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Abstract. This paper is mainly concerned with the local low regularity of so-

lutions and decay estimates of solitary waves to the rotation-modified Kadomtsev-
Petviashvili (rmKP) equation. It is shown that with negative dispersion, the

rmKP equation is locally well-posed for data in Hs1,s2 (R2) for s1 > − 3
10

and

s2 > 0, and hence globally well-posed in the space L2. Moreover, an improved
result on the decay property of the solitary waves is established, which shows

that all solitary waves of the rmKP equation decay exponentially at infinity.

1. Introduction

The rotation-modified Kadomtsev-Petviashvili (rmKP) equation

(ut − βuxxx + (u2)x)x + uyy − γu = 0 (1.1)

is a model [14, 15] to describe small-amplitude, long internal waves in a rotating
fluid propagating in one dominant direction with slow transverse effects, where
the effects of rotation balance with weakly nonlinear and dispersive effects. Here,
u(t, x, y) can be considered as the free surface, t ∈ R+ is a timelike variable, x ∈ R
is a spatial variable in the dominant direction of wave propagation, and y ∈ R
is a spatial variable in a direction transverse to the x-direction. The parameter
γ measures the effects of rotation and is proportional to the Coriolis force. The
high-dispersion parameter β 6= 0 determines the type of dispersion. In case β < 0
(negative dispersion), the equation models gravity surface waves in a shallow water
channel and internal waves in the ocean, while in case β > 0 (positive dispersion) it
models capillary waves on the surface of a liquid or oblique magneto-acoustic waves
in plasma.

Setting γ = 0, equation (1.1) becomes the well-known Kadomtsev-Petviashvili
(KP) equation [21]

(ut − βuxxx + (u2)x)x + uyy = 0, (1.2)

which arises in modeling the propagation of weakly nonlinear dispersive long waves
on the surface of fluid, when the wave motion is essentially one-directional with
weak transverse effects along the y-axis. Equation (1.2) with β > 0 is known as
KP-I, while its version with β < 0 is called KP-II and it is integrable by the inverse
scattering method [1].

In the first part of this paper we consider the Cauchy problem for equation (1.1).
It has been shown in [10] by using the parabolic regularization and a compactness
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argument that equation (1.1) is locally well-posedness for data in the space Xs for
s > 2, where Xs with s > 0 is defined as

Xs = {f ∈ Hs(R2) : (ξ−1f̂)∨ ∈ Hs(R2)},
with its norm

‖f‖Xs = ‖f‖Hs + ‖(ξ−1f̂)∨‖Hs .
It is our purpose here to establish the local well-posedness result for equation

(1.1) with data in an anisotropic Sobolev space of low order, so that one can hope
to get the local and global low regularity of solutions. Studied here is the initial
value problem of the form{

(ut − βuxxx + (u2)x)x + uyy − γu = 0, (t, x, y) ∈ R3,

u(0, x, y) = φ(x, y),
(1.3)

where the initial profile φ(x, y) belongs to an anisotropic Sobolev space Hs1,s2(R2)
defined by

Hs1,s2(R2) = {φ ∈ S ′(R2) : ‖φ‖Hs1,s2 <∞}, (1.4)
where

‖φ‖Hs1,s2 = ‖〈ξ〉s1〈η〉s2 û(ξ, η)‖L2

with 〈·〉 = (1 + | · |2)1/2.
The above spaces are a natural set for the initial data of the Cauchy problem

for the Kadomtsev-Petviashvili equations because their homogeneous versions are
invariant under the scale transformations preserving the KP equations. It has
been understood that flows of the KP-I and KP-II equations, considered in the
natural spaces, behave very differently. The KP-II equation can be solved by Picard
iteration ([8]) while KP-I cannot, in any Sobolev class ([24]). In [8], Bourgain proved
the local (and therefore global due to the L2 conservation law) well-posedness of
KP-II equation with L2 initial data. Local and global well-posedness for the KP-II
equation with data below L2 were obtained in [20, 33, 34, 37]. Their results were
generalized in [17] to the sharp results in the critical space. All these results use
the Fourier transform restriction method of Bourgain. On the other hand, it has
been shown in [24] that the KP-I equation has a “bad behavior”. In particular
the KP-I analogue of the crucial bilinear estimates established by Bourgain for the
KP-II equation are proved to be false. In [11] and [38], a global existence result
for small initial data was obtained via inverse scattering techniques. In [35] global
existence of weak solutions in the energy space is established. The uniqueness
of such solutions is unknown. The first result of global well-posedness of strong
solutions to the KP-I equation is established in [25, 26]. Using a method combining
local well-posedness and delicate conservation laws, the authors manage to obtain
the global well-posedness in the “second” energy space (see also [22]). Recently,
Ionescu, Kenig and Tataru [18] obtained global well-posedness for the KP-I equation
in the natural energy space by introducing some new methods which can be viewed
as a combination of the Bourgain space method and energy estimates.

However, the rmKP does not preserve any scaling because of the rotation term.
Hence it does not indicate any critical values for (s1, s2) of the initial data in
Hs1,s2(R2) with which one may expect well-posedness. But when β < 0 and γ > 0,
the solution operator S(t) of the linear part of the equation has a good algebraic
property similar to the one of the KP-II equation, which allows us to perform the
Fourier transform restriction methods with some of the oscillatory integral estimates
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[4, 23]. More explicitly, the bilinear dispersive identity of the rmKP equation (1.1)
is

p(ξ1 + ξ2,η1 + η2)− p(ξ1, η1)− p(ξ2, η2)

= −3βξξ1(ξ − ξ1) +
(ξ1η − ξη1)2

ξξ1(ξ − ξ1)
+ γ

ξ2 − ξξ1 + ξ2
1

ξξ1(ξ − ξ1)

where p(ξ, η) is the associated dispersive function defined in (1.6). Clearly for γ > 0,
if β > 0 (positive dispersion) this quantity could be zero, while if β < 0 (negative
dispersion)

|p(ξ1 + ξ2, η1 + η2)− p(ξ1, η1)− p(ξ2, η2)| > C|ξ1ξ2(ξ1 + ξ2)|.

This together with the Strichartz estimate helps to control the derivative nonlin-
earity and to obtain well-posedness for rough data. But the payoff of the negative
dispersion assumption is that we fail to establish a uniform time-decay estimate of
the oscillatory integral associated to the linear problem, again due to the rotation
term. This in turn prevents us from getting a uniform-in-time Strichartz estimate.
This difficulty is resolved by breaking up the space frequency and performing the
Strichartz estimate on each frequency part, as illustrated in Remark 1.1.

Motivated by [34], we define the following Bourgain spaces associated to equation
(1.1).

Definition 1.1. For b, b1, b2, s1, s2 ∈ R, we define Xb,b1,b2
s1,s2 as a Bourgain-type space

associated to the rmKP equation

Xb,b1,b2
s1,s2 = {u ∈ S ′(R3) : ‖u‖

X
b,b1,b2
s1,s2

<∞, }

where

‖u‖
X
b,b1,b2
s1,s2

=
∥∥∥〈τ − p(ξ, η)〉b〈ξ〉s1〈η〉s2

[
1 +
〈τ − p(ξ, η)〉b1

〈ξ〉b2
]
û(τ, ξ, η)

∥∥∥
L2
τξη

(1.5)

with

p(ξ, η) = −βξ3 − η2 + γ

ξ
. (1.6)

Let I ⊂ R be an interval. For b > 1/2 we define the space Xb,b1,b2
s1,s2 (I) equipped

with the norm

‖u‖
X
b,b1,b2
s1,s2 (I)

= inf
v∈Xb,b1,b2s1,s2

{‖v‖
X
b,b1,b2
s1,s2

, v(t) = u(t) on I}. (1.7)

Equation (1.3) can be written as the integral equation

u(t) = S(t)φ−
∫ t

0

S(t− t′)(u2(t′))x dt′, (1.8)

where S(t) is the Fourier multiplier with symbol eitp(ξ,η) where p(ξ, η) is given in
(1.6).

In this paper we prove that with negative dispersion β < 0, the rmKP equation
(1.1) is locally well-posed for initial data in the anisotropic Sobolev space Hs1,s2(R2)
for s1 > −3/10, s2 > 0. The main tool for the proof of the local well-posedness of
equation (1.1) is the following bilinear estimate.



4 ROBIN CHEN, YUE LIU, AND PINGZHENG ZHANG

Theorem 1.2. Assume β < 0 and γ > 0. Let the real numbers b, b′, b1, b2, s1, s2 be
such that

b1 > 0, b2 > 0, b > 1/2, s2 > 0, s1 > b1 − b′,
s1 > 1− 3b′, s1 > 1 + 3b1 − 3b′ − b2, b′ > b1 + 1/4,

b′ + 5b1 >
3
2
, b′ + 4b1 +

3
2
b2 − 4b1b2 >

3
2
, s1 > b2 − 1,

b′ + b1 > 1/2, 2b′ + b2 > 1, s1 > 1− 3b1 − 3b′ + b2.

Then
‖∂x(uv)‖

X
−b′,b1,b2
s1,s2

6 C‖u‖
X
b,b1,b2
s1,s2

‖v‖
X
b,b1,b2
s1,s2

. (1.9)

Applying Theorem 1.2 with b = 1
2+, b′ = 1

2−, b1 = 1
5+ (depending on b′), and

b2 = 1
3 we have

Theorem 1.3. Assume β < 0 and γ > 0. Let s1 > − 3
10 and s2 > 0. Then

‖∂x(uv)‖
X
− 1

2 +, 15 +, 13
s1,s2

6 C‖u‖
X

1
2 +, 15 +, 13
s1,s2

‖v‖
X

1
2 +, 15 +, 13
s1,s2

. (1.10)

Remark 1.1. To prove Theorem 1.2, we make use of both the Strichartz-type
inequalities and direct estimates for the kernel in the integral representation of the
nonlinear estimate [23, 33, 34, 37]. As in the case of the KdV equation and KP-II
equation, one of the difficulties comes from the derivative nonlinearity. We need
to treat the small frequencies different from the high frequencies in the integral
representation of the bilinear estimate. Also note the the extra factor

1 +
〈τ − p(ξ, η)〉b1

〈ξ〉b2
(1.11)

in the definition of the Fourier transform restriction spaces Xb,b1,b2
s1,s2 is needed to-

gether with the Strichartz inequalities to treat the small frequencies in the proof
of the crucial bilinear estimate. Another difficulty here concerns the Strichartz
estimate. Unlike in the KP-II case, we are not able to obtain a uniform-in-time
Strichartz estimate for the linear problem of equation (1.1) due to the rotation
term. Our approach follows the idea in [4], which is based on the study of the
following oscillatory integral associated to the linear rmKP problem

Iα(x, t, β, γ) =
∫ ∞

0

ξαeit(h(ξ)−xξ)dξ, t > 0, x ∈ R, (1.12)

where h(ξ) = −βξ3− γ
ξ . The “long-time” estimate of the above oscillatory integral

only gives a time-decay rate of t−1/3 because with the rotation term, h′′(ξ) has a
zero at some nonzero ξ, which is different from the one of the amplitude function ξα.
Hence we cannot use the “cancellation effect” introduced in [23] to obtain the t−1/2

decay. But the “short-time” estimate suggests a decay rate of t−1/2, which is the
same as for the KP-II equation. However if we split the space frequency into high
frequency and low frequency parts, then we obtain the uniform time-decay estimates
of the corresponding oscillatory integrals and therefore the Strichartz estimates on
both parts become uniform in time (see Lemma 2.6). Moreover, the time-decay
estimate on the high frequency part is the same as for the KP-II equation (t−1/2),
which leads to the same result on the bilinear estimate as for the KP-II equation.
On the low frequency part the decay rate is t−1/3, which seems to improve the
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blinear estimate. However in the bilinear estimate, when dealing with the “high-
low” frequency interaction, the rotation term generates some extra growth term
than in the KP-II case, preventing us from getting the same low-regularity result
as in KP-II.

