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Abstract. In this paper we derived a model which describes the swelling dynamics of a gel and study the system in one-
dimensional geometry with a free boundary. The governing equations are hyperbolic with a weakly dissipative source. Using
a mass-Lagrangian formulation, the free-boundary is transformed into a fixed-boundary. We prove the existence of long time
C1-solutions to the transformed fixed boundary problem.

1. Introduction. In this paper, we study existence of long time C1-solutions of a free boundary problem
modeling swelling of gels, in one space dimension. The gel is assumed to be a mathematical mixture of polymer
and solvent. We assume that the gel is surrounded by solvent and that its boundary is fully permeable
to solvent. The governing equations consist of the laws of balance of mass and linear momentum of the
components and form a weakly dissipative hyperbolic system. The scaling leading to hyperbolic dynamics is
motivated by the modeling of polysaccharide gels occurring in nature, for instance as motor devices of gliding
bacteria (myxobacteria). In general, hyperbolic dynamics is a signature property of active gels encountered in
models of the cytoskeleton of living cells and also in studies of biomimetic non-equilibrium gels [14], [19].

We assume that a gel is a saturated, incompressible and immiscible mixture of polymer and solvent.
Incompressibility in the context of mixtures refers to every component having constant mass density in the pure
state. (In particular, it does not preclude the polymer from experiencing deformations with very large change
in volume, as much as 500 percent, if ions are present). Immiscibility corresponds to the constitutive equations
depending on the volume fraction, φ1(≡ φ) and φ2, respectively, of the polymer and solvent component. The
saturation assumption (also known in some literature as incompressibility) is the statement of the volume
fractions adding to 1. The balance laws consist of the equations of balance of mass and linear momentum of
each component together with the saturation constraint. The coupling between component equations takes
place through the Flory-Huggins energy of mixing, the drag forces and the boundary conditions.

For gels made of entangled polymers such as those used in biomedical devices, scaling arguments show
that elastic ([20, 21, 23]) and dissipative effects often dominate inertia, that enters the early dynamics only.
Moreover, in [5] the authors assume that the dissipation of both the polymer and solvent is Newtonian.

In this paper, we consider gels made of polysacharide networks, with dissipation parameters several orders
of magnitude smaller (as much as 10−7) than those of the entangled polymer counterparts [22]. This motivates
us to keeping the inertia terms to study the intermediate time dynamics of the polysaccharide systems (as
well as the early dynamics of the highly dissipative gels).

The energy of the system is the sum of the nonlinearly elastic stored energy function of the polymer
and the Flory-Huggins energy of mixing. We establish a dissipation law satisfied by solutions of the governing
system in arbitrary space dimension. There are two types of boundary conditions complementing the elasticity
and the Euler equation. These are of traction-displacement kind, for the gel equation (this being the sum of
the elasticity and the Euler equation for the fluid), and either scalar Dirichlet or traction boundary conditions
for the the Euler equation of the fluid. These boundary conditions, also considered in earlier works on gels
[22], [6], are motivated by the works of Doi and Yamaue [20, 21]. They express properties of permeability
of the gel interface to the surrounding fluid, and may range from impermeable (Dirichlet boundary) to fully
permeable (traction boundary). However, these conditions have been found not be exact, from the point of
view that they do not necessarily guarantee the balance of mass, linear momentum and energy at the interface
between the gel and the external fluid. In fact, they differ from the balance laws at the interface by a term
quadratic on the normal component of the difference of the polymer and solvent velocities, and proportional
to the fluid inertia. Moreover, the assumption of viscous interface stress yields a fully dissipative energy law
[3].

In this work, we consider a polymer separated from the surrounding fluid and confined to a strip domain.
We assume that at time t = 0 the polymer enters into contact with the fluid at the boundary points, causing
it to enter and swell the polymer. The requirement for the three dimensional governing system to have one-
dimensional solutions determines the (pressure) Lagrange multiplier. Moreover, it follows from the equation
of balance of mass, that the center of mass velocity is independent of space. This motivates us to rewrite the
governing equations in terms of the relative fluid-polymer velocity, U = v1 − v2. Another implication of the
one dimensional geometry is that the volume fraction on the boundary is fully determined from the traction
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boundary condition, provided the fluid inertia on the boundary conditions is neglected. In this case, a problem
originally formulated with traction boundary becomes a of Dirichlet type.

Without loss of generality and to simplify the analysis, we assume that the initial domain (also used
as reference configuration) to be the symmetric interval (−1, 1). We use the mass-Lagrangian change of
variables from gas dynamics, to transform the free boundary problem into one with fixed domain. We find
that G′(φ) + U2 < 0 is a necessary and sufficient condition for the governing equation to be hyperbolic, and
so, it is necessary that G′(φ) < 0 hold. The function G(φ) corresponds to a one-dimensional stress, and the
condition of negative derivative with respect to φ expresses monotonicity of the stress with respect to the
deformation gradient ux = φI

φ , where φI denotes the reference volume fraction of the polymer. Heuristically,

if G′ is bounded, the hyperbolicity condition is satisfied for sufficiently small relative velocity. Using the
framework introduced in [2] in dealing with the hyperbolic initial-boundary-value problem, we obtain the
local well-posedness of strong solutions for data satisfying the hyperbolicity and uniform Kreiss-Lopatinskĭı
condition. We also consider the long-time existence of classical solutions. We use the method of characteristics
to estimate the C1-norm of solutions. Due to the lack of strong dissipation of the system and the boundary
damping, our estimate does not lead to the existence of global solutions. Instead, we prove that the existence
time is at least of order O (| log ε|), where ε is the C1-deviation from the equilibrium. Such a small-data
large-time existence has to be expected since large data are expected to form singularities. On the other hand,
the hyperbolicity and the dissipative structure make the system amenable to the weak solution theory. In
fact the Cauchy problem of the 1D system has been considered in [4], where an entropy-entropy flux pair was
constructed, allowing one to obtain BV solutions. As for the free boundary problem, at the linearized level,
the presence of shocks is precluded [4]. It would be interesting to know if one can use the entropy information
to build up weak solution for large data in the free boundary setting, but that is beyond the scope of our
present ambitions.

The rest of the paper is organized as follows. In Section 2 we set up the mathematical model that describes
the swelling dynamics of a gel and derive the constitutive equations. We also formulate the one-dimensional
system with boundary conditions. In Section 3 we transform the one-dimensional free-boundary problem into
a fixed-boundary problem using the mass-Lagrangian change of variables, and prove the local well-posedness
of strong solutions to the transformed problem. In Section 4 we prove the long-time well-posedness of classical
solutions.

2. General model of gel-swelling. We begin by setting up the model of the hydrogel postulated in
[4, 5]. We assume that a gel is a saturated, incompressible and immiscible mixture of elastic solid and fluid.
In the reference configuration, the polymer occupies a domain Ω ∈ R3. The solid undergoes a deformation
according to the smooth map

x = x(X, t), such that det(∇x) > 0, X ∈ Ω.(2.1)

We let Ωt = x(Ω) denote the domain occupied by the gel at time t ≥ 0, Γ ⊂ ∂Ωt be the gel-solvent interface
(in the case that Γ = ∂Ωt, the gel is fully surrounded by the solvent), and let F = ∇x denote the deformation
gradient. We label the polymer and fluid components with indices 1 and 2, respectively. A point x ∈ Ωt is
occupied by, both, solid and fluid at volume fractions φ1 = φ1(x, t) and φ2 = φ2(x, t), respectively. We let
v1 = v1(x, t) and v2 = v2(x, t) denote the corresponding velocity fields.

An immiscible mixture is such that the constitutive equations depend explicitly on the volume fractions
φi. We let ρi denote the mass densities of the ith component (per unit volume of gel). They are related to
the intrinsic densities γi by ρi = γiφi, i = 1, 2, which are constant in the case of an incompressible mixture.

