blow-up in finite time with an estimate of the blow-up time T ∗ as

T ∗ ≤ − 1

2M̂(0)
= − 1

2m0(x0)u0,x(x0)
.

�

4.2. Oscillation-induced blow-up when γ < 0. As is discussed at the beginning
of this section, we look for a transformation that eliminates the γux term in equation
(1.1). Consider the following change-of-unknown

v(t, x) = u(t, x) + β (4.3)

for some constant β to be determined. Plugging (4.3) into (1.1) and denoting n =
v − vxx, it follows

nt +
[
((v − β)2 − v2x)n

]
x
− 2βvxn+ (2β2 + γ)vx = 0.

Thus choosing β =
√
−γ/2 we obtain the equation for v as

nt +
[
((v − β)2 − v2x)n

]
x
− 2βvxn = 0. (4.4)

Note that we have the following relation between the two momenta m and n

m(t, x) = n(t, x)− β,

and (v − β)2 − v2x = u2 − u2x. This implies that the new equation for n has the
same characteristics as defined in (2.3) for the equation (1.1). Moreover along the
characteristic q(t, x) we have

d

dt
(nqx) = 2βvx(nqx),

which implies that

(nqx)(t, q(t, x)) = n(0, x) exp

(
2

∫ t

0

βvx(s, q(s, x)) ds

)
. (4.5)

Therefore the zeros and the sign of n are preserved under the flow.
Let N = nvx. Then from definition of n, v we know that N = M + βvx. From

(3.8) and (3.2) and using the relation γ = −2β2 we deduce

Nt + (u2 − u2x)Nx = Mt + (u2 − u2x)Mx + uxt + (u2 − u2x)uxx

= −2N2 + 4βNux + γn(u− p ∗ u)

+ n

(
1

3
u3 − uu2x

)
− 1

3
n
[
p+ ∗ (u− ux)3 + p− ∗ (u+ ux)3

]
.

(4.6)

This suggests us to look for the blow-up of N(t, x). We still want to consider the
blow-up induced by oscillations. Thus from the previous argument in Section 4.1,
we would like to check the dynamics of ux/u along the characteristics. However we
no longer have the sign-preservation for u now. But instead, the sign of v can be
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preserved, provided that n does not change sign. Therefore we can compute the
dynamics of ux/v = vx/v. Recall û(t), ûx(t) as in (4.1). We further denote

v̂(t) = v(t, q(t, x0)), v̂x(t) = vx(t, q(t, x0)),

n̂(t) = n(t, q(t, x0)), N̂(t) = N(t, q(t, x0)),

and let the notation ‘ ′ ’ denote the derivative with respect to the time t along the
characteristics q(t, x0). Note that the evolution of v̂x is the same as the one for ûx:

v̂x
′(t) = γû(t)− γ(p ∗ u)(t, q(t, x0)) +

(
1

3
û3 − ûûx2

)
(t)

− 1

3

[
p+ ∗ (u− ux)3 + p− ∗ (u+ ux)

3
]

(t, q(t, x0))

= −2β2v̂(t) + 2β2(p ∗ v)(t, q(t, x0)) +

(
1

3
(v̂ − β)3 − (v̂ − β)v̂x

2

)
(t)

− 1

3

[
p+ ∗ (u− ux)3 + p− ∗ (u+ ux)

3
]

(t, q(t, x0)).

(4.7)

Using (4.2) and the following identity(
v̂x
v̂

)′
(t) =

(
ûx
û

)′
· û

2

v̂2
+
βûx

′

v̂2
,

we can calculate(
v̂x
v̂

)′
(t) =

1

v̂2

[
γû2 + γβ(û+ v̂) +

1

3
û4 − û2ûx2 +

2

3
ûx

4

− γ [(v̂ + v̂x)p+ ∗ v + (v̂ − v̂x)p− ∗ v]

+ β

(
û3

3
− ûûx2

)
− v̂ + v̂x

3
p+ ∗ (u− ux)3(t, q(t, x0))

− v̂ − v̂x
3

p− ∗ (u+ ux)
3(t, q(t, x0))

]
=

1

3v̂2
[
2v̂x

4 − 3v̂(v̂ − β)v̂x
2 + v̂(v̂ − β)3 − 6β2v̂2

+ 6β2 [(v̂ + v̂x)p+ ∗ v + (v̂ − v̂x)p− ∗ v]

− (v̂ + v̂x)p+ ∗ (u− ux)3(t, q(t, x0))
−(v̂ − v̂x)p− ∗ u+ ux)

3(t, q(t, x0))
]
.