A consequence of Theorem 1.3 is our local well-posedness result for the Cauchy
problem (1.3). The method involves applying the Picard fixed point argument to
the integral equation (1.8). Using the arguments of linear estimates in Bourgain’s
framework, we have the following theorem.

Theorem 1.4. Consider equation (1.1) with β < 0 and γ > 0. Let s1 > − 3
10 and

s2 > 0. Then for any φ ∈ Hs1,s2(R2) such that |ξ|−1φ̂(ξ, η) ∈ S ′(R2) (the Schwartz
class) there exist a positive T = T (‖φ‖Hs1,s2 ) (limr→0 T (r) = ∞) and a unique
solution u(t, x, y) of the Cauchy problem (1.3) on the time interval I = [−T, T ]
satisfying u ∈ C(I,Hs1,s2(R2))

⋂
X

1/2+,1/6+,1/3
s1,s2 (I).

Remark 1.2. It was shown in [34] that s1 = −1/3 is the critical exponent for the
bilinear estimate associated to KP-II equation and hence to the local well-posedness
of KP-II equation in the anisotropic Sobolev space Hs1,0(R2). As explained above,
the rotation term improves the Strichartz estimate on the low frequency part and
remains the same as for KP-II on the high frequency part, but it also generates extra
growing factor in the bilinear estimate. Hence here we only obtained s1 > − 3

10 .
One may expect the well-posedness for the rmKP equation with even smaller s1.
However so far we have not been able to push s1 further below − 3

10 with β < 0.
Formally equation (1.3) has the following conservation laws

E(u) =
∫

R2

(
1
2
βu2

x +
1
3
u3 +

1
2

(∂−1
x uy)2 +

1
2
γ(∂−1

x u)2

)
dxdy, (1.13)

V (u) =
1
2

∫
R2

u2 dxdy, (1.14)

and

M(u) =
∫

R2
u dxdy = 0 (1.15)

expressing, respectively, the energy, momentum and total mass∗. Here, ∂−1
x u and

∂−1
x uy are defined via the Fourier transform as

(∂−1
x u)∧(ξ, η) = û(ξ, η)/iξ and (∂−1

x uy)∧(ξ, η) = (η/ξ)û(ξ, η).

A combination of Theorem 1.4 and the L2-conservation law (1.14) yields the
following global well-posedness theorem

Theorem 1.5. Let β < 0 and γ > 0. Then for any φ ∈ L2(R2) such that
|ξ|−1φ̂(ξ, η) ∈ S ′(R2), there exists a unique global solution u of (1.3) satisfying
u ∈ C(R, L2(R2)).

∗For a general class of Kadomtsev-Petviashvili type, it is proved [27] that the zero-mass in the

x-variable Z ∞
−∞

u(t; x, y) dx = 0

holds for t ∈ (0, T ) even if it is not satisfied at t = 0.
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In the second part of this paper we study the decay property of the solitary
waves of equation (1.1).

A solitary wave of (1.1) is a traveling-wave solution of the form ϕ(x − ct, y),
where ϕ ∈ X1 and c ∈ R is the speed of wave propagation. Or equivalently, it is a
solution ϕ = ϕ(x, y) in X1 of the equation

−cϕx − βϕxxx + (ϕ2)x + ∂−1
x ϕyy − γ∂−1

x ϕ = 0 (1.16)

for some c ∈ R.
It has been shown in [10] that the solitary waves of equation (1.1) exist only

when β, γ > 0 and c < 2
√
βγ, which falls out of the case we discuss for the local

well-posedness (β < 0, γ > 0). In fact when β > 0, a “bad sign” in the identity
p(ξ, η) for the rmKP equation presents an apparent obstruction to performing the
bilinear estimate.

In [10] it is proved that when β, γ > 0 and c < 2
√
βγ, all solitary waves decay

algebraically, which is no better than in the KP-I case [7]. Here we obtain an
improved result. We prove that such solitary waves decay exponentially at infinity.
It can actually be viewed from the fact that the rotation term added to the kernel
smooths out the singularity as in the KP case and hence improves the decay of the
solutions. To be more precise, we have the following result

Theorem 1.6. Let β, c and γ be constants satisfying β, γ > 0 and c < 2
√
βγ. Then

for any solitary wave ϕ of (1.1), we have

ϕ(x, y) = O(e−α
√
x2+y2

), (1.17)

with α a positive constant depending only on β, c and γ.

Remark 1.3. By (1.17), we obtain the exponential decay of solitary wave ϕ with a
positive number α provided β, γ > 0 and c < 2

√
βγ, which definitely improves the

algebraic decay estimate in Theorem 2.6 of [10], although in this paper we do not
find out the optimal number α such that (1.17) holds for solitary waves.

To prove Theorem 1.6, we start with an integral decay estimate, which was
used by Ambroseti, Felli and Malchiodi in proving integral decay results of non-
linear Schrödinger equation (Lemma 17 of [3]). Then a use of anisotropic Sobolev
embedding theorem provides the L∞ bounds for the solitary waves.

This paper is organized as follows. In Section 2 we set up the Strichartz inequality
for the rmKP equation (1.1), and use that to prove a crucial estimate Lemma 2.8
for the bilinear estimate. Section 3 is devoted to the proof of the bilinear estimate.
In Section 4 we apply a Picard fixed-point argument to the integral equation (1.8),
which implies the local well-posedness in some suitably chosen space. In Section 5
we show that all solitary waves obtained in [10] decay exponentially.

Notation. We denote by ·̂ or F the Fourier transform and by F−1 the inverse
Fourier transform. A ∼ B means that there exists a constant C > 1 such that
|A|/C 6 |B| 6 C|A|. The notation a± means a ± ε form arbitrarily small ε > 0.
Constants are denoted by C and may change from line to line.

Let ζ = (ξ, η), ζ1 = (ξ1, η1) and let

σ := σ(τ, ζ) = τ − p(ξ, η), σ1 := σ(τ1, ζ1), σ2 = σ(τ − τ1, ζ − ζ1),

θ := θ(τ, ζ) =
〈σ〉b1
〈ξ〉b2

, θ1 := θ(τ1, ζ1), θ2 := θ(τ − τ1, ζ − ζ1).
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Let the two projection operators PN and PN be defined as follows

P̂Nf(ξ, η) = χ|ξ|6N f̂(ξ, η), P̂Nf(ξ, η) = χ|ξ|>N f̂(ξ, η).

2. Linear estimates

We first state the result on estimate of the linear solution operator S(t).

Theorem 2.1. Let β < 0, γ > 0 and N =
(

2γ
−3β

)1/4

. If φ ∈ L1(R2), then

S(t)φ ∈ L∞(R2) and

‖PNS(t)φ‖L∞(R2) 6 C|t|−5/6‖φ‖L1(R2), (2.1)

‖PNS(t)φ‖L∞(R2) 6 C|t|−1‖φ‖L1(R2). (2.2)

To prove this, we need the following lemma.

Lemma 2.2. (Van der Corput Lemma [31]) Suppose φ is real-valued and smooth
in (a, b) and that |φ(k)| > c > 0 in (a, b). Then∣∣∣ ∫ b

a

eiλφ(ξ)ψ(ξ)dξ
∣∣∣ 6 Ck(cλ)−1/k

[
|ψ(b)|+

∫ b

a

|ψ′(ξ)|dξ
]

(2.3)

holds with Ck independent of φ, ψ and λ when
(1) k > 2, or (2) k = 1 and φ′(ξ) is monotonic.

Applying the above lemma we obtain the “long-time” estimate.

Lemma 2.3. Let β < 0, γ > 0, N =
(

2γ
−3β

)1/4

and 0 6 α 6 1/2. Fix δ > 0.
Define

Iα(x, t, β, γ) =
∫ ∞

0

ξαeit(h(ξ)−xξ)dξ, t > 0, x ∈ R, (2.4)

where
h(ξ) = −βξ3 − γ

ξ
.

Then
sup
x∈R
|Iα(x, t, β, γ)| 6 C(N + 1)αt−1/3, t > δ, (2.5)

where C = C(α, β, δ).

Proof. A simple computation shows that |h′′′(ξ)| = −6β + 6γ
ξ4 > −6β > 0. Hence

from Van der Corput Lemma we have∣∣∣ ∫ N+1

0

ξαeit(h(ξ)−xξ)dξ
∣∣∣ 6 C3(−6β)−1/3(N + 1)αt−1/3, t > 0, x ∈ R, (2.6)

where C3 is independent of α, β, γ, δ and t.
We will argue as in [4]. First we have that

h′′(ξ) = −6βξ − 2γ
ξ3
> −3βξ > 0, for ξ > N =

( 2γ
−3β

)1/4

.

We also have
h′(ξ) = −3βξ2 +

γ

ξ2
> −3βξ2 > 0.

Hence it follows that there exists at most one point ξx > N+1 such that h′(ξx) = x.
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Define for x ∈ R the two sets

Ax := {ξ > N + 1 : |ξ − ξx| 6
ξx
2
}, Bx := [N + 1,∞)\Ax.