2.1. Governing equations. The assumption of saturation of the mixture, that is, that no species other
than polymer and fluid are present, is expressed by the equation

φ1 + φ2 = 1.(2.2)

(In some terminologies, this is condition is also known as incompressibility). The governing equations consist
of the balance of mass and linear momentum of each components as well as the chain-rule relating the time
derivative to the gradient of deformation with the velocity gradient:

∂φi
∂t

+∇ · (φivi)= 0,(2.3)
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γiφi

(
∂vi
∂t

+ (vi · ∇)vi

)
= ∇ · Ti + fi, f1 + f2 = 0,(2.4)

∂F

∂t
+ (v1 · ∇)F= (∇v1)F,(2.5)

x ∈ Ωt, i = 1, 2. Here fi represent drag forces between the components, and Ti is the Cauchy stress tensor of
the ith component. Note that we have used the incompressibility assumption γi = constant in the previous
equations. The Lagrangian form of the equation of balance of mass of the polymer component is

φ1 detF = φI in Ω,(2.6)

where φI is the initial polymer volume fraction in the reference configuration. Note that if detF = 1, then
φI = φ1, so that no changes in the volume fraction of the gel correspond to no changes in volume fraction.
Hence equation (2.6) is equivalent to equation (2.3) with i = 1. Adding equations (2.3), and using the constraint
(2.2) gives

∇ · (φ1v1 + φ2v2) = 0.(2.7)

With this formulation, the final system of the governing equations are (2.4) and (2.5), subject to the
constraints in (2.2), (2.6), and (2.7).

2.2. Boundary conditions. We now specify boundary conditions at the gel-water interface Γ. We
observe that the equations of balance of mass are first order, scalar equations for φ1 and φ2 that require
prescribing initial conditions only. Later, we will assume that the network part of the gel is elastic, with
Newtonian dissipation. The latter will also be assumed for the in-gel and exterior fluids. This requires one
vector boundary condition for each equation. There are two kinds of boundary conditions that we will discuss,
in order to come up with a total of six scalar boundary conditions for the system:

• statements of balance of mass, linear momentum and energy across Γ, and
• relations expressing the permeability properties of the interface.

Balance of mass across Γ. We denote vf the velocity field of the fluid outside the gel network, which is
assumed to be Newtonian. The equation of balance of mass of the fluid across the interface Γ is

(vf − v1) · n = φ2(v2 − v1) · n := w,(2.8)

where n denotes the unit normal to Γ, pointing from the gel to the pure liquid. Note that the last relation
defines the normal component, w, of the relative velocities. We also let t1 and t2 denote a pair of orthonormal
vectors perpendicular to n. Let v be a vector field on Γ. We use the notation ‖ to denote the vector components
tangent to Γ at a point. That is, we write

v = (v · n)n + v‖ = (v · n)n +
∑
i=1,2

(v · ti)ti,

Continuity of the components of the velocity tangent to Γ. We assume the following no-slip condition

(vf − v1)‖ = (v2 − v1)‖ := q.(2.9)

Remark 2.1. The no-slip assumption equating the tangential components of the fluid velocity, relative to
the polymer one, across Γ may admit a generalization of the form

(vf − v1)‖ = ηv(v2 − v1)‖ := q,(2.10)

where ηv > 0 is a dimensionless parameter related to the surface viscosity. We will observe next that this
brings tangential stress components in the balance of linear momentum equation.
Balance of linear Momentum across Γ. We next consider force balance across the interface Γ. Consider a point
x ∈ Γ at a time t, and let us observe this point in an inertial frame traveling with the same velocity as the
polymer at point x and time t. Given equations (2.8) and (2.9) we observe that the water in the fluid region
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travels at velocity wn + q and in the gel region travels with velocity w
φ2

n + q. the change of mass of water

across the interface per unit time at point x at time t is given by γ2|w|. As water comes out of or into the gel
region, corresponding to the collapsing (w > 0) or swelling state (w < 0), respectively, there is the following
amount of momentum change from the gel region to the water region per unit time:

γ2|w|
(
wn− w

φ2
n

)
.(2.11)

The force acting at the interface is given by:

(T1 + T2 − T )n.(2.12)

The law of balance of linear momentum gives

(T1 + T2 − T )n = γ2|w|w
(

1− 1

φ2

)
n.(2.13)

Note that this implies, in particular, that

(T1 + T2 − T )n · ti = 0, i = 1, 2.(2.14)

Note that the difference in the stress across the boundary is normal to the interface. In particular, we have:

(T1n + T2n− T n) · q = 0(2.15)

since q is tangential to the surface Γ.
At this point, we have the boundary conditions (2.8), (2.9) and (2.13) on Γ, which together give us six

boundary conditions. Mass balance and total force balance would provide the necessary number of boundary
conditions if the interior of Ωt were composed of a one-phase medium. Here, the interior of Ωt is a two-phase
gel. We thus require three additional boundary conditions, assuming that all of the phases have bulk viscous
stresses. This corresponds to specifying some condition that involves w and q. The appropriate forms for
these boundary conditions will be discussed shortly.

We now check that the boundary conditions (2.8), (2.9) and (2.13) lead to mass and momentum conser-
vation. Let us first check that the amount of water is conserved:

d

dt

(∫
Ωt

φ2dx +

∫
Ωc

t

dx

)

=

∫
Γ

φ2(v2 − v1) · ndS−
∫

Γ

(vf − v1) · ndS

=0,

where we used (2.8) in the second equality.
Now, we turn to momentum conservation. We have:

d

dt

(∫
Ωt

(γ1φ1v1 + γ2φ2v2) dx +

∫
Ωc

t

γ2vfdx

)

=

∫
Γ

(γ2φ2 |(v1 − v2) · n|v2 + T1n + T2n) dS

−
∫

Γ

(γ2 |(v1 − vf ) · n|vf + T n) dS

=

∫
Γ

(γ2(v2 − vf )|w|+ (T1n + T2n− T n)) dS

=

∫
Γ

(
γ2

(
1

φ2
− 1

)
w|w|n + (T1n + T2n− T n)

)
dS

= 0
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where we used (2.8) in the second and third equalities, (2.9) in the third equality and (2.13) in the last equality.

Balance of energy across Γ. Next, we consider energy conservation. The final form of our energy relation will
lead us to possible forms for the additional boundary conditions we shall impose on our system.

d

dt

(∫
Ωt

(
1

2
γ1φ1‖v1‖2 +

1

2
γ2φ2‖v2‖2

)
dx +

∫
Ωc

t

1

2
γ2‖vf‖2dx

)
(2.16)

=

∫
Ωt

(v1(∇ · T1) + v2(∇ · T2)) dx +

∫
Ωc

t

vf (∇ · T )dx

+

∫
Γ

(
1

2
γ2φ2‖v2‖2(v1 − v2) · n− 1

2
γ2‖vf‖2(v1 − vf ) · n

)
dS

=−
∫

Ωt

((∇v1)T1 + (∇v2)T2) dx−
∫

Ωc
t

(∇vf )T dx

+

∫
Γ

((T1n) · v1 + (T2n) · v2 − (T n) · vf ) dS

+

∫
Γ

(
1

2
γ2φ2‖v2‖2(v1 − v2) · n− 1

2
γ2‖vf‖2(v1 − vf ) · n

)
dS.

Let us evaluate the last two boundary integrals. Using (2.8) and (2.9) we have:

(T1n) · v1 + (T2n) · v2 − (T n) · vf(2.17)

=(T1n + T2n− T n) · v1 +

(
n ·
(
T2

φ2
n

)
− n · (T n)

)
w + (T2n− T n) · q

=−γ2w
2

(
1− 1

φ2

)
(v1 · n) +

(
n ·
(
T2

φ2
n

)
− n · (T n)

)
w − (T1n) · q

where we used (2.8) and (2.9) in the first equality and (2.15) in the second equality. On the other hand,

1

2
γ2φ2‖v2‖2(v1 − v2) · n− 1

2
γ2‖vf‖2(v1 − vf ) · n(2.18)

=−1

2
γ2‖v1 +

w

φ2
n + q‖2w +

1

2
γ2‖v1 + wn + q‖2w

=γ2w
2

(
1− 1

φ2

)
(v1 · n)−

(
1

2
γ2

(
w

φ2

)2

− 1

2
γ2w

2

)
w

where we used (2.8) in the first equality. We may go back to (2.16) to conclude that:

d

dt

(∫
Ωt

(
1

2
γ1φ1‖v1‖2 +

1

2
γ2φ2‖v2‖2

)
dx +

∫
Ωc

t

1

2
γ2‖vf‖2dx

)
(2.19)

=−
∫

Ωt

((∇v1)T1 + (∇v2)T2) dx−
∫

Ωc
t

(∇vf )T dx

−
∫

Γ

((
n · (T n)− 1

2
γ2w

2

)
−

(
n ·
(
T2

φ2

)
n− 1

2
γ2

(
w

φ2

)2
))

w dS

−
∫

Γ

(T1n) · q dS.