(4.8)

From the assumption that n0(x) ≥ 0, n0(x0) > 0 we know that n(t, x) ≥ 0 and
n̂(t) > 0. This implies that

v(t, x) ≥ 0, |vx(t, x)| ≤ v(t, x), v̂(t) > 0, (4.9)

which, in terms of u and ux, reads

u(t, x) ≥ −β, u(t, x)± ux(t, x) ≥ −β, û(t) > −β.
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Using these estimates together with the fact that γ < 0 we can deduce that

− 1

3

[
p+ ∗ (u− ux)3 + p− ∗ (u+ ux)

3
]
≤ 1

3
β3.

− (v̂ + v̂x)p+ ∗ (u− ux)3 − (v̂ − v̂x)p− ∗ (u+ ux)
3 ≤ β3v̂.

(4.10)

Putting (4.6)-(4.10) together and plugging û = v̂−β we can estimate the evolution

of N̂(t), v̂x(t) and v̂x/v̂ as

N̂ ′(t) ≤ −2N̂2 + γn̂(û− p ∗ u) + n̂

[
1

3

[
(v̂ − β)3 + β3

]
− (v̂ − 5β)v̂x

2

]
, (4.11)

v̂x
′(t) ≤ 1

3

[
(v̂ − β)3 + β3

]
− (v̂ − β)v̂x

2 − 2β2(v̂ − p ∗ v), (4.12)(
v̂x
v̂

)′
(t) ≤

[
2v̂x

4 − 3v̂(v̂ − β)v̂x
2 + v̂(v̂ − β)3 − 6β2v̂2 + β3v̂

]
3v̂2

+
2β2

v̂2
[(v̂ + v̂x)p+ ∗ v + (v̂ − v̂x)p− ∗ v] . (4.13)

Recall from (2.1) the evolution for n̂

n̂′(t) = m̂′(t) = −(2m̂2 + γ)v̂x = −2(n̂− 2β)n̂v̂x. (4.14)

It is observed from the above equation that when n̂ > 2β and v̂x < 0, n̂ grows

exponentially. Thus by the definition N̂ = n̂v̂x, it is conceivable that (4.11) can lead
to a Burgers’ type blow-up inequality, provided that v̂x is non-increasing. Therefore
we would like to show that the right-hand side of (4.12) is nonpositive, that is

(v̂ − β)v̂x
2 ≥ 1

3

[
(v̂ − β)3 + β3

]
− 2β2(v̂ − p ∗ v), (4.15)

from which we see that we need an upper bound for the non-local term p ∗ v. But it
seems difficult to obtain an estimates in terms of local quantities. Instead, we make
use of the following global information.

p ∗ v = |p ∗ v| ≤ ‖v‖L∞ ≤ ‖u‖L∞ + β ≤ 1√
2
H1[u] + β.

Let

K =
1√
2
H1[u] + β.

In a similar way we can estimate

p+ ∗ v, p− ∗ v ≤
1

2
‖v‖L∞ ≤

1

2
K,

and hence
(v̂ + v̂x)p+ ∗ v + (v̂ − v̂x)p− ∗ v ≤ Kv̂. (4.16)

In the case when

v̂ ≥ sβ, v̂ ≥ δK, for some s > 1, 0 < δ < 1, (4.17)

a sufficient condition for (4.15) to hold is

v̂x
2 ≥ 1

3
(v̂ − β)2 +

β3 + 6β2K − 6β2v̂

3(v̂ − β)
. (4.18)
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Controlling the right-hand side of the above leads to

1

3
(v̂ − β)2 +

β3 + 6β2K − 6β2v̂

3(v̂ − β)
≤ 1

3
v̂2 +

β2

3(s− 1)
+

2β(1− δ)
(s− 1)δ

v̂

≤
[

1

3
+

1

(s− 1)s2
+

2(1− δ)
s(s− 1)δ

]
v̂2.