(Note that Ax can be empty). Since 1
2 6

ξ
ξx
6 3

2 in Ax, we may apply the Van der
Corput Lemma to get∣∣∣ ∫

Ax

ξαeit(h(ξ)−xξ)dξ
∣∣∣ 6 C2ξ

α
x

(
− 3βξxt

)−1/2

6 C2(−3β)−1/2(N + 1)α−
1
2 t−1/2

6 C2(−3β)−1/2t−1/2, (2.7)

where C2 is independent of α, β, γ, δ and t, provided 0 6 α 6 1
2 .

If Ax is not empty, then for ξ ∈ Bx, we have either N + 1 6 ξ < ξx
2 or ξ > 3ξx

2 .
If N + 1 6 ξ < ξx

2 , then

|h′(ξ)− x| = h′(ξx)− h′(ξ) =
∫ ξx

ξ

h′′(η)dη

> −3
2
β(ξx + ξ)(ξx − ξ) > −

9
2
βξ2.

If ξ > 3ξx
2 , then

|h′(ξ)− x| = h′(ξ)− h′(ξx) =
∫ ξ

ξx

h′′(η)dη

> −3
2
β(ξ + ξx)(ξ − ξx) > −1

2
βξ2.

In either case, we have

|h′(ξ)− x| > −1
2
βξ2, ξ ∈ Bx. (2.8)

If Ax is empty (i.e. Bx = [N + 1,∞)), then the same estimate (2.8) holds for
ξ > 3

2 (N+1) since h′(N+1) > x and then h′(ξ)−x > h′(ξ)−h′(N+1). Therefore,
replacing Bx by [ 3

2 (N + 1),∞) if needed, and retaining the notation Bx, we obtain
that (2.8) holds for all x ∈ R. Thus we have∣∣∣ ∫
Bx

ξαeit(h(ξ)−xξ)dξ
∣∣∣ =

∣∣∣ 1
it

∫
Bx

ξα

h′(ξ)− x

( d
dξ
eit(h(ξ)−xξ)

)
dξ
∣∣∣

6 t−1
{

sup
ξ∈Bx

ξα

|h′(ξ)− x|
+
∫
Bx

∣∣∣ d
dξ

ξα

h′(ξ)− x

∣∣∣dξ}
6 t−1

{
− 2
β

(N + 1)α−2 +
∫
Bx

|αξα−1(h′(ξ)− x)− ξαh′′(ξ)|
|h′(ξ)− x|2

dξ
}

6 t−1
{
− 2
β

(N + 1)α−2 +
∫
Bx

−2α+ 24
β

ξα−3dξ
}

6
4α+ 20
β(α− 2)

(N + 1)α−2t−1 6
4α+ 20
β(α− 2)

t−1, (2.9)

when α < 2.
Combining (2.6), (2.7) and (2.9) we obtain (2.5).

�

Moreover, we have the “short-time” estimate.
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Lemma 2.4. Let β < 0, γ > 0 and 0 6 α 6 1/2. Fix T > 0. Then

sup
x∈R
|Iα(x, t, β, γ)| 6 Ct−

α+1
3 , 0 < t 6 T, (2.10)

where C = C(α, β, γ, T ).

Proof. Performing the change of variable ξ = λη with λ > 1, we have

Iα(x, t, β, γ) = λα+1

∫ ∞
0

ηαei(λ
3t)[−βη3−λ

−4γ
η −(λ−2x)η] dη

= λα+1Iα

(
λ−2x, λ3t, β, λ−4γ

)
.

Hence

sup
x∈R
|Iα(x, t, β, γ)| 6 λα+1 sup

x∈R
|Iα
(
λ−2x, λ3t, β, λ−4γ

)
| 6 λα+1 sup

x∈R
|Iα(x, λ3t, β, γ)|,

where in the last inequality we have used the estimate (2.5) and the assumption
that λ > 1.

Therefore, for 0 < t 6 T , setting λ = (T/t)1/3 we obtain (2.10). �

Proof of Theorem 2.1. Consider ξ being positive (the negative case can be treated
the same way). Making the change of variable ρ = (|t|/ξ)1/2η we have

S(t)+ =
∫

R

∫ ∞
0

eit[−βξ
3−(η2+γ)/ξ]ei(xξ+yη) dξdη

= |t|−1/2

∫ ∞
0

ξ1/2ei[(x−y
2/|t|)ξ−t(βξ3+γ/ξ)] dξ.

Then (2.1) can be obtained from (2.6).
As for (2.2), from (2.7) and (2.9) with α = 1/2 we see that

sup
x∈R
|
∫ ∞
N

ξ1/2eit(h−xξ) dξ| 6 Ct−1/2, for t > δ > 0,

where C = C(β, γ,N, δ). Furthermore, from Lemma 2.4 we have for 0 < t 6 δ

Ct−1/2 > sup
x∈R
|
∫ ∞

0

ξ1/2eit(h−xξ) dξ|

> sup
x∈R
|
∫ ∞
N

ξ1/2eit(h−xξ) dξ| − sup
x∈R
|
∫ N

0

ξ1/2eit(h−xξ) dξ|.

Hence

sup
x∈R
|
∫ ∞
N

ξ1/2eit(h−xξ) dξ| 6 Ct−1/2 + sup
x∈R
|
∫ N

0

ξ1/2eit(h−xξ) dξ|

6 C(t−1/2 + t−1/3) 6 Ct−1/2

if δ < 1. Hence we obtain that

sup
x∈R
|
∫ ∞
N

ξ1/2eit(h−xξ) dξ| 6 Ct−1/2.

Therefore we have proved (2.2). �

As a consequence of Theorem 2.1 we have
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Proposition 2.5. Let β < 0, γ > 0 and N =
(

2γ
−3β

)1/4

. For any θ ∈ [0, 1] and

φ ∈ ∂x(C∞0 (R2)),

‖PNS(t)φ‖L2/(1−θ) 6 C|t|−
5θ
6 ‖φ‖L2/(1+θ) , (2.11)

‖PNS(t)φ‖L2/(1−θ) 6 C|t|−θ‖φ‖L2/(1+θ) . (2.12)

Proof. As in [23], we introduce, for λ ∈ [0, 1], µ ∈ R, the analytic family of operators

Wλ+iµ(t)φ(x, y) =
∫

R2
|ξ|(λ+iµ)/2eitp(ξ,η)+i(xξ+yη)φ̂(ξ, η)dξdη.

A slight modification of Theorem 2.1 implies that

‖PNW1+iµ(t)φ‖L∞ 6 C(1 + |λ|)|t|−5/6‖φ‖L1 ,

‖PNW1+iµ(t)φ‖L∞ 6 C(1 + |λ|)|t|−1‖φ‖L1 ,

while by unitary,
‖Wiµ(t)φ‖L2 = ‖Diλφ‖L2 = ‖φ‖L2 .

Hence by complex interpolation (see [32] Chapter V, Theorem 4.1) we obtain (2.11)
and (2.12). �

It is standard now (see for instance [23]) to deduce the following “Strichartz
estimates”.

Lemma 2.6. Let β < 0, γ > 0 and N =
(

2γ
−3β

)1/4

. For any θ ∈ [0, 1]

‖PNS(t)φ‖Lq1 (R;Lp1 (R2)) 6 C‖φ‖L2 , , (2.13)

‖PNS(t)φ‖Lq2 (R;Lp2 (R2)) 6 C‖φ‖L2 , , (2.14)

where (q1, p1) = ( 12
5θ ,

2
1−θ ), (q2, p2) = ( 2

θ ,
2

1−θ ).

Proof. We will just prove (2.13). The same argument applies to the proof of (2.14).
By duality, (2.13) is equivalent to∥∥∥∫ PNS(t)g(·, t)dt

∥∥∥
L2(R2)

6 C‖g‖
Lq
′
1 (R;Lp

′
1 (R2))

,

where 1/q1 + 1/q′1 = 1, 1/p1 + 1/p′1 = 1.
By the argument in [36]∥∥∥∫ PNS(t)g(·, t)dt

∥∥∥2

L2(R2)
=
∫ (∫

PNS(t)g(·, t)dt
)(∫

PNS(t)g(·, t)dt
)
dx

=
∫ ∫

g(x, t)
(∫

PNS(t− τ)g(·, τ)dτ
)
dxdt.

Therefore (2.13) is equivalent to∥∥∥∫ PNS(t− τ)g(·, τ)dτ
∥∥∥
Lq1 (R;Lp1 (R2))

6 C‖g‖
Lq
′
1 (R;Lp

′
1 (R2))

.

We have from (2.11) that∥∥∥ ∫ PNS(t− τ)g(·, τ)dτ
∥∥∥
Lq1 (R;Lp1 (R2))

6
∥∥∥∫ ‖PNS(t− τ)g(·, τ)‖Lp1 (R2)dτ

∥∥∥
Lq1 (R)

6 C
∥∥∥∫ |t− τ |−5θ/6‖g(·, τ)‖

Lp
′
1 (R2)

dτ
∥∥∥
Lq1 (R)

6 C‖g‖Lq′ (R;Lp′ (R2)),
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where p1 = 2/(1− θ), 1/q1 = 1/q′1 − (1− 5
6θ), i.e. q1 = 12/(5θ). �

Lemma 2.7. Let β < 0, γ > 0 and N =
(

2γ
−3β

)1/4

. For 2 6 q1 6 22/5, 2 6 q2 6 4

and any u ∈ L2(R3) we have

‖PNF−1
(
〈σ〉−b1 |û(τ, ζ)|

)
‖Lq1 6 C‖u‖L2 , (2.15)

‖PNF−1
(
〈σ〉−b2 |û(τ, ζ)|

)
‖Lq2 6 C‖u‖L2 , (2.16)

where
b1 =

11
6

(1− 2/q)(1/2+), b2 = 2(1− 2/q)(1/2+)

and F−1 denotes the inverse Fourier transform.

Proof. From (2.13), taking θ = 6/11, we obtain for any φ ∈ L2(R2)

‖PNS(t)φ‖L22/5(R3) 6 C‖φ‖L2(R2). (2.17)

From (2.17), [13] Lemma 3.3 gives, for any u ∈ L2(R3),

‖PNF−1
(
〈σ〉− 1

2−|û(τ, ζ)|
)
‖L22/5 6 C‖u‖L2 . (2.18)

Interpolating (2.18) and the Plancherel identity we obtain (2.15). Similarly, (2.16)
can be obtained by interpolating between

‖PNF−1
(
〈σ〉− 1

2−|û(τ, ζ)|
)
‖L4 6 C‖u‖L2

and the Plancherel identity. �

Lemma 2.8. Let β < 0, γ > 0, a1, a2, a3 ∈ [0, 1
2 + ε], and let û1, û2, û3 be positive.