The last two boundary integrals denote the change in energy coming from the surface Γ. We would like these
terms to be negative. One way to achieve this would be to let:

η⊥w=

(
n · (T n)− 1

2
γ2w

2

)
−

(
n ·
(
T2

φ2

)
n− 1

2
γ2

(
w

φ2

)2
)
,(2.20)

η‖q= (T1n)‖,(2.21)
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where η⊥ and η‖ are positive constants and (T1n)‖ denotes the component of T1n that is tangential to the
membrane. The above conditions provide the additional three boundary conditions we need on Γ. The
boundary condition (2.20) depends quadratically on w and is physically reasonable only if w is sufficiently
small. This difficulty will not arise if we neglect inertial terms and set γi = 0, i = 1, 2. For most practical
situations, inertial effects can be safely neglected. If we substitute (2.20) and (2.21) into (2.19), we have:

d

dt

(∫
Ωt

(
1

2
γ1φ1‖v1‖2 +

1

2
γ2φ2‖v2‖2

)
dx +

∫
Ωc

t

1

2
γ2‖vf‖2dx

)

=−
∫

Ωt

((∇v1)T1 + (∇v2)T2) dx−
∫

Ωc
t

(∇vf )T dx−
∫

Γ

(
η⊥w

2 + η‖‖q‖2
)
dS.

2.3. Energy dissipation and constitutive equations. The free energy density Ψ of the gel consists
of the elastic energy WP (F ) of the polymer and the Flory–Huggins energy of mixing WFH(φ1, φ2) [10, 11]:

Ψ = φ1WP (F ) +WFH(φ1, φ2), with(2.22)

WFH(φ1, φ2) = aφ1 log φ1 + b φ2 log φ2 + c φ1φ2,(2.23)

a =
KBT

VmN1
, b =

KBT

VmN2
, c =

KBT

2Vm
χ,

where various parameters above are of the following physical interpretations:
1. KB is the Boltzmann constant, and T is the absolute temperature;
2. Vm is the volume occupied by one monomer;
3. N1, N2 are the numbers of lattice sites occupied by the polymer and the solvent, respectively;
4. χ = χ(φ1, φ2) is the Flory interaction parameter;

In this way, the total energy of the gel is given by

E=

∫
Ωt

(γ1

2
φ1‖v1‖2 +

γ2

2
φ2‖v2‖2 + Ψ

)
dx +

∫
Ωc

t

γ2

2
‖vf‖2dx.(2.24)

:= EP + ES .

We now show that smooth solutions to the governing equations satisfy a dissipation inequality, and the
dissipation inequality suggests the exact form of the Cauchy stress tensors for the ith component, Ti. We

define Ti as the sum of reversible stress T (r)
i and viscous stress T (v)

i for i = 1, 2:

Ti = T (r)
i + T (v)

i .(2.25)

Specifically, the dissipation inequality allows us to obtain the exact form of the reversible stress T (r)
i , the

viscous stress T (v)
i , and the expressions for the friction forces fi. The derivation of the dissipation inequality

uses a similar approach as in [5], and we here follow the presentation from [3].
Theorem 2.2. (Dissipation Relation) Suppose that {vi, φi} are smooth solutions of equations (2.2)–(2.7)

with boundary conditions (2.8), (2.9), (2.13), (2.20) and (2.21) on Γ. Let p denote the Lagrange multiplier
corresponding to the constraint (2.7). Assume that the following constitutive equations for the stress tensors
components hold:

T (r)
1 = φ1

∂WP

∂F
FT −

[
φ1

(
∂WFH

∂φ1
− ∂WFH

∂φ2

)
−WFH + pφ1

]
I,(2.26)

T (r)
2 = −φ2pI,(2.27)

T (v)
i = ηiD(vi) + µi(∇ · vi)I(2.28)

with i = 1, 2, where ηi > 0 and µi > 0 denote the shear and bulk viscosities of the ith component, respectively,
and D(v) := 1

2 (∇v +∇vT ) is the symmetric part of the velocity gradient. Suppose that the solvent-polymer
friction forces are given by

f1 = p∇φ1 − κ(v1 − v2), f2 = −f1,(2.29)
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with κ > 0 denoting the gel permeability coefficient. Then the following dissipation relation holds:

dE
dt

=−
∫

Ωt

[∑
i

(
ηi‖D(vi)‖2 + µi(∇ · vi)2

)
+ κ‖v1 − v2‖2

]
dx

−
∫

Γ

(
η⊥w

2 + η‖‖q‖2
)
dS(2.30)

where n represents the unit outer normal to Ωt.
Proof. Without loss of generality, assume that γ1 = γ2 = 1. We observe that the boundary of the gel is

determined by that of the polymer network and moves with velocity v1. We first calculate the time derivative
of E . Using the Reynolds Transport Theorem, and taking into account that the boundary ∂Ωt moves with the
network speed v1, we have

dEP
dt

=

∫
Ωt

[
∂

∂t

(
φ1

2
‖v1‖2 +

φ2

2
‖v2‖2

)
+∇ ·

(
v1
φ1

2
‖v1‖2

)
+∇ ·

(
v1
φ2

2
‖v2‖2

)]
dx

+

∫
Ωt

[
∂Ψ

∂t
+∇ · (v1φ1WP ) +∇ · (v1WFH)

]
dx.

Next, expand ∂Ψ
∂t in terms of φ1, φ2, F using the chain rule to obtain

dEP
dt

=

∫
Ωt

[
∂

∂t

(
φ1

2
‖v1‖2 +

φ2

2
‖v2‖2

)
+∇ ·

(
v1
φ1

2
‖v1‖2

)
+∇ ·

(
v1
φ2

2
‖v1‖2

)]
dx

+

∫
Ωt

[(
WP +

∂WFH

∂φ1

)
φ1,t +

(
∂WFH

∂φ2

)
φ2,t + φ1

∂WP

∂F
: Ft

]
dx

+

∫
Ωt

[
(∇ · v1)φ1WP + v1 · ∇(φ1WP ) +∇ · (v1WFH)

]
dx.

Equation (2.3) of balance of mass, ∂φi

∂t = −∇ · (φivi), for i = 1, 2 yields

dEP
dt

=

∫
Ωt

[
∂

∂t

(
φ1

2
‖v1‖2 +

φ2

2
‖v2‖2

)
+∇ ·

(
v1
φ1

2
‖v1‖2

)
+∇ ·

(
v1
φ2

2
‖v2‖2

)]
dx

+

∫
Ωt

[
−
(
WP +

∂WFH

∂φ1

)
∇ · (φ1v1)−

(
∂WFH

∂φ2

)
∇ · (φ2v2) + φ1

∂WP

∂F
: Ft

]
dx

+

∫
Ωt

[
(∇ · v1)φ1WP + v1 · ∇(φ1WP ) +∇ · (v1WFH)

]
dx.