Therefore a sufficient condition for (4.18) is

v̂x
2 ≥

[
1

3
+

1

(s− 1)s2
+

2(1− δ)
s(s− 1)δ

]
v̂2, (4.19)

where a constraint on s and δ must be imposed

1

3
+

1

(s− 1)s2
+

2(1− δ)
s(s− 1)δ

< 1. (4.20)

Next we use (4.13) to look for a sufficient condition to persist the local oscillation.
Similarly as in the case of γ = 0, one wants the right-hand side of (4.13) to be
negative. Plugging (4.16) into (4.13) and solving the inequality yield

3v̂(v̂ − β)−
√

∆

4
≤ v̂x

2 ≤ 3v̂(v̂ − β) +
√

∆

4
, (4.21)

where
∆ = v̂4 + 6βv̂3 + 33β2v̂2 − 48β2Kv̂. (4.22)

Further plugging in (4.17) we have

∆ ≥
[
s2 + 6s−

(
48

δ
− 33

)]
β2v̂2. (4.23)

Solvability of (4.21) requires that the discriminant ∆ ≥ 0, which holds when

s2 + 6s ≥ 48

δ
− 33. (4.24)

Now we choose δ = 3
4
. From condition (4.24) we may choose s = 4. This way we

have
1

3
+

1

(s− 1)s2
+

2(1− δ)
s(s− 1)δ

=
59

144
, s2 + 6s−

(
48

δ
− 33

)
= 9.

Therefore
3v̂(v̂ − β)−

√
∆

4
≤ 3

4
v̂2 ≤ 3v̂(v̂ − β) +

√
∆

4
. (4.25)

Further plugging the values of s and δ into (4.19) yields another sufficient condition
for v̂x

′(t) ≤ 0 as

v̂x
2 ≥ 3

4
v̂2. (4.26)

In fact the above condition implies that v̂x
′(t) < 0.

We now illustrate our strategy of proving Theorem 1.3. We first choose an initial
datum which satisfies (4.17) and (4.26), from which we know that v̂x

′(0) ≤ 0. Then
v̂x decreases within a short time interval, which makes n̂ increase. To continue the
monotonicity further in time, we need to persist (4.17) and (4.26). But the property
(4.17) can be inferred from the upper bound of v̂x, due to the sign-preservation of
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n. To check (4.26) at later time, we will use the monotonicity of v̂x
2/v̂2 near 3/4.

Now let us give the details of proof of Theorem 1.3.

Proof of Theorem 1.3. From the assumptions of Theorem 1.3 we know that

n0(x) ≥ 0, n0(x0) > 2β, v0,x(x0) ≤ min

{
−4β,−3

4
K

}
,

and v0,x(x0) ≤ −
√

3

4
v0(x0).

(4.27)

So from the above argument we know that

v̂x
′(0) < 0,

and hence v̂x decreases over a certain time interval [0, t0] with t0 > 0. So

v̂x(t) < v̂x(0) = v0,x(x0) ≤ min

{
−4β,−3

4
K

}
, t ∈ [0, t0], (4.28)

Together with (4.9) we know

v̂(t) ≥ |v̂x(t)| > max

{
4β,

3

4
K

}
, (4.29)

which satisfies (4.17).

Claim 4.1. The ratio estimate (4.26) holds as long as the solution exists.