Then∫
R6

û1(τ1, ζ1)û2(τ − τ1, ζ − ζ1)û3(τ, ζ)
〈σ1〉a1〈σ2〉a2〈σ〉a3

dτdζdτ1dζ1 6 C‖u‖L2‖v‖L2‖w‖L2 , (2.19)

provided a1 + a2 + a3 > 1 + 2ε.

Proof. We denote by I the left-hand side of (2.19). Let N =
(

2γ
−3β

)1/4

. Then we
can rewrite I as

I =

Z
R6

F
“
(PN + PN )u1

”
(τ1, ζ1)F

“
(PN + PN )u2

”
(τ − τ1, ζ − ζ1)F

“
(PN + PN )u3

”
(τ, ζ)

〈σ1〉a1〈σ2〉a2〈σ〉a3
dτdζdτ1dζ1

=

Z
R6

P
i(products of F(PNui) and F(PNui))

〈σ1〉a1〈σ2〉a2〈σ〉a3
dτdζdτ1dζ1.

By symmetry, we only need to estimate the following four terms:

I1 =
∫

R6

F(PNu1)F(PNu2)F(PNu3)
〈σ1〉a1〈σ2〉a2〈σ〉a3

dτdζdτ1dζ1,

I2 =
∫

R6

F(PNu1)F(PNu2)F(PNu3)
〈σ1〉a1〈σ2〉a2〈σ〉a3

dτdζdτ1dζ1,

I3 =
∫

R6

F(PNu1)F(PNu2)F(PNu3)
〈σ1〉a1〈σ2〉a2〈σ〉a3

dτdζdτ1dζ1,

I4 =
∫

R6

F(PNu1)F(PNu2)F(PNu3)
〈σ1〉a1〈σ2〉a2〈σ〉a3

dτdζdτ1dζ1.
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Using Hölder’s inequality, Plancherel’s identity, and Lemma 2.7 we obtain

I1 6 C‖PNF−1
“
〈σ1〉−a1 |û1|

”
‖Lq1 ‖PNF−1

“
〈σ2〉−a2 |û2|

”
‖Lq2 ‖PNF−1

“
〈σ〉−a3 |û3|

”
‖Lq3

6 C‖u‖L2‖v‖L2‖w‖L2 ,

provided aj = 11
6 (1− 2/qj)(1/2+) and 1/q1 + 1/q2 + 1/q3 = 1. The last condition

is equivalent to a1 + a2 + a3 = 11
12 + 2ε < 1 + 2ε.

As for I4, we have

I4 6 C‖PNF−1
“
〈σ1〉−a1 |û1|

”
‖Lq1 ‖PNF−1

“
〈σ2〉−a2 |û2|

”
‖Lq2 ‖PNF−1

“
〈σ〉−a3 |û3|

”
‖Lq3

6 C‖u‖L2‖v‖L2‖w‖L2 ,

provided aj = 2(1− 2/qj)(1/2+) and 1/q1 + 1/q2 + 1/q3 = 1. The last condition
is equivalent to a1 + a2 + a3 = 1 + 2ε.

Using the same method for I2 and I3 we see that we need 11
12 +2ε < a1 +a2 +a3 <

1+2ε. But clearly by looking at I we know that the bigger a1+a2+a3 is, the smaller
the integrand becomes. Hence we only need to determine the lowest possible number
that a1+a2+a3 can attain. Therefore we can conclude that a1+a2+a3 > 1+2ε. �

The following two elementary calculus inequalities are also useful in our proof of
the bilinear estimates.

Lemma 2.9. For any a ∈ R the following inequalities hold:∫ ∞
−∞

dt

〈t〉1±〈t− a〉1+
6

C

〈a〉1±
, (2.20)∫ ∞

−∞

dt

〈t〉1+|t− a|1/2
6

C

〈a〉1/2
. (2.21)

3. Bilinear estimates

In this section we prove the crucial bilinear estimate Theorem 1.2.

Proof of Theorem 1.2. : A duality argument shows that (1.9) is equivalent to∫ ∫
K(τ, ζ, τ1, ζ1)û(τ1, ζ1)v̂(τ − τ1, ζ − ζ1)ŵ(τ, ζ)dτ1dζ1dτdζ

6 C‖u‖L2‖v‖L2‖w‖L2 , (3.1)

where û, v̂, ŵ can be assumed to be positive and

K(τ, ζ, τ1, ζ1) =
|ξ|〈θ〉〈ξ〉s1〈ξ1〉−s1〈ξ − ξ1〉−s1
〈σ〉b′〈σ1〉b〈σ2〉b〈θ1〉〈θ2〉

〈η〉s2
〈η1〉s2〈η − η1〉s2

.

We consider only the case −1/3 < s1 6 0 and denote s = −s1. Moreover, from
the inequality

〈η〉s2
〈η1〉s2〈η − η1〉s2

6 C,

we may just take the case s2 = 0. Therefore the kernel K(τ, ζ, τ1, ζ1) in (3.1)
becomes

K(τ, ζ, τ1, ζ1) =
|ξ|〈θ〉〈ξ〉−s〈ξ1〉s〈ξ − ξ1〉s

〈σ〉b′〈σ1〉b〈σ2〉b〈θ1〉〈θ2〉
.



LOCAL REGULARITY AND DECAY OF SOLITARY WAVES 13

We also have the relation

σ1 + σ2 − σ = −3βξξ1(ξ − ξ1) +
(ξ1η − ξη1)2

ξξ1(ξ − ξ1)
+ γ

ξ2 − ξξ1 + ξ2
1

ξξ1(ξ − ξ1)
,

and therefore (cf. [8])

max{|σ|, |σ1|, |σ2|} > −β|ξξ1(ξ − ξ1)|. (3.2)

By symmetry we may assume that |σ1| > |σ2|. Denote by J the left-hand side of
(3.1). We break our argument into several cases.

Case 1: |ξ| is small, say, |ξ| 6 8.

Case 1.1: |ξ1| 6 1. Denote by J11 the contribution of the region to J . In this case,
|ξ − ξ1| 6 2 and

K(τ, ζ, τ1, ζ1) 6
C

〈σ〉b′−b1〈σ1〉b〈σ2〉b
.

Since b′ − b1 > 0, b > 1
2 , a use of Lemma 2.8 implies the right bound for J11.

Case 1.2: |ξ1| > 1. In this case 〈ξ〉−s〈ξ1〉s〈ξ − ξ1〉s 6 C〈ξ1〉2s. Denote by J12 the
contribution of the region to J .

• |σ1| > |σ|: From (3.2) we have |ξ|s〈ξ1〉2s 6 C〈σ1〉s. Since 〈θ〉 6 C〈σ〉b1 , we
know

K(τ, ζ, τ1, ζ1) 6
C|ξ|1−s

〈σ〉b′−b1〈σ1〉b−s〈σ2〉b
.

To apply Lemma 2.8, we need b′− b1 + b− s+ b > 1. This can be seen from
the fact that b > 1

2 and b′ − b1 > s.
• |σ| > |σ1|: From (3.2) we have |ξ|s〈ξ1〉2s 6 C〈σ〉s. Hence

K(τ, ζ, τ1, ζ1) 6
C|ξ|1−s

〈σ〉b′−b1−s〈σ1〉b〈σ2〉b
.

Since b > 1
2 and b′ − b1 > s, we know that b′ − b1 − s + b + b > 1. So we

can use Lemma 2.8 to get the right bound for J12.

Case 2: |ξ| > 8.

Case 2.1: |σ| > |σ1| and min{|ξ1|, |ξ − ξ1|} > 1.

Case 2.1.1: |ξ| 6 10 min{|ξ1|, |ξ − ξ1|}. Denote by J211 the contribution of this
region to J . Using (3.2) we know that on the support of J211,

|ξ|1−s|ξ1|s|ξ − ξ1|s 6 C|ξξ1(ξ − ξ1)|(1+s)/3 6 C〈σ〉(1+s)/3.

• If 〈σ〉b1 6 |ξ|b2 . Then

K(τ, ζ, τ1, ζ1) 6
C

〈σ〉b′− 1+s
3 〈σ1〉b〈σ2〉b

.

Since b′ − 1+s
3 > 0, we can use Lemma 2.8.
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• If 〈σ〉b1 > |ξ|b2 . Then

K(τ, ζ, τ1, ζ1) 6
|ξ|1−s−b2 |ξ1|s|ξ − ξ1|s

〈σ〉b′−b1〈σ1〉b〈σ2〉b
6

C

〈σ〉b′−b1−max{s, 1+s−b23 }〈σ1〉b〈σ2〉b
.

Since b′− b1 > s and b′− b1 > 1+s−b2
3 , we may use Lemma 2.8 to complete

the proof in this case.
Case 2.1.2: |ξ| > 10 min{|ξ1|, |ξ − ξ1|}. Denote by J212 the contribution of this

region to J . On the support of J212 we have

|ξ|1−s|ξ1|s|ξ − ξ1|s 6 C|ξ|1+s.

Using the Cauchy-Schwarz inequality, we obtain

J212 6 C
∫
I(τ, ζ)

{∫
|û(τ1, ζ1)v̂(τ − τ1, ζ − ζ1)|2dτ1dζ1

}1/2

ŵ(τ, ζ)dτdζ, (3.3)

where

I(τ, ζ) =
|ξ|1+s〈θ〉
〈σ〉b′

(∫
|σ|>|σ1|

dτ1dζ1
〈σ1〉2b〈σ2〉2b〈θ1〉2〈θ2〉2

)1/2

.

We will show that I(τ, ζ) is bounded for |ξ| > 1. Using (2.20) we have

I(τ, ζ) 6
C|ξ|1+s〈θ〉
〈σ〉b′

(∫ dξ1dη1

〈σ1 + σ2〉2b
)1/2

.

We perform the change of variables (ξ1, η1) 7→ (ν, µ):

ν = −3βξξ1(ξ − ξ1), µ = σ1 + σ2.

Hence

ν ∈ [−3|σ|,min{−3β
4
ξ3, 3|σ|}], when ξ > 0;

ν ∈ [max{−3β
4
ξ3,−3|σ|}, 3|σ|], when ξ 6 0.