Gathering the terms involving WFH and using the incompressibility of mixture constraint in equation (2.2)
gives the following:

−∂WFH

∂φ1
∇ · (φ1v1)− ∂WFH

∂φ2
∇ · (v2φ2) + v1 · ∇WFH +WFH∇ · v1

= ∇ ·
(
φ1v1)

(
− ∂WFH

∂φ1
+
∂WFH

∂φ2

)
+ v1 ·

(
∂WFH

∂φ1
∇φ1 +

∂WFH

∂φ2
∇φ2

)
+WFH∇ · v1

=

[
φ1

(
∂WFH

∂φ2
− ∂WFH

∂φ1

)
+WFH

]
(∇ · v1)

Substituting it into the expression for dEP
dt gives

dEP
dt

=

∫
Ωt

[
∂

∂t

(
φ1

2
‖v1‖2 +

φ2

2
‖v2‖2

)
+∇ ·

(
v1
φ1

2
‖v1‖2

)
+∇ ·

(
v1
φ2

2
‖v2‖2

)]
dx

+

∫
Ωt

{
φ1
∂WP

∂F
: Ft +

[
φ1

(
∂WFH

∂φ2
− ∂WFH

∂φ1

)
+WFH

]
(∇ · v1) + φ1v1 · ∇WP

}
dx.
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Next, we apply the chain-rule relation between material and spatial time derivatives,

DF

dt
= Ft + (v1 · ∇)F = (∇v1)F ,(2.31)

to obtain the following identity:

φ1
∂WP

∂F
: Ft + φ1v1 · ∇WP

= φ1
∂WP

∂F
: Ft + φ1v1

(
∂WP

∂F
: ∇F

)
= φ1

∂WP

∂F
: (Ft + v1 · ∇F ) = φ1

∂WP

∂F
: ∇v1F.

The expression for dEP
dt simplifies to

dEP
dt

=

∫
Ωt

[
∂

∂t

(
φ1

2
‖v1‖2 +

φ2

2
‖v2‖2

)
+∇ ·

(
v1
φ1

2
‖v1‖2

)
+∇ ·

(
v1
φ2

2
‖v2‖2

)]
dx

+

∫
Ωt

{
φ1
∂WP

∂F
: ((∇v1)F ) +

[
φ1

(
∂WFH

∂φ2
− ∂WFH

∂φ1

)
+WFH

]
(∇ · v1)

}
dx

In the final steps, we address the kinetic energy terms. Using the equations of balance of mass and linear
momentum of for i = 1, we calculate:

∂

∂t

(
1

2
φ1‖v1‖2

)
+∇ ·

(
v1

1

2
φ1‖v1‖2

)
= φ1v1 · v1,t +

1

2
‖v1‖2

(
∂φ1

∂t
+∇ · (φ1v1)

)
+

1

2
φ1bv1 · ∇

(
‖v1‖2

)
= φ1v1 · v1,t −

1

2
‖v1‖2∇ · (φ1v1) +

1

2
‖v1‖2∇ · (φ1v1) + φ1v1 · (∇v1)Tv1

= φ1v1 ·
Dv1

Dt
= v1 · (∇ · T1 + f1)

Here, D
Dt denotes the material time derivative. Likewise,

∂

∂t

(
1

2
φ2‖v2‖2

)
+∇ ·

(
v1

1

2
φ2‖v2‖2

)
= φ2v2 · v2,t +

1

2
‖v2‖2

(
∂φ2

∂t
+∇ · (φ2v1)

)
+

1

2
φ2v1 · ∇

(
‖v2‖2

)
= φ2v2 · v2,t −

1

2
‖v2‖2∇ · (φ2v2) +

1

2
‖v2‖2∇ · (φ2v1) + φ2v1 · (∇v2)Tv2

= φ2v2 · v2,t + φ2v2 · (∇v2)Tv2 + φ2v1 · (∇v2)Tv2

−φ2v2 · (∇v2)Tv2 +
1

2
‖v2‖2∇ · (φ2(v1 − v2))

= φ2v2 ·
Dv2

Dt
+ φ2(∇v2)Tv2 · (v1 − v2) +

1

2
‖v2‖2∇ · (φ2(v1 − v2)).

Integrating the last term by parts gives∫
Ωt

[
∂

∂t

(
1

2
φ2‖v2‖2

)
+∇ ·

(
v1

1

2
φ2‖v2‖2

)]
dx

=

∫
Ωt

[
φ2v2 ·

Dv2

Dt
+ φ2(∇v2)Tv2 · (v1 − v2) +

1

2
‖v2‖2∇ · (φ2(v1 − v2))

]
dx

=

∫
Ωt

φ2v2 ·
Dv2

Dt
dx +

∫
Γ−

1

2
φ2‖v2‖2(v1 − v2) · n dS.
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Plugging in the Lagrange multiplier we have that, for i = 1, 2,

dEP
dt

=

∫
Ωt

∑
i

(vi · (∇ · Ti) + fi · vi + p∇ · (φivi)) dx

+

∫
Ωt

{
φ1
∂WP

∂F
: (∇v1)F +

[
φ1

(
∂WFH

∂φ2
− ∂WFH

∂φ1

)
+WFH

]
(∇ · v1)]

}
dx

+
1

2

∫
∂Ωt

φ2‖v2‖2(v1 − v2) · n dS.

Integrating by parts on the term ∇ · Ti for i = 1, 2 gives,

dEP
dt

=

∫
Ωt

∑
i

(−∇vi · Ti − pφi(∇ · vi) + fi · vi − p∇φi · vi) dx

+

∫
Ωt

{
φ1
∂WP

∂F
: (∇v1)F +

[
φ1

(
∂WFH

∂φ2
− ∂WFH

∂φ1

)
+WFH

]
(∇ · v1)

}
dx

+

∫
∂Ωt

[
Tivi +

1

2
φ2‖v2‖2(v1 − v2)

]
· n dS.(2.32)

The time derivative dES
dt is treated in a similar way giving

dES
dt

= −
∫

Ωc
t

∇vf · T dx−
∫

Γ

(
T vf +

‖vf‖2

2
(v1 − vf )

)
· n dS.(2.33)

Therefore the conclusion follows by adding up (2.32) and (2.33), and using Ti as in (2.26) and (2.28), fi
as given by (2.29), and all the boundary conditions.

We further assume that the polymer is an isotropic elastic material, that is,

WP (F ) =WP (I1, I2, I3), I1 = trC, I2 =
1

2

[
tr 2(C)− (tr C)2

]
, I3 = det C,(2.34)

where C = FTF . Here we take WP (F ) to be of the following form

WP (F ) = (Is1 − c) + α0(I
− r

2
3 − 1) + β0I

1
2
3 + β1I

q
2
3(2.35)

where c, α0, β0, β1 > 0, r ≥ 1 and s, q > 1.
As for the Flory-Huggins mixture energy, we adopt the interaction equation from Horkay et al. [13] as

follows.

χ(φ1, φ2) = χ0 + χ1φ1 + χ2φ
2
1.(2.36)

Further computation gives the following results for the reversible stress tensors

T (r)
1 = 2sIs−1

1 FFT +
[
−α0r(detF )−r + β0 detF + β1q(detF )q

]
I

−
{
φ1

[(
KBT

2Vm
χ0φ2 +

KBT

N1Vm
log φ1 +

KBT

N1Vm
+ 2χ1φ1φ2 + 3χ2φ

2
1φ2

)
−
(
KBT

2Vm
χ0φ1 +

KBT

N2Vm
log φ2 +

KBT

N2Vm
+ χ1φ

2
1 + χ2φ

3
1

)]
(2.37)

−
(
KBT

2Vm
χ0φ1φ2 +

KBT

N1Vm
φ1 log φ1 +

KBT

N2Vm
φ2 log φ2

)
+χ1φ

2
1φ2 + χ2φ

2
1φ2 + pφ1

}
I,

T (r)
2 = −pφ2I.(2.38)
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2.4. A new field of unknowns. Now we will formulate the effective governing equations in terms of
the center of mass velocity V = φ1v1 + φ2v2 and the diffusion velocity U = v1 − v2. Hence the new field of
unknowns is

{V,U, φ1, p, F}.