To see this, since (4.26) is satisfied at initial time, it may propagate over a short
time interval by continuity. If the claim is not true, then there exist times t2 > t1 > 0
such that

v̂x
2(t) ≥ 3

4
v̂2(t) for 0 ≤ t ≤ t1,

v̂x
2(t1) =

3

4
v̂2(t1),

v̂x
2(t) <

3

4
v̂2(t) for t1 < t ≤ t2.

From (4.29) and the first estimate in the above we know that v̂x(t) is decreasing
on [0, t1]. Hence v̂x(t1) < 0. Another application of (4.29) to (4.23) implies that
the inequality in (4.25) should be a strict inequality. Therefore from the last two
estimates of the above we know by a continuity argument that there is a t3 > t1
such that condition (4.21) is satisfied for t ∈ [t1, t3], which implies that v̂x/v̂ is non-
increasing over [t1, t3]. Together with the information of the sign of v̂ and v̂x we
know that v̂x

2/v̂2 is non-decreasing over [t1, t3]. Hence v̂x
2/v̂2 ≥ 3/4, which is a

contradiction, This completes the proof of the claim.

In view of (4.29) and the above claim it follows that v̂x(t) always decreases, and
that v̂(t) > 4β. This way from (4.14), the fact that v̂x(t) < −4β < 0, and the initial
condition on n̂ we know that n̂ is increasing, more precisely,

n̂′(t) > 8β(n̂(0)− 2β)n̂(t), ⇒ n̂(t) > n̂(0)e8β(n̂(0)−2β)t.

This is then deduced that N̂(t) = n̂(t)v̂x(t) < 0.
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Comparing (4.11) and (4.12), it is deduced from (4.18) that

1

3

[
(v̂ − β)3 + β3

]
− (v̂ − 5β)v̂x

2 ≤ 4βv̂x
2.

Therefore

N̂ ′(t) < −2n̂
[
(n̂− 2β)v̂x

2 + β2 (û− p ∗ u)
]

≤ −2n̂
[
(n̂− 2β)v̂x

2 −
√

2β2H1[u]
]
≤ −N̂2,

for t large enough, say,

t ≥ t∗ :=
1

8β(n̂(0)− 2β)
log

√
2H1[u] + 32β

8n̂(0)
.

Hence N̂(t) blows up to −∞ in finite-time T ∗ with

T ∗ ≤ t∗ −
1

N̂(t∗)
.

Finally notice that N̂ = M̂ + βv̂x, and from

|v̂x| ≤ v̂ = û+ β ≤ 1√
2
H1[u] + β,

we know that in this case

lim
t→T ∗−

M̂(t) = −∞,

which completes the proof of Theorem 1.3. �

Remark 4.2. As is pointed out in Remark 1.4, the choices for s and δ are not
unique. All needed are (4.20) and (4.24), and the ratio condition (4.26) should be

accordingly adjusted. For instance taking s = 6, δ = 1/2, and v0,x(x0) ≤ −
√

3
4
v0(x0)

in (4.27) can also generate finite time blow-up.

4.3. Finite-time blow-up when γ > 0. In this case, we first introduce the fol-
lowing global estimates.

Lemma 4.3. Assume that the initial data m0 ∈ Hs(R) ∩ L1(R), s > 1
2
. Let T > 0

be the maximal existence time of the resulting solution u(t, x) to the initial value
problem (1.1). Then we have

|u(t, x)| ≤ A0

2
, |ux(t, x)| ≤ A0

2
, (4.30)

where

A0 = (
√

1 + γ/2 +
√
γ/2)‖w0‖L1 + 2.

Furthermore, there holds

|p ∗ u(t, x)| ≤ A0

2
. (4.31)



18 R.M. CHEN, Y. LIU, C. QU, AND S. ZHANG

Proof. We first estimate |u(t, x)| from

u(t, x) = p ∗m(t, x) =
1

2

∫ ∞
−∞

e−|x−y|m(t, y) dy. (4.32)

Taking absolute value on (4.32), we have

|u(t, x)| ≤ 1

2

∫
R
e−|x−y||m(t, y)| dy

=
1

2

∫
|m|>1

e−|x−y||m(t, y)| dy +
1

2

∫
|m|≤1

e−|x−y||m(t, y)| dy

≤ 1

2

∫
|m|>1

|m(t, y)| dy +
1

2

∫
|m|≤1

e−|x−y| dy.