We will discuss the case ξ > 0. The case ξ 6 0 can be treated the same way. In
this case we have

dξ1dη1 =
|ν|1/2dνdµ

12(−β)3/2|ξ|3/2
√

3
4ξ

3 + 1
β ν |σ + ν + k − µ|1/2

,

where

k =
−3βγ(ξ2 − ξξ1 + ξ2

1)
ν

=
A

ν
, (3.4)

where we denote
A = −3βγ(ξ2 − ξξ1 + ξ2

1). (3.5)
Thus using (2.21) we obtain

I(τ, ζ) 6
C|ξ| 14 +s〈θ〉
〈σ〉b′

{∫ 3|σ|

−3|σ|

∫ ∞
−∞

|ν|1/2dµdν

12(−β)3/2|ξ|3/2
√

3
4ξ

3 + 1
β ν |σ + ν + k − µ|1/2〈µ〉2b

}1/2

6
C|ξ| 14 +s〈θ〉
〈σ〉b′

{∫ 3|σ|

−3|σ|

|ν|1/2dν√
3
4ξ

3 + 1
β ν 〈σ + ν + k〉1/2

}1/2

Notice that we have |ν + k| > |ν| and from (3.2) we know |σ| > 1
3 |ν + k| > 1

3 |ν|.
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• If 〈σ〉b1 6 |ξ|b2 , since min{|ξ1|, |ξ−ξ1|} 6 1
10 |ξ|, we know that |ν| 6 −3β

8 |ξ|
3.

Hence | − 1
β ν|

1/2 6 | 34ξ
3 + 1

β ν|
1/2 ∼ |ξ|3/2. Therefore

I(τ, ζ) 6
C|ξ| 14 +s

〈σ〉 14

{∫ 3|σ|

−3|σ|

|ν|1/2dν

|ν|2b′− 1
2

√
3
4ξ

3 + 1
β ν 〈σ + ν + k〉1/2

}1/2

6
C|ξ| 14 +s

〈σ〉 14

{∫ 3|σ|

−3|σ|

|ξ|3−6b′dν

|ξ|3/2〈σ + ν + k〉1/2
}1/2

6
C|ξ| 14 +s

〈ξ〉3b′− 3
4
6 C, since b′ >

1 + s

3
,

where we have used the fact that

Claim 3.1.∫ 3|σ|

−3|σ|

dν

〈σ + ν + k〉1/2
6 C|σ|1/2, where C = C(γ). (3.6)

Recall that k = A
ν is defined in (3.4).

Proof of (3.6). Let f(ν) = ν + A
ν where A is defined in (3.5), and ν1 6 ν2

be such that

f(ν1) = f(ν2) = σ, for σ > 2
√
A. (3.7)

Without loss of generality we may assume that σ > 0. Then we know
that for ν > 0,

σ + ν + k > ν > 0,

and hence ∫ 3σ

0

dν

〈σ + ν + k〉1/2
6
∫ 3σ

0

dν

ν1/2
6 C
√
σ. (3.8)

Therefore we only need to consider the term
∫ 0

−3σ
dν

〈σ+ν+k〉1/2 . By a change
of variable ν → −ν, it is equivalent to consider the integral∫ 3σ

0

dν

〈σ − ν − k〉1/2
.

From the definition of A and (3.2) we know that

A 6 Cγσ. (3.9)

(1) If σ 6 2
√
A, then from (3.9) we know that σ 6 Cγ and hence∫ 3σ

0

dν

〈σ − ν − k〉1/2
6 3σ 6 C

√
σ.

(2) If σ > 2
√
A, then we know that f(ν1) = f(ν2) = σ and 0 < ν1 <√

A < ν2. Moreover we have f is decreasing on (0,
√
A] and increasing

on [
√
A, σ). Also on (0,

√
A],∫ 2

√
A

0

dν

〈σ − ν − k〉1/2
6 2
√
A 6 C

√
σ.



16 ROBIN CHEN, YUE LIU, AND PINGZHENG ZHANG

If ν2 < 2
√
A, then

σ = f(ν2) < f(2
√
A) =

5
2

√
A 6 C

√
σ.

Then using the same argument as before we have∫ 3σ

0

dν

〈σ − ν − k〉1/2
6 3σ 6 C

√
σ.

If ν2 > 2
√
A, then on [2

√
A, ν2],

f(ν)− f(ν2)
ν − ν2

> f ′(ν) > f ′(2
√
A) =

3
4
.

Thus on this interval

σ − f(ν) >
3
4

(ν2 − ν)

and then∫ ν2

2
√
A

dν

〈σ − ν − k〉1/2
6 C

∫ ν2

2
√
A

dν

(ν2 − ν)1/2
6 C
√
σ.

Similarly, on [ν2, 3σ],

f(ν)− f(ν2)
ν − ν2

> f ′(ν2) > f ′(2
√
A) =

3
4
.

Therefore we also have∫ 3σ

ν2

dν

〈σ − ν − k〉1/2
6 C
√
σ.

Summing over the above argument, we obtain∫ 3σ

0

dν

〈σ − ν − k〉1/2
6 C
√
σ. (3.10)

Combining (3.8) and (3.10) we proved (3.6). �

• If 〈σ〉b1 > |ξ|b2 , then similarly we get

I(τ, ζ) 6
C|ξ| 14 +s−b2

〈σ〉 14

{∫ 3|σ|

−3|σ|

|ν|1−2b′+2b1dν√
3
4ξ

3 + 1
β ν 〈σ + ν + k〉1/2

}1/2

6
C|ξ| 14 +s−b2

〈ξ〉3(b′−b1− 1
4 )
6 C,

since b′ − b1 > 1
4 and b′ − b1 > 1+s−b2

3 .
In this way we know that I(τ, ζ) is bounded for large |ξ|. Using the Cauchy-Schwarz
inequality to (3.3), we get

J212 6 C‖u‖L2‖v‖L2‖w‖L2 .

Case 2.2: |σ| > |σ1| and min{|ξ1|, |ξ − ξ1|} 6 1. In this case we have

〈ξ〉−s〈ξ1〉s〈ξ − ξ1〉s 6 C,
and we can use the same argument as in Case 2.1.2 with s = 0.
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Case 2.3: |σ| 6 |σ1| and |ξ1| > 1.

Case 2.3.1: |ξ| 6 2|ξ1|. In this case we have

〈θ〉
〈θ1〉

6 C
〈ξ1〉b2
〈ξ〉b2

, and 〈ξ〉−s〈ξ1〉s〈ξ − ξ1〉s 6 C
〈ξ1〉2s

〈ξ〉s
.

Thus

K(τ, ζ, τ1, ζ1) 6
C|ξ|〈ξ1〉b2+2s

〈σ〉b′〈σ1〉b〈σ2〉b
1

〈ξ〉b2+s
.

Since |σ| 6 |σ1| and b′ < b, we know

〈σ〉b
′
〈σ1〉b > 〈σ〉b〈σ1〉b

′
,

and
〈ξ1〉b2+2s

〈ξ〉b2+s−1
6 C〈ξ1〉1+s,

for b2 + s 6 1. Thus

K(τ, ζ, τ1, ζ1) 6
C|ξ1|1+s

〈σ1〉b′〈σ〉b〈σ2〉b
.

By replacing (τ, ζ) with (τ1, ζ1), we can use the same argument as in Case 2.1.2
to obtain the right bound.

Case 2.3.2: |ξ| > 2|ξ1|. Then |ξ| 6 2|ξ − ξ1| and 〈ξ〉−s〈ξ1〉s〈ξ − ξ1〉s 6 C〈ξ1〉s.
Hence

K(τ, ζ, τ1, ζ1) 6
C|ξ||ξ1|s〈θ〉

〈σ〉b′〈σ1〉b〈σ2〉b〈θ1〉
.

• |σ|b1 6 |ξ|b2 . Since |σ1| dominates in (3.2), we obtain

K(τ, ζ, τ1, ζ1) 6
C|ξ||ξ1|b2+s

〈σ〉b′〈σ1〉b+b1〈σ2〉b
6

C

〈σ〉b′〈σ2〉b〈σ1〉b+b1−max{ 1
2 ,

1+s+b2
3 }

.

Since b > 1
2 and b′ + b1 −max{ 1

2 ,
1+s+b2

3 } > 0, we know that b′ + b + b +
b1 −max{ 1

2 ,
1+s+b2

3 } > 1. Therefore we can use Lemma 2.8 to obtain the
right bound.
• |σ|b1 > |ξ|b2 . Similarly,

K(τ, ζ, τ1, ζ1) 6
C|ξ|1−b2 |ξ1|b2+s

〈σ〉b′−b1〈σ1〉b+b1〈σ2〉b
6

C

〈σ〉b′−b1〈σ2〉b〈σ1〉b+b1−max{ 1−b2
2 , 1+s3 }

.

Since b > 1
2 and b′−max{ 1−b2

2 , 1+s
3 } > 0, we know that b′−b1 +b+b+b1−

max{ 1−b2
2 , 1+s

3 } > 1. Therefore we can use Lemma 2.8 to give the right
bound.

Case 2.4: |σ| 6 |σ1| and |ξ1| 6 1. Denote by J24 the contribution of this region to
J . On the support of J24 we know that

〈ξ〉−s〈ξ1〉s〈ξ − ξ1〉s 6 C.

Hence we can assume that s = 0. Now consider the dyadic levels

AKM = {(τ1, ζ1) : |ξ1| ∼M, 〈σ1〉 ∼ K}, (3.11)
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where K = 2k, k = 0, 1, 2, . . ., and M = 2m, m = 0,−1,−2, . . .. Denote by JKM24

the contribution of AKM to J24, then

J24 6 C
∑
K,M

JKM24 .

Using Cauchy-Schwartz we have

JKM24 6 C
∫
IKM (τ, ζ)

{∫
|û(τ1, ζ1)v̂(τ − τ1, ζ − ζ1)|2dτ1dζ1

}1/2

ŵ(τ, ζ)dτdζ,

where

IKM (τ, ζ) =
|ξ|〈θ〉
〈σ〉b′

(∫
AKM

dτ1dζ1
〈σ1〉2b〈σ2〉2b〈θ1〉2〈θ2〉2

)1/2

.

Similar to Case 2.1.2, we perform the change of variables

ν = −3βξξ1(ξ − ξ1), µ = σ1 + σ2.

We can assume that ξ > 0 and then

|ν| 6 −3β|ξ|(|ξ|+ 1) · 2M 6 −9β|ξ|2M.