The total stress of the system is

T = T (r)
1 + T (r)

2 − φ1φ2U⊗U,

In this way, in Eulerian coordinates, the governing equations (2.2)–(2.7) become

∂φ1

∂t
+ [(V + (1− φ1)U) · ∇]φ1 + φ1∇ · [V + (1− φ1)U] = 0,(2.39)

∂V

∂t
+ (V · ∇)V = ∇ · T ,(2.40)

∂U

∂t
+ (1− 2φ1)(∇U)U− (U⊗U)∇φ1 + (∇V)U + (∇U)V

=
1

φ1
∇ · T1 −

1

1− φ1
∇ · T2 −

β

φ1(1− φ1)
U +

λ∇φ1

φ1(1− φ1)
,(2.41)

Ft + [V + (1− φ1)U] · ∇F = ∇ [V + (1− φ1)U]F,(2.42)

∇ ·V = 0.(2.43)

The first and second equations give the balance of mass and linear momentum for the mixture. The third
equation can be interpreted as giving the evolution of the microstructure of the gel. Equation (2.42) is a
version of the chain rule relating time derivatives of F with velocity gradients. This equation is required in
mixed solid-fluid systems [18]. The last equation looks like an incompressibility condition of the mixture and
is from the balance of mass and the constraint φ1 + φ2 = 1.

In application to modeling gliding behavior of bacteria by polysaccharide swelling, the problem can be
thought of as in one dimensional [12]. We consider the gel occupying a strip domain {(x, y, z) : −L ≤ x ≤ L}
for some L > 0. Now the fields of problem become

V = (v(x, t), 0, 0), U = (u(x, t), 0, 0), φ1 = φ(x, t), p = p(x, y, z, t).(2.44)

The deformation gradient is

F = diag(detF (x, t), 1, 1).(2.45)

From (2.6), φ(x, t) detF (x, t) = φI . We can also write down the stress tensors (2.37) and (2.38) in the
one-dimension formulation

T1= φ

{
2s
(
φ2
Iφ
−2 + 2

)s−1
diag

(
φ2
Iφ
−2, 1, 1

)
− α0φ

−r
I rφrI + β0

φI
φ

I + β1qφ
q
Iφ
−qI

}
−
{
φ

[(
KBT

2Vm
χ0(1− φ) +

KBT

N1Vm
log φ+

KBT

N1Vm
+ 2χ1φ(1− φ) + 3χ2φ

2(1− φ)

)
−
(
KBT

2Vm
χ0φ+

KBT

N2Vm
log(1− φ) +

KBT

N2Vm
+ χ1φ

2 + χ2φ
3

)]
(2.46)

−
(
KBT

2Vm
χ0φ(1− φ) +

KBT

N1Vm
φ log φ+

KBT

N2Vm
(1− φ) log(1− φ)

)
+χ1φ

2(1− φ) + χ2φ
2(1− φ) + pφ

}
I,

T2= −p(1− φ)I.(2.47)

The second and third equations of (2.40) indicate that p = p(x, t) is independent of y and z. Moreover,
equation (2.43) together with the first component of equation (2.44) gives v = v(t). Prescribing the initial

2-10



condition v(0) = 0 leads to v(t) = 0 for all t > 0, provided that ∇ · T = 0 holds. The latter determines p in
terms of φ and u, up to a constant. In this way we arrive at the following system for φ and u

φt + [φ(1− φ)u]x = 0,

ut +

[
1

2
u2(1− 2φ)−G(φ)

]
x

= − βu

φ(1− φ)
,

(2.48)

where

G(φ) =
KBT log(1− φ)

N2Vm
− KBT log(φ)

N1Vm
+ (q − 1)β1φ

q
Iφ
−q − (1 + r)α0φ

−r
I φr

+

(
2 +

φ2
I

φ2

)s(
2sφ2

I

φ2
I + 2φ2

− 1

)
+
KBTχ0φ

Vm
− 2χ1φ+ 3(χ1 − χ2)φ2 + 4χ2φ

3.(2.49)

2.5. Boundary conditions. We assume initially, the polymer occupies the domain Ω0 = {(x, y, z) :
−L < x < L}, and the solvent is in |x| > L. At a later time t > 0, the gel occupies the region Ωt = {(x, y, z) :
−S1(t) < x < S2(t)}, where x = S1,2(t) are the positions of the interface between the gel and the pure solvent.
Therefore inside the polymer region −S1(t) < x < S2(t) equations (2.48) hold for φ and u.

The general boundary conditions are described in Section 2.2. Here we further simply the problem by
ignoring the inertial effects from the system and hence the stress balance (2.13) now becomes

(T1 + T2)n = T n, on Γ.(2.50)

The other boundary conditions we impose here for our problem characterize the degree of permeability of
the interface (see also, for instance, [9, 20, 21]). Again with no inertial effects, (2.20) becomes

η⊥w = n · (T n)− n ·
(
T2

φ2

)
n.(2.51)

We now classify the boundary permeability in the following way
(1) The interface is fully permeable if η⊥ = 0. Thus

n · (T n)− n ·
(
T2

φ2

)
n = 0, on Γ.(2.52)

(2) The interface is impermeable if η⊥ =∞. In this case w = 0, that is

v1 · n = v2 · n, on Γ.(2.53)

(3) The interface is semipermeable for η⊥ ∈ (0,∞).
In this paper we will consider the fully permeable interface. Hence from (2.50) and (2.52) we know that

n ·
(
T1 −

φ1

φ2
T2

)
n = 0.

In one dimension, plugging in (2.46), (2.47) and the above we obtain

0 = φ

{
2s
(
φ2
Iφ
−2 + 2

)s−1
φ2
Iφ
−2 − α0φ

−r
I rφr + β0

φI
φ

+ β1qφ
q
Iφ
−q
}

−
{
φ

[(
KBT

2Vm
χ0(1− φ) +

KBT

N1Vm
log φ+

KBT

N1Vm
+ 2χ1φ(1− φ) + 3χ2φ

2(1− φ)

)
−
(
KBT

2Vm
χ0φ+

KBT

N2Vm
log(1− φ) +

KBT

N2Vm
+ χ1φ

2 + χ2φ
3

)]
(2.54)

−
(
KBT

2Vm
χ0φ(1− φ) +

KBT

N1Vm
φ log φ+

KBT

N2Vm
(1− φ) log(1− φ)

)
+χ1φ

2(1− φ) + χ2φ
2(1− φ)

}
. on Γ.
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Therefore we can determine the saturation value φ = φ∗ at the interface. In other words, the locations of the
interface x = −S1(t) and x = S2(t) are determined by the saturation value φ∗, i.e. φ(t,−S1(t)) = φ(t, S2(t)) =
φ∗.

The kinematic boundary condition asserts that the interface moves with the speed of the polymer, which
means −S′1(t) = [1 − φ(t,−S1(t))]u(t,−S1(t)) and S′2(t) = (1 − φ(t, S2(t)))u(S2(t), t). Therefore we have
obtained the initial and boundary conditions as follows

φ(x, t) = φ∗, at x = −S1(t), S2(t)
S1(0) = L, S′1(t) = −[1− φ(t,−S1(t))]u(t,−S1(t))
S2(0) = L, S′2(t) = [1− φ(t, S2(t))]u(t, S2(t))
φ(x, 0) = φ0, u(x, 0) = u0, for − L < x < L.

(2.55)

3. The transformed problem. In this section we aim to setup a fixed-boundary problem associated to
(2.48) and (2.55) and establish the local-wellposedness of strong solutions.

To transform the free boundary to a fixed boundary, we perform the following change of coordinates

y =

∫ x

−S1(t)

φ(z, t) dz, τ = t.(3.1)

Because
∫ S2(t)

−S1(t)
φ dz gives the total mass of the polymer, we may normalize that to be 1. In this way the free

domain (−S1(t), S2(t)) becomes the fixed domain (0, 1). Therefore the free boundary problem now turns into
φτ + φ2(1− φ)uy − φ2φyu = 0,

uτ − φ2uuy − u2φφy −G′(φ)φφy = −βu
φ(1−φ) ,

φ(y, τ) = φ∗, for y = 0, 1
φ(y, 0) = φ0, u(y, 0) = u0, for 0 < y < 1.