(4.33)

Next we evaluate the first term on the right-hand side of (4.33). Since

‖w(t)‖L1 =

∫
R

(√
m2(t, x) + γ/2−

√
γ/2
)
dx =

∫
R

m2(t, x)√
m2(t, x) + γ/2 +

√
γ/2

dx

=

∫
|m|>1

m2(t, x)√
m2(t, x) + γ/2 +

√
γ/2

dx+

∫
|m|≤1

m2(t, x)√
m2(t, x) + γ/2 +

√
γ/2

dx

≥
∫
|m|>1

m2(t, x)√
m2(t, x) + γ/2 +

√
γ/2

dx

≥ 1√
1 + γ/2 +

√
γ/2

∫
|m|>1

|m(t, x)| dx,

we get the following estimate by noticing Proposition 2.2∫
|m|>1

|m(t, x)| dx ≤
(√

1 + γ/2 +
√
γ/2
)
‖w0‖L1 . (4.34)

Substituting (4.34) back into (4.33) completes the proof of the first estimate of
(4.30). By similar argument, we can get the above bound of ux(t, x).

An application of Young’s inequality infers that

|p ∗ u(t, x)| ≤ ‖p‖L1‖u‖L∞ = ‖u‖L∞ ≤
A0

2
. (4.35)

�

Proof of Theorem 1.5. Again we introduce the notation

û(t) := u(t, q(t, x1)), ûx(t) := ux(t, q(t, x1)),

m̂(t) := m(t, q(t, x1)), M̂(t) := M(t, q(t, x1)) = m̂(t) ûx(t),
(4.36)

where x1 is given in (1.10), and let ‘ ′ ’ denote the derivative with respect to t along
the characteristics q(t, x1). Then equations (1.1) and (2.3) imply that

m̂′(t) = −
(
2 m̂(t)2 + γ

)
ûx(t). (4.37)
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Moreover, combining (3.2) and (2.3) with Lemma 4.3, we find

ûx
′(t) ≤

(
γA0 +

1

3
A3

0

)
+ û(t)

[
1

3
û(t)2 − ûx(t)2

]
≤
(
γA0 +

1

3
A3

0

)
+ |û(t)|max

{
1

3
û(t)2, ûx(t)

2

}
≤ γA0 +

11

24
A3

0,

ûx
′(t) ≥ −

(
γA0 +

1

3
A3

0

)
+

1

3
û(t)3 − ûx(t)2 û(t) ≥ −

(
γA0 +

11

24
A3

0

)
.

(4.38)

Integrating (4.38) from 0 to t produces

−
(
γA0 +

11

24
A3

0

)
t+ ûx(0) ≤ ûx(t) ≤

(
γA0 +

11

24
A3

0

)
t+ ûx(0). (4.39)

We will divide our argument into two cases, according to the sign of m0(x1).
Case 1: m0(x1) > 0. Then we know from (4.39) and the initial conditions that

ux(t, q(t, x)) = ûx(t) < 0 (4.40)

for 0 < t ≤ T+, where

T+ = − 24u0,x(x1)

24γA0 + 11A3
0

.

Next we claim that under assumption (1.10), it holds

m̂(t) = m(t, q(t, x1)) > 0, for 0 < t ≤ T+. (4.41)

Indeed, from (2.6), (2.4) and (4.45) we know that along the characteristics

d

dt
(m̂(t)qx(t, x1)) = −γûx(t)qx(t, x1) > 0, for 0 < t ≤ T+.

Thus

m̂(t)qx(t, x1) > m̂(0) > 0,

which in turn implies that m̂(t) > 0 on [0, T+]. Moreover it follows from (2.4) that

qx(t, x1) = exp

(
2

∫ t

0

m̂(s)ûx(s) ds

)
< 1.