Since b′ > b1, we have 〈θ〉 6 C〈σ〉b′ . Hence

IKM (τ, ζ) 6
(∫ ∞
−∞

∫ ∞
−∞

∫ −9β|ξ|2M

9β|ξ|2M

C|ξ|1/2|ν|1/2dνdτ1dµ

12(−β)3/2〈σ1〉2b〈µ− σ1〉2b
√

3
4ξ

3 + 1
β ν
∣∣(σ + ν + k)− µ

∣∣1/2〈θ1〉2

)1/2

From (3.2) we know |ν| 6 3|σ1|, and therefore

|ν|1/2

〈θ1〉2
6
C〈σ1〉1/2〈ξ1〉2b2
〈σ1〉2b1

6 C〈σ1〉
1
2−2b1 6 CK

1
2−2b1 .

In this way, using (2.20) and (2.21),

IKM (τ, ζ) 6 C|ξ| 14K 1
4−b1

{∫ ∞
−∞

∫ −9β|ξ|2M

9β|ξ|2M

dνdµ

〈µ〉2b
(

3
4ξ

3 + 1
β ν
)1/2(

σ + ν + k)− µ
∣∣1/2

} 1
2

6 C|ξ| 14K 1
4−b1

{∫ −9β|ξ|2M

9β|ξ|2M

dν(
3
4ξ

3 + 1
β ν
)1/2

〈σ + ν + k〉1/2

} 1
2
.

Since |ξ| is large and |ξ1| is small, we have from (3.2) that |ν| 6 −3β
8 |ξ|

3, and hence√
3
4ξ

3 + 1
β ν >

3
8 |ξ|

3. Therefore

IKM (τ, ζ) 6
CK

1
4−b1

|ξ| 12

{∫ −9β|ξ|2M

9β|ξ|2M

dν

〈σ + ν + k〉1/2
} 1

2
.

Claim 3.2. ∫ −9β|ξ|2M

9β|ξ|2M

dν

〈σ + ν + k〉1/2
6 CM

1
4 |ξ|. (3.12)

Proof of (3.12). Let a = −9β|ξ|2M . Without loss of generality we may assume
a > 1. Thus a >

√
a. Similarly as in the proof of (3.6), we can assume σ > 0.

Hence ∫ a

0

dν

〈σ + ν + k〉1/2
6
∫ a

0

dν

ν1/2
6
√
a 6 CM

1
2 |ξ| 6 CM 1

4 |ξ|, (3.13)
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since M 6 1. Therefore we only need to show∫ a

0

dν

〈σ − ν − k〉1/2
6 CM

1
4 |ξ|. (3.14)

Since now |ξ| > 8 and |ξ1| 6 1, we have

−3βγξ2 6 A 6 −21
8
βγξ2,

where A is defined in (3.5). Therefore we obtain that
3
γ
MA 6 a 6

24
7γ
MA. (3.15)

Denote

c1 =
√

24
7γ
, c2 =

√
3
γ
. (3.16)

(1) Consider the case a > A. When a 6 2
√
A, then∫ a

0

dν

〈σ − ν − k〉1/2
6 2
√
A 6 2

√
a 6 CM

1
2 |ξ| 6 CM 1

4 |ξ|.

Thus we only check when a > 2
√
A.

(1-1) If σ < 2
√
A, we have on [2

√
A, a] that

f(ν)− σ > f(ν)− f(2
√
A) > f ′(2

√
A)(ν − 2

√
A) =

3
4

(ν − 2
√
A).

Thus ∫ a

2
√
A

dν

〈σ − ν − k〉1/2
6 C
√
a 6 CM

1
4 |ξ|.

(1-2) If σ > 2
√
A, then∫ 2

√
A

0

dν

〈σ − ν − k〉1/2
6 2
√
A 6 CM

1
4 |ξ|.

When ν2 < 2
√
A, then on [2

√
A, a], where ν2 is defined in (3.7),

f(ν)− σ = f(ν)− f(ν2) > f(ν)− f(2
√
A) > f ′(2

√
A)(ν − 2

√
A) =

3
4

(ν − 2
√
A),

and then ∫ a

2
√
A

dν

〈σ − ν − k〉1/2
6 C
√
a 6 CM

1
4 |ξ|.

When ν2 > 2
√
A, then f ′(ν2) > f ′(2

√
A) = 3

4 . On [2
√
A, ν2],

σ − f(ν) > f ′(ν)(ν2 − ν) > f ′(2
√
A)(ν2 − ν).

On [ν2, a] we have

f(ν)− σ > f ′(ν2)(ν − ν2) > f ′(2
√
A)(ν − ν2).

So ∫ a

2
√
A

dν

〈σ − ν − k〉1/2
6 C
√
a 6 CM

1
4 |ξ|.

(2) Now we consider the case a < A. In this case we have from (3.15) that

M <
γ

3
, and thus

√
M <

1
c2
. (3.17)
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Thus we have the following estimates for the derivatives.

−f ′(
√
A−
√
a) =

A

(
√
A−
√
a)2
− 1 >

1
(1− c1

√
M)2

− 1

>
1

1− c1
√
M
− 1 > c1

√
M. (3.18)

f ′(
√
A+
√
a) = 1− A

(
√
A+
√
a)2
> 1− 1

(1 + c2
√
M)2

> 1− 1
1 + c2

√
M

=
c2
√
M

1 + c2
√
M
>
c2
2

√
M, (3.19)

where we have used the estimate (3.17).
(2-1) If σ < 2

√
A, we know that on [0,

√
A−
√
a],

f(ν)− σ > f(ν)− f(
√
A−
√
a) > −f ′(

√
A−
√
a)
[
(
√
A−
√
a)− ν

]
> c1
√
M
[
(
√
A−
√
a)− ν

]
.

So we have ∫ √A−√a
0

dν

〈σ − ν − k〉1/2
6 CM−

1
4 (
√
A−
√
a)

1
2 . (3.20)

Hence if a 6
√
A−
√
a, then∫ a

0

dν

〈σ − ν − k〉1/2
6 CM−

1
4
√
a = CM

1
4 |ξ|.

When a >
√
A−
√
a, we have∫ a

0

dν

〈σ − ν − k〉1/2
=

(∫ √A−√a
0

+
∫ a

√
A−
√
a

)
dν

〈σ − ν − k〉1/2

6 CM−
1
4
√
a+
√
a 6 CM

1
4 |ξ|.

In either case we obtain (3.12).
When a >

√
A, we have on on [

√
A+
√
a, a],

f(ν)− σ > f(ν)− f(
√
A+
√
a) > −f ′(

√
A+
√
a)
[
ν − (

√
A+
√
a)
]

>
c2
2

√
M
[
ν − (

√
A+
√
a)
]
,

and thus ∫ a

√
A+
√
a

dν

〈σ − ν − k〉1/2
6 CM−

1
4
√
a. (3.21)

Therefore combining (3.20) and (3.21) we get∫ a

0

dν

〈σ − ν − k〉1/2
=

(∫ √A−√a
0

+
∫ √A+

√
a

√
A−
√
a

+
∫ a

√
A+
√
a

)
dν

〈σ − ν − k〉1/2

6 CM−
1
4 (
√
A−
√
a)

1
2 + 2

√
a+ CM−

1
4
√
a

6 CM−
1
4
√
a 6 CM

1
4 |ξ|,

which is (3.14).
(2-2) When σ > 2

√
A, we discuss the following cases.
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(2-2-1) a 6
√
A.

(2-2-1-1) If a 6
√
A−
√
a, then when ν1 6 a we have that

f(ν)− σ = f(ν)− f(ν1) > −f ′(ν1)(ν1 − ν) > −f ′(
√
A−
√
a)(ν1 − ν)

> c1
√
M(ν1 − ν), ν ∈ [0, ν1], (3.22)

σ − f(ν) = f(ν1)− f(ν) > −f ′(ν1)(ν − ν1) > −f ′(
√
A−
√
a)(ν − ν1)

> c1
√
M(ν − ν1), ν ∈ [ν1, a]. (3.23)

Hence we know∫ a

0

dν

〈σ − ν − k〉1/2
=
(∫ ν1

0

+
∫ a

ν1

)
dν

〈σ − ν − k〉1/2
6 CM−

1
4
√
a 6 CM

1
4 |ξ|.

When ν1 > a, we have

f(ν)− σ > f(ν)− f(a) > −f ′(a)(a− ν)

> −f ′(
√
A−
√
a)(a− ν) > c1

√
M(a− ν),

and then ∫ a

0

dν

〈σ − ν − k〉1/2
6 CM−

1
4
√
a 6 CM

1
4 |ξ|.

(2-2-1-2) If
√
A−
√
a < a 6

√
A. When ν1 <

√
A−
√
a we have (3.22) on [0, ν1]

and (3.23) on [ν1,
√
A−
√
a]. Thus∫ a

0

dν

〈σ − ν − k〉1/2
=

(∫ ν1

0

+
∫ √A−√a
ν1

+
∫ a

√
A−
√
a

)
dν

〈σ − ν − k〉1/2

6 CM−
1
4
√
a+
√
a 6 CM

1
4 |ξ|.

If
√
A−
√
a 6 ν1, then on [0,

√
A−
√
a],

f(ν)− σ > f(ν)− f(
√
A−
√
a) > −f ′(

√
A−
√
a)
[
(
√
A−
√
a)
]

> c1
√
M
[
(
√
A−
√
a)
]
.

Therefore ∫ a

0

dν

〈σ − ν − k〉1/2
=

(∫ √A−√a
0

+
∫ a

√
A−
√
a

)
dν

〈σ − ν − k〉1/2

6 CM−
1
4
√
a+
√
a 6 CM

1
4 |ξ|.

(2-2-2) If a >
√
A, we first look at∫ √A

0

dν

〈σ − ν − k〉1/2
.

In this situation we consider the two cases ν1 <
√
A −

√
a or ν1 >

√
A −

√
a. We

may use the same argument as in (2-2-1-2) to obtain the desired estimate (3.14).
Now for ∫ a

√
A

dν

〈σ − ν − k〉1/2
,
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when ν2 <
√
A+
√
a, we have on [

√
A+
√
a, a] that

f(ν)− σ > f(ν)− f(
√
A+
√
a) > f ′(

√
A+
√
a)
[
ν − (

√
A+
√
a)
]

>
c2
2

√
M
[
ν − (

√
A+
√
a)
]
.

Thus ∫ a

√
A

dν

〈σ − ν − k〉1/2
=

(∫ √A+
√
a

√
A

+
∫ a

√
A+
√
a

)
dν

〈σ − ν − k〉1/2

6
√
a+ CM−

1
4
√
a 6 CM

1
4 |ξ|.

When ν2 >
√
A+
√
a, in the case ν2 6 a, we know on [

√
A+
√
a, ν2],

σ − f(ν) > f ′(ν)(ν2 − ν) > f ′(
√
A+
√
a)(ν2 − ν) >

c2
2

√
M(ν2 − ν).