(3.2)

To further rewrite the system, we let ψ = 1/φ and f(s) satisfy that f ′(s) = sG′(s). Then let F (s) = f(1/s).
In this way the above system becomes the following initial-boundary value problem

(
ψ
u

)
τ

+

 −
(

1− 1

ψ

)
u

− u2

2ψ2
− F (ψ)


y

=

 0
−βuψ

(1− 1
ψ )

 , in (0, 1)× (0, T )

ψ = ψ∗, at y = 0, 1,(
ψ
u

) ∣∣∣
τ=0

=

(
ψ0

u0

)
, for 0 < y < 1,

(3.3)

where ψ∗ = 1/φ∗ and ψ0 = 1/φ0. The gradient matrix is

A(ψ, u) =


− u

ψ2

1− ψ
ψ

u2 +G′(1/ψ)

ψ3
− u

ψ2


with eigenvalues

λ1,2(ψ, u) =

−u∓
√[

u2 +G′(1/ψ)
]
(1− ψ)

ψ2
,(3.4)

and the corresponding left and right eigenvectors are

L1,2(ψ, u) =
(
∓ 1

ψ

√
u2 +G′(1/ψ)

1− ψ
, 1
)

(3.5)
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and

R1,2(ψ, u) =

 ∓ψ
√

1− ψ
u2 +G′(1/ψ)

1

 .(3.6)

In the range of physical parameters corresponding to semi-dry polymer we have 0 < φ < 1, hence 1 < ψ.
Thus the system (3.3) is hyperbolic if

u2 +G′(1/ψ) < 0.(3.7)

Hence G′(φ) < 0 will be needed to guarantee hyperbolicity of the governing system, and therefore is a
requirement for the propagation of the swelling front towards the solvent region. It turns out that this
condition is satisfied for polymer data (see Fig.1). However in the case of polysaccharide data, there may
be multiple quantities φc such that G′(φc) = 0 (see Fig.2). This may be interpreted in terms of the onset
of deswelling, observed in bacteria motility phenomenon [12]; it may also be associated with volume phase
transitions observed in systems with a small elastic shear modulus [16].

one− dimensional stress G(φ)

φ

G(φ)
G�(φ)

φ

graph of G�(φ)

Fig. 3.1. G and G′ for polymer data

one− dimensional stress G(φ)

G(φ)

φ

φ

G�(φ)

graph of G�(φ)

Fig. 3.2. G and G′ for polysaccharide data

parameter N1 N2 q s r α β1 φI χ0 χ1 χ2

polymer 1000 1 N1 6 1.25 0.001 20 0.05 0.467 0.593 −0.42

polysaccharide 1000 1 2 0.6 1.25 0.001 0.002 0.05 0.446 0.106 −0.02

parameter values

In concern with the local-wellposedness of system (3.3), we need to check the following conditions (see
[2]):

C1. Non-characteristic condition. The matrix A(ψ, u) is non-singular for (ψ, u) in a certain proper domain
M.
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C2. Normality. The boundary matrix B is of constant, maximal rank and

R2= kerB ⊕ Es(A(ψ, u)) at y = 1

= kerB ⊕ Eu(A(ψ, u)) at y = 0,

where Es(A(ψ, u)) is the stable subspace of A(ψ, u) and Eu(A(ψ, u)) is the unstable subspace of
A(ψ, u).
Note that in our problem, the boundary matrix is

B =

(
1 0
0 0

)
.

C3. Uniform Kreiss-Lopatinskĭı (UKL) condition. for all (ψ, u) ∈M there exists C > 0 so that

‖V ‖ ≤ C‖BV ‖(3.8)

for all V in the unstable subspace of A−1(ψ, u) at y = 0 and for all V in the stable subspace of
A−1(ψ, u) at y = 1.

Consider now our problem (3.3), the first two conditions (C1) and (C2) are equivalent to

λ1(ψ, u) < 0 < λ2(ψ, u),(3.9)

which is, from (3.4)

u2 <
1− ψ
ψ

G′(1/ψ).(3.10)

Notice that since ψ > 0, (3.10) implies that G′(1/ψ) < 0 and moreover the hyperbolicity condition (3.7).
As for the third condition (C3), the stable and unstable subspaces of A−1(ψ, u) is spanned by R1 and R2

(as defined in (3.6)) respectively. Hence the UKL condition (3.8) is satisfied when there exists a γ > 0 such
that

ψ

√
1− ψ

u2 +G′(1/ψ)
≥ γ.(3.11)

In order to establish the wellposedness of the initial-boundary value problem (3.3) in some strong Sobolev
space Hm with m > 2 being some integer, the data should satisfy the compatibility condition

∂pt ψ
∗(y, 0) = ∂pt ψ(y, 0), at y = 0, 1,

for all p ∈ {0, 1, . . . ,m− 1}. Since ψ∗ is some constant, the above condition is simply{
ψ∗ = ψ0(1) = ψ0(0)
∂pt ψ(y, 0) = 0, at y = 0, 1, for all p ∈ {1, . . . ,m− 1}.(3.12)

We can now state our local-wellposedness result.
Theorem 3.1. [2] If m > 2 is an integer, then for all (ψ0, u0) ∈ Hm+1/2([0, 1])×Hm+1/2([0, 1]) satisfying

(3.10), (3.11), and the compatibility condition (3.12), there exists T > 0 such that the problem (3.3) admits a
unique solution u ∈ Hm([0, 1]× [0, T ]).

4. Long time existence of classical solutions. The Cauchy problem of system (2.48) was discussed
in [4]. The authors showed that the Cauchy problem is L1-stable, and the source term is merely weakly
dissipative. However, due to the result in [7], the global existence of BV solutions can still be obtained.

In concern of classical C1 solutions to the initial-boundary value problem of (3.3), the short time existence
can be established using the general approach introduced in Chapter 4 of [17]. To obtain large time of global
C1 solutions, one needs to control the C1-norm of solutions. It turns out that if the systems exhibits strong
enough dissipation or boundary damping then solutions can be extended globally in time (see, for instance
[15]). However in our case, the above two types of damping are both weak. What we obtain is the large-time
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existence and uniqueness of C1 solutions to the system (3.3), provided that the data are close enough the
equilibrium state (ψ∗, 0).

Let η = ψ − ψ∗. To simplify the notation we still choose (x, t) as the space-time variable. Then (3.3)
becomes 

(
η
u

)
t

+A(η, u)

(
η
u

)
x

+ P (η, u) = 0, in (0, 1)× (0, T )

B

(
η
u

)
=

(
0
0

)
, at x = 0, 1,

(
η
u

) ∣∣∣
t=0

=

(
η0

u0

)
=

(
ψ0 − ψ∗
u0

)
, for 0 < x < 1,

(4.1)

where

A(η, u) =


− u

(η + ψ∗)2

1− (η + ψ∗)

η + ψ∗

u2 +G′(1/(η + ψ∗))

(η + ψ∗)3
− u

(η + ψ∗)2

 , P (η, u) =

 0
βu(η + ψ∗)2

(η + ψ∗)− 1

 .

Now we state our main result.
Theorem 4.1. Suppose that ψ∗ satisfies

1− ψ∗

ψ∗
G′(1/ψ∗) > 0(4.2)

and the C1-compatibility conditions of the initial and boundary data
η0(0) = η0(1) = 0,

− u0

(ψ∗)2
η0
x +

1− ψ∗

ψ∗
u0
x = 0.

(4.3)

hold. Then for any T0 > 0, there exists an ε > 0 so that if

‖(η0, u0)‖C1 ≤ ε, ∀ 0 ≤ x ≤ 1,

then system (4.1) admits a unique classical C1 solution for t ∈ [0, T0). Moreover the estimate of the size
parameter ε in terms of the final time T0 can be formulated as

ε ≤ Ce−CT0 ,

where C > 0 depends on ψ∗. On the other hand, this gives a small-data long-time existence of the system (4.1),
and the dependence of the existence time T0 on the size ε of initial data can be estimated as T0 ≥ O(| log ε|).