Hence we have

m̂(t) > m̂(0) > 0 for 0 < t ≤ T+.

Thus on [0, T+], 1
m̂(t)

is well-defined and(
1

m̂(t)

)′
= − 1

m̂(t)2
m̂′ =

(
2 +

γ

m̂(t)2

)
ûx(t) ≤ 2ûx(t). (4.42)

Integrating (4.42) from 0 to t and using (4.39), we get

1

m̂(t)
≤ 2t

[(
γA0 +

11

24
A3

0

)
t+ ûx(0)

]
+

1

m̂(0)

=

(
2γA0 +

11

12
A3

0

)
t2 + 2u0,x(x1) t+

1

m0(x1)
.

(4.43)
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From the assumption on the initial data we know u0,x(x1) < 0 and m0(x1) > 0. So
when

u0,x(x1) ≤ −

√
24γA0 + 11A3

0

12m0(x1)

the right-hand side of (4.43) becomes zero at

T1 = − 12

24γA0 + 11A3
0

(
u0,x(x1) +

√
u20,x(x1)−

24γA0 + 11A3
0

12m0(x1)

)
< T+.

It is then deduced that there exists 0 < T ≤ T1 such that m̂(t) → +∞ as t → T .
On the other hand, (4.39) also implies that for 0 < t ≤ T1

M̂(t) = m̂(t)ûx(t) ≤ m̂(t)

[(
γA0 +

11

24
A3

0

)
t+ ûx(0)

]
≤ m̂(t)

[(
γA0 +

11

24
A3

0

)
T1 + u0,x(x1)

]
=

1

2
m̂(t)

(
u0,x(x1)−

√
u20,x(x1)−

24γA0 + 11A3
0

12m0(x1)

)
,

(4.44)

which thus implies that

inf
x∈R

M(x, t) ≤ M̂(t)→ −∞, as t→ T ≤ T1.

Therefore the solution u(t, x) blows up at a time 0 < T ≤ T1.

Case 2: m0(x1) < 0. The argument follows along the same line as in the previous
case. For the sake of completeness we give the details as follows.

In view of (4.39) and the initial conditions, ûx(t) satisfies

ux(t, q(t, x)) = ûx(t) > 0 (4.45)

for 0 < t ≤ T−, where

T− =
24u0,x(x1)

24γA0 + 11A3
0

.

Hence

m̂(t) < m̂(0) < 0, for 0 < t < T−,

which implies that 1
m̂(t)

is well-defined on [0, T−], and we further compute to get(
1

m̂(t)

)′
= − 1

m̂(t)2
m̂′ =

(
2 +

γ

m̂(t)2

)
ûx(t) ≥ 2ûx(t).

Integrating the above leads to

1

m̂(t)
≥ −

(
2γA0 +

11

12
A3

0

)
t2 + 2u0,x(x1) t+

1

m0(x1)
.

When

u0,x(x1) ≥

√
24γA0 + 11A3

0

−12m0(x1)
,
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the right-hand side becomes zero at

T2 =
12

24γA0 + 11A3
0

(
u0,x(x1)−

√
u20,x(x1) +

24γA0 + 11A3
0

12m0(x1)

)
< T−.

Hence there exists some T ∈ (0, T2] such that m̂(t)→ −∞ as t→ T . Therefore

M̂(t) = m̂(t)ûx(t) ≤ m̂(t)

[
ûx(0)−

(
γA0 +

11

24
A3

0

)
t

]
≤ m̂(t)

[
u0,x(x1)−

(
γA0 +

11

24
A3

0

)
T2

]
=

1

2
m̂(t)

(
u0,x(x1) +

√
u20,x(x1) +

24γA0 + 11A3
0

12m0(x1)

)
,

which in turn implies that

inf
x∈R

M(x, t) ≤ M̂(t)→ −∞, as t→ T ≤ T2.

Therefore in this case the solution u(x, t) also blows up at a time 0 < T ≤ T2. This
completes the proof of Theorem 1.5. �
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