On [ν2, a],

f(ν)− σ > f ′(ν2)(ν − ν2) > f ′(
√
A+
√
a)(ν − ν2) >

c2
2

√
M(ν − ν2).

So ∫ a

√
A

dν

〈σ − ν − k〉1/2
=

(∫ √A+
√
a

√
A

+
∫ ν2

√
A+
√
a

+
∫ a

ν2

)
dν

〈σ − ν − k〉1/2

6
√
a+ CM−

1
4
√
a 6 CM

1
4 |ξ|.

When ν2 > a, on [
√
A+
√
a, a], we have

σ − f(ν) > f(a)− f(ν) > f ′(ν)(a− ν) > f ′(
√
A+
√
a)(a− ν) >

c2
2

√
M(a− ν).

Hence ∫ a

√
A

dν

〈σ − ν − k〉1/2
=

(∫ √A+
√
a

√
A

+
∫ a

√
A+
√
a

)
dν

〈σ − ν − k〉1/2

6
√
a+ CM−

1
4
√
a 6 CM

1
4 |ξ|.

Therefore summing up all the above we obtain (3.14), and hence (3.12). �

Hence using (3.12) we obtain

IKM (τ, ζ) 6
CK

1
4−b1

|ξ| 12
M

1
8 |ξ| 12 6 CK 1

4−b1M
1
8

Therefore in this case, by using Cauchy-Schwartz we have

JKM24 6 CK
1
4−b1M

1
8 ‖u‖L2‖v‖L2‖w‖L2 . (3.24)

Here we gain a small factor M
1
4 . To lower b1 as much as possible in order to weaken

the restriction of Case 1, we need to apply Lemma 2.8 to estimate JKM24 .
• If |σ|b1 6 |ξ|b2 . Denote by JKM241 the contribution of this region to JKM24 .

Since |ξ1| 6 1, using (3.2) we get |σ1| > C|ξ|2|ξ1|, and then |ξ| 6 C〈σ1〉1/2|ξ1|−1/2.
Thus

K(τ, ζ, τ1, ζ1) 6
C|ξ|

〈σ〉b′〈σ1〉b+b1〈σ2〉b
6

CM−1/2K−δ1

〈σ〉b′〈σ1〉b+b1−
1
2−δ1〈σ2〉b

,
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where δ1 > 0 will be specified later. Using Lemma 2.8 we obtain the bound

JKM241 6
C

M1/2Kδ1
‖u‖L2‖v‖L2‖w‖L2 , (3.25)

provided that

2b+ b′ + b1 −
1
2
− δ1 > 1. (3.26)

• If |σ|b1 > |ξ|b2 . Denote by JKM242 the contribution of this region to JKM24 .
Then

K(τ, ζ, τ1, ζ1) 6
C|ξ|1−b2

〈σ〉b′−b1〈σ1〉b+b1〈σ2〉b
6

CM−
1−b2

2 K−δ2

〈σ〉b′〈σ1〉b−
1−b2

2 −δ2〈σ2〉b
,

where δ2 will be specified later. A use of Lemma 2.8 gives

JKM242 6
C

M (1−b2)/2Kδ2
‖u‖L2‖v‖L2‖w‖L2 , (3.27)

provided that

2b+ b′ − 1− b2
2
− δ2 > 1. (3.28)

The factors K−δ1 and K−δ2 in (3.25) and (3.27) help us to lower b1.
(i) An interpolation between (3.24) and (3.25) with weights 4

5+ and 1
5−, re-

spectively, yield

JKM241 6
CMδ∗1

Kδ∗2
‖u‖L2‖v‖L2‖w‖L2 ,

with δ∗1 , δ
∗
2 > 0 and(1

4
− b1

)(4
5

+
)
− δ1

(1
5
−
)
< 0, that is, δ1 > 1− 4b1.

(ii) An interpolation between (3.24) and (3.27) with weights 4−4b2
5−4b2

+ and 1
5−4b2

−,
respectively, yield

JKM242 6
CMδ∗1

Kδ∗2
‖u‖L2‖v‖L2‖w‖L2 ,

with δ∗1 , δ
∗
2 > 0 and(1

4
− b1

)(4− 4b2
5− 4b2

+
)
− δ2

( 1
5− 4b2

−
)
< 0, that is, δ2 > (1− 4b1)(1− b2).

We also know from (3.26) and (3.28) that

δ1 < 2b+ b′ + b1 −
3
2
, δ2 < 2b+ b′ +

b2
2
− 3

2
.

Note that since we have

b >
1
2
, b′ + 5b1 >

3
2
, b′ + 4b1 +

3
2
b2 − 4b1b2 >

3
2
,

we are able to choose the proper δ1, δ2 to satisfy the above conditions. Therefore,
summing over K and M we obtain

J24 6 C‖u‖L2‖v‖L2‖w‖L2 .

This completes the proof of Theorem 1.2. �
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4. Local well-posedness

We will apply a Picard fixed-point argument to the integral equation (1.8).
Let ψ(t) be a cut-off function such that ψ ∈ C∞0 (R2), suppψ ⊂ [−2, 2], and ψ = 1

on [−1, 1]. For T > 0, let ψT (t) = ψ(t/T ), and define the “temporally truncated”
operator

Lu(t) = ψ(t)S(t)φ− ψT (t)
∫ t

0

S(t− t′)∂x(u2(t′)) dt′. (4.1)

Now define the space Y b,s1,s2 to be the space equipped with the norm

‖u‖Y b,s1,s2 = ‖〈τ − p(ξ, η)〉b〈ξ〉s1〈η〉s2 û(τ, ξ, η)‖L2
τξη
.

Then we can write the norm in Xb,b1,b2
s1,s2 as

‖u‖
X
b,b1,b2
s1,s2

∼ ‖u‖Y b,s1,s2 + ‖u‖Y b+b1,s1−b2,s2 . (4.2)

Using Lemma 2.1 and Lemma 2.3 in [9] we have

Lemma 4.1. Let 0 < ε < 1
4 , b = 1

2 + ε, b′ = 1
2 − 2ε, and s1, s2 ∈ R. Then

‖ψ(t)S(t)φ‖Y b,s1,s2 6 C‖φ‖Hs1,s2 ,∥∥∥ψT ∫ t

0

S(t− t′)f(u(t′)) dt′
∥∥∥
Y b,s1,s2

6 CT ε‖f(u)‖Y −b′,s1,s2 .

From (4.2) and Lemma 4.1 we get

Proposition 4.2. Assume β < 0 and γ > 0. Let 0 < ε < 1
4 −

(
1
5+
)
, b = 1

2 + ε,
b′ = 1

2 − 2ε, b1 = 1
5+, b2 > 2

7 , and s1, s2 ∈ R. Then

‖Lu‖
X
b,b1,b2
s1,s2

6 C‖φ‖Hs1,s2 + CT ε‖uux‖X−b′,b1,b2s1,s2
. (4.3)

Proof. From (4.2) and Lemma 4.1 we have

‖Lu‖
X
b,b1,b2
s1,s2

∼ ‖Lu‖Y b,s1,s2 + ‖Lu‖Y b+b1,s1−b2,s2
6 C(‖φ‖Hs1,s2 + ‖φ‖Hs1−b2,s2 ) + CT ε(‖uux‖Y −b′,s1,s2 + ‖uux‖Y −b′+b1,s1−b2,s2 )

6 C‖φ‖Hs1,s2 + CT ε‖uux‖X−b′,b1,b2s1,s2
.

Hence the proposition is proved. �

Now we can prove Theorem 1.4 on the local well-posedness

Proof of Theorem 1.4. Using Theorem 1.3 with b = 1
2 + ε, b′ = 1

2 − 2ε, and Propo-
sition 4.2 we obtain

‖Lu‖
X

1/2+,1/6+,1/3
s1,s2

6 C‖φ‖Hs1,s2 + CT ε‖u‖2
X

1/2+,1/6+,1/3
s1,s2

, (4.4)

‖Lu− Lv‖
X

1/2+,1/6+,1/3
s1,s2

6 CT ε‖u+ v‖
X

1/2+,1/6+,1/3
s1,s2

‖u− v‖
X

1/2+,1/6+,1/3
s1,s2

. (4.5)

Choosing

T =
1

(5C2‖φ‖Hs1,s2 )1/ε
,

we deduce from (4.4) and (4.5) that the mapping L is strictly contractive on the ball
of radius 2C‖φ‖Hs1,s2 in X1/2+,1/6+,1/3

s1,s2 . This gives the existence and uniqueness of
solution to the truncated problem (4.1), hence also proves the existence of solution
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u ∈ X1/2+,1/6+,1/3
s1,s2 to the full integral equation (1.8) on the time interval [−T, T ]

with T = T (‖φ‖Hs1,s2 ). Furthermore, choosing T small enough to make ψ,ψT = 1
on I = [−T, T ], we conclude the local existence and uniqueness of the solution to
(1.8).

To prove the continuity of the flow map φ 7→ u, we consider u1, u2 are two
solutions on [−T, T ] with initial data φ1 and φ2 respectively. Then

‖u1 − u2‖X1/2+,1/6+,1/3
s1,s2

6C‖φ1 − φ2‖Hs1,s2 +

CT ε‖u1 + u2‖X1/2+,1/6+,1/3
s1,s2

‖u1 − u2‖X1/2+,1/6+,1/3
s1,s2

,

which immediately implies the Lipschitz continuity of the flow map.
�

5. Exponential decay of solitary waves

This section is concerned with the exponential decay of the solitary waves to
equation (1.1).

Let H∞(R2) = ∩m∈NH
m(R2). Inspired by the argument in [6], we have the

following regularity results for solitary waves.

Proposition 5.1. Assume β, γ > 0 and c < 2
√
βγ. Then any solution ϕ of (1.16)

belongs to C∞(R2)∩H∞(R2). Moreover, D−1
x ϕ and all its derivatives decay to zero

at infinity.

We will first set up an integral decay estimate for the solitary waves. Let Br
denote the ball in R2 with radius r centered in origin and

Ωn = R2\BnL (5.1)

be domains for positive integers n and L > 1 a number to be determined later. We
have

Lemma 5.2. Under the assumption of Theorem 1.6, for any solitary wave ϕ of
(1.1) there exists positive numbers C = C(β, c, γ, ϕ) and α = α(β, c, γ) such that∫

Ωn

ϕ2
xx + ϕ2

x + ϕ2
y + ϕ2 6 Ce−2αnL (5.2)

is valid for every positive integer n.