Proof. As is pointed at the beginning of this section, the local-in-time wellposedness of C1 solutions can
be proved using the idea from [17]. For the time being, suppose that on the existence domain of C1 solution
η(x, t), u(x, t) we have

|(η, u)(x, t)| ≤ ε0,(4.4)

where ε0 > 0 is a suitably small number so that (3.10) is satisfied for |η|, |u| ≤ ε0. Because of condition (4.2)
and continuity, such an ε0 exists.

To get the large-time existence of solutions, it suffices to prove that we can choose ε0 > 0 small enough
so that for any fixed ε with 0 < ε ≤ ε0, there exists some δ = δ(ε) > 0 small such that if

‖(η0, u0)‖C1 ≤ δ, ∀ 0 ≤ x ≤ 1(4.5)
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holds, then on the whole existence domain of the C1 solution (η, u) we have

‖(η, u)(·, t)‖C1 ≤ ε, ∀ t ≥ 0.(4.6)

First we perform a diagonalization. Let{
vi = Li(η, u)(η, u)T (i = 1, 2),
wi = Li(η, u)(∂xη, ∂xu)T (i = 1, 2),

where Li is the i-th left eigenvector defined in (3.5) with ψ replaced by η + ψ∗. It is not hard to see that
v = (v1, v2) and w = (w1, w2) satisfy the following system of diagonal form (cf. Chapter 3 in [15])

∂tvi + λi∂xvi + κ(v1 + v2) =

2∑
j,k=1

cijkvjvk +

2∑
j,k=1

dijkvjwk

∂twi + λi∂xwi + κ(w1 + w2) =

2∑
j,k=1

c̄ijkwjvk +

2∑
j,k=1

d̄ijkvjwk

(4.7)

for i = 1, 2, where

κ =
β(ψ∗)2

2(ψ∗ − 1)
> 0,

cijk, dijk, c̄ikj and d̄ijk are continuous functions of (η, u), λi(t, x) = λi(η, u) (cf. (3.4) with ψ replaced by
η + ψ∗). Denote the quadratic parts by

Qi(v, w) =

2∑
j,k=1

cijkvjvk +

2∑
j,k=1

dijkvjwk (i = 1, 2),

Q̄i(v, w) =

2∑
j,k=1

c̄ijkwjvk +

2∑
j,k=1

d̄ijkvjwk (i = 1, 2).

The initial condition for v and w is obviously{
vi|t=0 = v0

i = Li(η
0, u0)(η0, u0)T (i = 1, 2),

wi|t=0 = w0
i = Li(η

0, u0)(∂xη
0, ∂xu

0)T (i = 1, 2).

Boundary condition for v:

At x = 0, 1 : B

(
L1

L2

)−1

v =

(
0
0

)
.

Thus

At x = 0, 1 : v1 = v2.(4.8)

Differentiating with respect to t, we get the boundary condition for w:(
0
0

)
= B

(
η
u

)
t

= B
[
−A(η, u)

(
η
u

)
x

− P (η, u)
]

= −BA(η, u)

(
η
u

)
x

= −BA(η, u)

(
L1

L2

)−1(
w1

w2

)
.

Therefore

At x = 0, 1 : w1 = w2.(4.9)
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Therefore in order to prove (4.6), we only need to show that the same estimate holds for ‖(v, w)‖C0 :

|(v, w)(x, t)| ≤ ε.(4.10)

provided that the initial data is small:

|(v0, w0)| ≤ δ, ∀ 0 ≤ x ≤ 1.(4.11)

From (4.4), we may also assume that on the whole existence domain of the C0 solution (v, w),

|(v, w)(x, t)| ≤ ε0.(4.12)

Let

λmin = min{|λi(t, x)| : 0 ≤ t ≤ T, 0 ≤ x ≤ 1, i = 1, 2},
λmax = max{|λi(t, x)| : 0 ≤ t ≤ T, 0 ≤ x ≤ 1, i = 1, 2},
T1 = 1/λmax, T2 = 1/λmin.

Since ε0 is chosen so that the hyperbolicity condition (3.10) holds, we see that λmax ≥ λmin > 0 and hence T1

and T2 are well-defined.
By continuity we know that we can certainly pick some δ > 0 small such that (4.10) holds on some time

domain. Hence to prove (4.10), it is only necessary to show that there exists some ε0 > 0 so small that for
any fixed T > 0, if (4.10) holds on the domain D(T ) = {(t, x) : 0 ≤ t ≤ T, 0 ≤ x ≤ 1}, then it still holds on
D(T + T1), provided that the C0 solution (v, w) exists on such domain.

For this purpose, let

Vi(t) = max
0≤x≤1

|vi(x, t)|, Wi(t) = max
0≤x≤1

|wi(x, t)|, i = 1, 2,

U1(t) = max{V1(t), V2(t)}, U2(t) = max{W1(t),W2(t)}.(4.13)

Suppose that the C0 solution (v, w) exists on D(T + T1) and let ξ = fi(τ ;x, t) be the i-th characteristic
passing through a point (x, t) ∈ D(T + T̄ ) with T ≤ t ≤ T + T1. Then

d

dτ
fi(τ ;x, t) = λi(τ, fi(τ ;x, t)),

τ = t : fi(t;x, t) = x.

(4.14)

From (3.9) we know that for v1(x, t) there are two possibilities:
(1) The first characteristic ξ = f1(τ ;x, t) intersects the interval [0, 1] on x-axis with the intersection point

(f1(0;x, t), 0), see Fig. 3.

t

x10

(x, t)

Fig. 4.1.
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Integrating the first equation in (4.7) along the first characteristic ξ = f1(τ ;x, t) we get

v1(x, t) = e−κtv0
1(f1(0;x, t))−

∫ t

0

κe−κ(t−τ)v2(f1(τ ;x, t), τ)dτ

−
∫ t

0

e−κ(t−τ)Q1(v, w)(f1(τ ;x, t), τ)dτ.(4.15)

From (4.11) and since (4.10) holds on D(T ), we have

eκt|v1(x, t)|≤ δ + (eκT − 1)ε+ Cε2 +

∫ t

T

κeκτV2(τ)dτ + C

∫ t

T

eκτ
2∑
i=1

V 2
i (τ) +W 2

i (τ)dτ

≤ δ + (eκT − 1)ε+ Cε2 +

∫ t

T

κeκτU1(τ)dτ + C

∫ t

T

eκτ (U2
1 (τ) + U2

2 (τ))dτ,(4.16)

where Vi,Wi and Ui were defined in (4.13).
(2) The first characteristic ξ = f1(τ ;x, t) intersects the boundary x = 1 at point (1, τ1(x, t)) where (τ1(x, t))

satisfies

f1(τ1(x, t);x, t) = 1.

Obviously we have

T2 ≥ t− τ1(x, t) ≥ 0.(4.17)

In case (2), for the second characteristic ξ = f2(τ ; 1, τ1(x, t)) passing through (1, τ1(x, t)), there are still
two possibilities:

(2a) This second characteristic intersects the interval [0, 1] on the x-axis with the intersection point
(f2(0; 1, τ1(x, t)), 0), see Fig. 4a.

t

x10

(x, t)

(1, τ1(x, t))

(a)

t

x10

(x, t)

(1, τ1(x, t))

(0, τ12(x, t))
(b)

Fig. 4.2.

(2b) This second characteristic intersects the boundary x = 0 at the intersection point (0, τ12(x, t)) (see
Fig. 4b), where

τ12(x, t) = τ2(τ1(x, t), 1),

in which, τ2(x, t) stands for the t-coordinate of the intersection point of the second characteristic ξ = f2(τ ;x, t)
passing through a point (x, t) with the boundary x = 0:

f2(τ2(x, t);x, t) = 0.

We have

T2 ≥ t− τ2(x, t) ≥ 0.(4.18)
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Therefore

T2 ≥ τ1(x, t)− τ12(x, t) ≥ 0.

Noting (4.17) we get

2T2 ≥ t− τ12(x, t) ≥ T1.

Therefore for T ≤ t ≤ T + T1,

0 ≤ τ12(x, t) ≤ T, T − τ12(x, t) ≤ 2T2.(4.19)

In case (2a), using boundary condition (4.8) we get

eκtv1(x, t)= eκτ1v1(1, τ1)−
∫ t

τ1

κeκτv2(f1(τ ;x, t), τ)dτ −
∫ t

τ1

eκτQ1(v, w)(f1(τ ;x, t), τ)dτ

= eκτ1v2(1, τ1)−
∫ t

τ1

κeκτv2(f1(τ ;x, t), τ)dτ −
∫ t

τ1

eκτQ1(v, w)(f1(τ ;x, t), τ)dτ.

Integrating the second equation in (4.7) along the second characteristic we have

eκτ1v2(1, τ1) = v0
2(f2(0; 1, τ1))−

∫ τ1

0

κeκτv1(f2(τ ; 1, τ1), τ)dτ

−
∫ τ1

0

eκτQ2(v, w)(f2(τ ; 1, τ1), τ)dτ.

Combing the above equalities we get

eκtv1(x, t) = v0
2(f2(0; 1, τ1))−

∫ τ1

0

κeκτv1(f2(τ ; 1, τ1), τ)dτ −
∫ t

τ1

κeκτv2(f1(τ ;x, t), τ)dτ

−
∫ τ1

0

eκτQ2(v, w)(f2(τ ; 1, τ1), τ)dτ −
∫ t

τ1

eκτQ1(v, w)(f1(τ ;x, t), τ)dτ.

We have two cases:
(i) τ1 ≤ T . Then it is easy to see that we have the same estimate as (4.16).

(ii) τ > T . Then

eκt|v1(x, t)|≤ δ + (eκT − 1)ε+ Cε2 +

∫ τ1

T

κeκτV1(τ)dτ +

∫ t

τ1

κeκτV2(τ)dτ

+C

∫ t

T

eκτ
2∑
i=1

V 2
i (τ) +W 2

i (τ)dτ

≤ δ + (eκT − 1)ε+ Cε2 +

∫ t

T

κeκτU1(τ)dτ + C

∫ t

T

eκτ (U2
1 (τ) + U2

2 (τ))dτ,(4.20)

which is again, the same as (4.16).

In case (2b), using the similar idea we obtain

eκtv1(x, t)= eκτ1v1(1, τ1)−
∫ t

τ1

κeκτv2(f1(τ ;x, t), τ)dτ −
∫ t

τ1

eκτQ1(v, w)(f1(τ ;x, t), τ)dτ

= eκτ1v2(1, τ1)−
∫ t

τ1

κeκτv2(f1(τ ;x, t), τ)dτ −
∫ t

τ1

eκτQ1(v, w)(f1(τ ;x, t), τ)dτ.

= eκτ12v2(0, τ12)−
∫ τ1

τ12

κeκτv1(f2(τ ; 1, τ1), τ)dτ −
∫ t

τ1

κeκτv2(f1(τ ;x, t), τ)dτ

−
∫ τ1

τ12

eκτQ2(v, w)(f2(τ ; 1, τ1), τ)dτ −
∫ t

τ1

eκτQ1(v, w)(f1(τ ;x, t), τ)dτ.
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From (4.19) we know that 0 ≤ τ12 ≤ T . Hence we can again split case (2b) in the following two possibilities:
(i) τ1 ≤ T . Then the estimate for |v1(x, t)| is

eκt|v1(x, t)|≤ δ + (eκT − 1)ε+ Cε2 +

∫ t

T

κeκτV2(τ)dτ + C

∫ t

T

eκτ
2∑
i=1

V 2
i (τ) +W 2

i (τ)dτ

≤ δ + (eκT − 1)ε+ Cε2 +

∫ t

T

κeκτU1(τ)dτ + C

∫ t

T

eκτ (U2
1 (τ) + U2

2 (τ))dτ.(4.21)

(ii) τ1 > T . Then

eκt|v1(x, t)|≤ δ + (eκT − 1)ε+ Cε2 +

∫ τ1

T

κeκτV1(τ)dτ +

∫ t

τ1

κeκτV2(τ)dτ

+C

∫ t

T

eκτ
2∑
i=1

V 2
i (τ) +W 2

i (τ)dτ

≤ δ + (eκT − 1)ε+ Cε2 +

∫ t

T

κeκτU1(τ)dτ + C

∫ t

T

eκτ (U2
1 (τ) + U2

2 (τ))dτ.(4.22)

Hence we always have

eκt|v1(x, t)| ≤ δ + (eκT − 1)ε+ Cε2 +

∫ t

T

κeκτU1(τ)dτ + C

∫ t

T

eκτ (U2
1 (τ) + U2

2 (τ))dτ.(4.23)

In the same way, we obtain similar estimates for |v2|, |w1| and |w2|. Therefore we have eκtU1(x, t) ≤ δ + (eκT − 1)ε+ Cε2 +
∫ t
T
κeκτU1(τ)dτ + C

∫ t
T
eκτ (U2

1 (τ) + U2
2 (τ))dτ,

eκtU2(x, t) ≤ δ + (eκT − 1)ε+ Cε2 +
∫ t
T
κeκτU2(τ)dτ + C

∫ t
T
eκτ (U2

1 (τ) + U2
2 (τ))dτ.

(4.24)

Now let eκtY1(x, t) = δ + (eκT − 1)ε+ Cε2 +
∫ t
T
κeκτY1(τ)dτ + C

∫ t
T
eκτ (Y 2

1 (τ) + Y 2
2 (τ))dτ,

eκtY2(x, t) = δ + (eκT − 1)ε+ Cε2 +
∫ t
T
κeκτY2(τ)dτ + C

∫ t
T
eκτ (Y 2

1 (τ) + Y 2
2 (τ))dτ.

(4.25)

Then obviously, Ui ≤ Yi for i = 1, 2 and Yi satisfies
d

dt
Yi(t) = C(Y 2

1 + Y 2
2 ),

Yi(T ) = e−κT
[
δ + (eκT − 1)ε+ Cε2

]
.

(4.26)

Therefore ∀ t ∈ [T, T + T1],

Y (t) ≤ e−κT
[
δ + (eκT − 1)ε+ Cε2

]
+ C

∫ t

T

Y (τ)2dτ,(4.27)

where Y (t) = (Y1(t), Y2(t))T . More precisely, we have ∀ t ∈ [T, T + T1],

Y (t) ≤
e−κT

[
δ + (eκT − 1)ε+ Cε2

]
1− Ce−κT

[
δ + (eκT − 1)ε+ Cε2

]
(t− T )

.(4.28)

Therefore for any given T0 > 0, we can choose 0 < ε0 < 1/(2C) sufficiently small and independent of T . For
any fixed ε (0 < ε ≤ ε0), there exists δ = δ(ε) > 0 also independent of T , such that

Y (t) ≤ e−κT δ + (1− e−κT /2)ε

1− C
[
e−κT δ + (1− e−κT /2)ε

]
T1

≤ ε, ∀ t ∈ [T, T + T1].(4.29)

Therefore we may choose ε0 so small that 2Cε0 < 1 and CT1ε0 < 1/(4eκT0 − 1). Then choose δ ≤ ε/4. In this
way, we further have T0 ∼ | log ε|. This proves the theorem.
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5. Conclusion. We studied the free boundary problem of swelling of a gel with inertia and elastic effects
dominating the viscous ones, in one space dimension. This corresponds to early dynamics regime for many
polymeric gels and also describes the main dynamics for polyssaccharide gel networks. We transform the free
boundary problem of the weakly dissipative hyperbolic governing equation to one fixed domain. As a result of
requiring the system to admit one dimensional solutions, it turns out that the polymer volume fraction at the
interface with the surrounding fluid is fully determined, if we neglect fluid inertia in the boundary conditions.

We find necessary and sufficient conditions for the system to be hyperbolic, this requiring a monotonicity
property of a one-dimensional stress. In current work, we are studying the case that such condition fails, and
found that it may be indicative of two possible phenomena, one being de-swelling, that is the interface will
move backwards, and the second one may be related to the gel locally experiencing a volume phase transition.
This is a phenomenon analogous to the volume transition in polyelectrolyte gels that occur when a relevant
ion concentration reaches a critical value.
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