Proof. Let L > 0 as stated in (5.1). For each positive integer n we set χn(r) :
(0,+∞)→ [0, 1] be piecewise smooth affine function such that

χn(r) ≡ 0, if r 6 nL, χn(r) ≡ 1 if r > (n+ 1)L

and for nL < r < (n+ 1)L

|χ′n(r)|, |χ′′n(r)| 6 4
L
.

Replacing r by
√
x2 + y2, we consider χn as a function of (x, y) in plane R2. For

simplicity of notation let χn,xx, χn,x and χn,y be the second partial derivative of χn
with respect to x and the first derivatives to x and y, respectively. By the choice of
χn we see these partial derivatives vanish in the ball BnL and the exterior domain
Ωn+1, and

|χn,xx(x, y)|, |χn,x(x, y)|, |χn,y(x, y)| 6 4
L

(5.3)
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in annular domain nL 6 r =
√
x2 + y2 6 (n+ 1)L.

Taking derivative with respect to x, (1.16) is rewritten as

βϕxxxx + cϕxx − ϕyy + γϕ = (ϕ2)xx. (5.4)

We multiply terms of (5.4) by χnϕ and integrate on R2, respectively. Using several
integrations by parts and recalling χn = 0 in BnL, it follows that∫

Ωn

χnϕϕxxxx =
∫

Ωn

(χnϕ)xxϕxx

=
∫

Ωn

(χnϕxx + 2χn,xϕx + χn,xxϕ)ϕxx

=
∫

Ωn

(χnϕxx + χn,xxϕ)ϕxx − χn,xxϕ2
x, (5.5)

−
∫

Ωn

χnϕϕxx =
∫

Ωn

(χnϕ)xϕx =
∫

Ωn

χnϕ
2
x −

1
2
χn,xxϕ

2, (5.6)

−
∫

Ωn

χnϕϕyy =
∫

Ωn

(χnϕ)yϕy =
∫

Ωn

χnϕ
2
y −

1
2
χn,yyϕ

2, (5.7)

and ∫
Ωn

χnϕ(ϕ2)xx =
∫

Ωn

(χnϕ)xxϕ2. (5.8)

Multiplying equation (5.4) by χnϕ and integrating on R2 then using (5.5) and (5.7),
we find ∫

Ωn

χn(βϕ2
xx + cϕxxϕ+ ϕ2

y + γϕ2)

=
∫

Ωn

χnϕ(ϕ2)xx + βχn,xxϕ
2
x − βχn,xxϕϕxx +

1
2
χn,yyϕ

2. (5.9)

By Proposition 5.1, it follows ϕxx(x, y), ϕx(x, y), ϕ(x, y) → 0 as r → +∞. Then
0 6 χn 6 1 and (5.3) implies that there exists a positive integer n0 such that for
r > n0L

|(χnϕ)xx(x, y)| = |(χnϕxx + 2χn,xϕx + χn,xxϕ)(x, y)| 6 1
L
,

from which and (5.8) we have for n > n0∣∣∣∣∫
Ωn

χnϕ(ϕ2)xx

∣∣∣∣ 6 ∫
Ωn

∣∣(χnϕ)xxϕ2
∣∣ 6 1

L

∫
Ωn

ϕ2. (5.10)

We rewrite (5.6) and apply Hölder inequality to get∫
Ωn

χnϕ
2
x =

∫
Ωn

−χnϕϕxx +
1
2
χn,xxϕ

2

6
∫

Ωn

1
2
χnϕ

2
xx +

1
2

(χn + χn,xx)ϕ2. (5.11)

Now we come to prove (5.2) in two cases according to the sign of c.
(a) 0 6 c < 2

√
βγ. In this situation we see, by the Hölder inequality, there is some

positive constant δ depending only β, γ and c such that for all (x, y) ∈ R2

δ(ϕ2
xx + ϕ2) 6 βϕ2

xx + cϕxxϕ+ γϕ2. (5.12)
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For simplicity of notation, let

En =
∫

Ωn

χn(βϕ2
xx + cϕxxϕ+ γϕ2 + δϕ2

x + ϕ2
y),

Fn =
∫

Ωn

βϕ2
xx + cϕxxϕ+ γϕ2 + δϕ2

x + ϕ2
y,

where δ is determined in (5.12). Note that comparing with the left hand side of
(5.9), we add a term δϕ2

x in En and Fn, respectively. Recalling χn(x, y) = 1 in
Ωn+1, the nonnegativity of the right hand side of (5.12) leads to

Fn+1 6 En. (5.13)

Applying the Hölder inequality to the third integral of the right hand side of (5.9)
and using (5.10) and (5.11), we see that En is less than∫

Ωn

1
2

(
δχn + β|χn,xx|

)
ϕ2
xx + β|χn,xx|ϕ2

x +
1
2

(
δχn + (δ + β)|χn,xx|+ |χn,yy|+

2
L

)
ϕ2

under the condition n > n0. By (5.3) we can take L sufficiently large such that the
preceding integral, and therefore En, is less than

3
4

∫
Ωn

δ(ϕ2
xx + ϕ2 + ϕ2

x).

Taking into account (5.12), we deduce for n > n0

En 6
3
4
Fn. (5.14)

it is deduced from (5.13) and (5.14) that Fn+1 6 3
4Fn for n > n0, which implies for

n > n0

Fn 6

(
3
4

)n−n0

Fn0 = Ce−2αnL,

with C =
(

3
4

)−n0
Fn0 and α = 1

2L

∣∣ln 3
4

∣∣. It then follows the preceding inequality
for Fn, the definition of Fn and (5.12) that∫

Ωn

δϕ2
xx + δϕ2

x + δϕ2 + ϕ2
y 6 Ce

−2αnL

for n > n0. The estimate is also valid for positive integers n < n0 if C is taken
sufficiently large. Replacing C by (min{1, δ})−1C we have proved (5.2) in the case
0 6 c < 2

√
βγ.

(b) c < 0. In this setting, we introduce notation

Gn =
∫

Ωn

χn(βϕ2
xx − cϕ2

x + ϕ2
y + γϕ2),

Hn =
∫

Ωn

βϕ2
xx − cϕ2

x + ϕ2
y + γϕ2.

Then χn(x, y) = 1 in Ωn+1 and c < 0 imply

Hn+1 6 Gn. (5.15)
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By (5.6) and (5.9) we have

Gn =
∫

Ωn

χn(βϕ2
xx + cϕϕxx + ϕ2

y + γϕ2)− c

2
χn,xxϕ

2

=
∫

Ωn

χnϕ(ϕ2)xx + βχn,xxϕ
2
x − βχn,xxϕϕxx

+
1
2
χn,yyϕ

2 − c

2
χn,xxϕ

2. (5.16)

Applying Hölder inequality to the third integral of (5.16) and then using (5.10), we
see that Gn is less than∫

Ωn

1
2
β|χn,xx|ϕ2

xx + β|χn,xx|ϕ2
x +

1
2

(
−c|χn,xx|+ β|χn,xx|+ |χn,yy|+

2
L

)
ϕ2

when n > n0. By (5.3) we can take L sufficiently large such that the preceding
integral is less than 3

4Hn. So for n > n0

Gn 6
3
4
Hn. (5.17)

By (5.15) and (5.17) we get Hn+1 6 3
4Hn, from which we infer for n > n0

Hn 6

(
3
4

)n−n0

Hn0 = Ce−2αnL,

with C =
(

3
4

)−n0
Hn0 and α = 1

2L

∣∣ln 3
4

∣∣ as in the first case. Then we get∫
Ωn

βϕ2
xx − cϕ2

x + ϕ2
y + γϕ2 6 Ce−2αnL

for n > n0. The inequality is also valid for positive integers n < n0 if C is taken
sufficiently large. Note c < 0 in this setting. With some modification on constant
C, we have proved (5.2) in the case c < 0.

�

Remark 5.1. Let l = (l1, l2) = (2, 1) and p = (p1, p2) = (2, 2). In terms of the
notation and terminologies of anisotropic spaces (page 165 of [5]), we get from (5.2)
that for each natural number n

‖ϕ‖W l
p(Ωn) = ‖ϕ‖p,Ωn + ‖ϕxx‖p,Ωn + ‖ϕy‖p,Ωn

= ‖ϕ‖L2(Ωn) + ‖ϕxx‖L2(Ωn) + ‖ϕy‖L2(Ωn)

6 Ce−αnL. (5.18)

Set α = (0, 0), 1 = (1, 1) and q = (q1, q2) = (∞,∞). We see also that 1 6 p 6 q
and that the basic index (see page 180 of [5] for definition)

κ =
∣∣∣∣(α+

1
p
− 1

q

)
: l
∣∣∣∣ =

1
p1
· 1
l1

+
1
p2
· 1
l2

=
1
2
· 1

2
+

1
2
· 1

1
=

3
4
< 1.

Recalling ϕ is smooth by Proposition 5.1, one has

‖ϕ‖Lq(Ωn) = ‖ϕ̃‖Lq(Rn) = ess sup
y∈R

(
ess sup
x∈R

|ϕ̃(x, y)|
)

= ess sup
(x,y)∈R2

|ϕ̃(x, y)| = ‖ϕ‖L∞(Ωn), (5.19)
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where ϕ̃(x, y) = ϕ(x, y) for (x, y) ∈ Ωn and ϕ̃(x, y) = 0 for (x, y) ∈ R2\Ωn.

Proof of Theorem 1.6. Note for all positive integers n, the domains Ωn satisfy a
weak l-horm condition (page 153 of [5]) with the same parameters independent of
n. By generalized Sobolev imbedding theorem (see, e.g., Theorem 10.2 of [5], page
187, in the case α = (0, 0) and κ < 1), for all positive integers n, the norm of
Lq(Ωn) is controlled by the that of W l

p(Ωn) with some common positive constant
C1, that is

‖ϕ‖Lq(Ωn) 6 C1‖ϕ‖W l
p(Ωn). (5.20)

For any (x, y) ∈ R2 satisfying r =
√
x2 + y2 > L, let n be the integer such that

nL < r 6 (n + 1)L. This implies (x, y) ∈ Ωn. Using (5.19) and (5.20) and then
(5.18) we get

|ϕ(x, y)| 6 ‖ϕ‖L∞(Ωn) 6 C1‖ϕ‖W l
p(Ωn)

6 C1Ce
−αnL = C1Ce

αLe−α(n+1)L 6 C1Ce
αLe−αr.

Theorem 1.6 is thereby established. �
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