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Abstract

This paper addresses the problem of energy conservation for the two- and three-dimensional density-
dependent Euler equations. Two types of sufficient conditions on the regularity of solutions are provided
to ensure the conservation of total kinetic energy on the entire time interval including the initial time.
The first class of data assumes integrability on the spatial gradient of the density, and hence covers the
classical result of Constantin-E-Titi [6] for the homogeneous Euler equations. The other type of data
imposes extra time Besov regularity on the velocity profile, and the corresponding result can be applied
to deal with a wide class of rough density profiles.

Résumé Cette article étudie la conservation d’énergie pour les equations d’Euler avec densités variables
en dimension deux et trois. Nous présentons deux types de conditions sur la régularité des solutions,
assurant la conservation de l’énergie cinétique sur l’intervalle de temps considéré, y compris le temps
initial. La première condition est une propriété d’intégrabilité sur le gradient de densité. Elle correspond
à la condition du résultat de Constantin-E-Titi [6] pour le cas homogène. La deuxième famille de condi-
tions impose de la régularité Sobolev en temps sur la vitesse, et permet de considérer une large classe de
profiles de densité peu réguliers.
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1. Introduction

The theory of hydrodynamics is a fascinating subject, with a long history in both pure and applied
mathematics. The first comprehensive model was proposed by Euler in the 1750s, with the most notable
variant introduced almost a century later by Navier and Stokes to allow for viscous effects. Besides
being able to describe smooth flow motion, the Euler equations also model a wide range of fluids with
singularities or limited smoothness, for instance flows with point vortices, vortex sheets, and turbulent
flows in the limit of vanishing viscosity. Such configurations naturally lead to considering the Euler
equations in a weak sense.

Given that the solution to the Euler equations is sufficiently smooth, say, for e.g., C1, it is easy to
see that the total kinetic energy of the flow is conserved. On the other hand it had long been observed
experimentally (but mathematically still open) that anomalous dissipation of energy – energy dissipation
independent of viscosity – persists in fully developed turbulent flow. Therefore it is reasonable to expect
the existence of weak solutions to the Euler equations which do not conserve energy; see Scheffer [30],
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Shnirelman [33] and De Lellis–Székelyhidi [9]. This possibility goes by the name of the “Onsager
conjecture” [28]: non-conservation of energy in the three-dimensional Euler equations would be related
to the loss of regularity. Specifically, Onsager conjectured that every weak solution to the Euler equations
with Hölder continuity exponent α > 1

3 conserves energy; and anomalous dissipation of energy occurs
when α < 1

3 . See [10, 16, 20, 29] for reviews and further discussions.
The first part of the conjecture was proved by Eyink [15], Constantin-E-Titi [6], Duchon-Robert [13],

Cheskidov et al. [4], among others. The sharpest result is given in [4], where the conservation of energy
was proved in the Besov space setting, and the results allow for possible failure of energy conservation
in the endpoint α = 1

3 case.
The development toward the other direction of the conjecture is more recent. The rigorous mathemat-

ical work establishing existence of dissipative weak Euler solutions of the type conjectured by Onsager
began with the pioneering work of DeLellis-Székelyhidi [11, 12] based on the convex integration ap-
proach, and has since culminated in constructions of solutions up to the critical 1/3 regularity [3, 21, 22].

In this paper we consider the energy conservation for the weak solutions of the inhomogeneous Euler
equations, namely

ρt + div(ρu) = 0

(ρu)t + div(ρu ⊗ u) + ∇P = 0

divu = 0,

(1.1)

with initial data
ρ|t=0 = ρ0(x), ρu|t=0 = m0(x) = ρ0u0, (1.2)

where P denotes the pressure, ρ ≥ 0 is the density of fluid, u stands for the velocity of fluid. For the sake
of simplicity we will consider the periodic setting x ∈ TN with N = 2, 3. Here we define u0 = 0 on the
set {x : ρ0(x) = 0}.

Density fluctuations are widely present in turbulent flows. They may arise from non-uniform species
concentrations, temperature variation or pressure. In geo-fluids, for instance, where external forces are
present (e.g. gravity), density stratification can be caused by temperature and salinity gradients (ocean)
or moisture effects (atmosphere). Also, a strong density inhomogeneity can be induced by the mixing of
different-density species. A canonical example is the Rayleigh-Taylor instability of an interface between
two fluids of different densities.

Mathematically, having a variable density changes the regularity structure substantially, and poses
additional challenges compared to the much more extensively studied homogeneous flows. Nevertheless,
some results on the local well-posedness of (1.1) – (1.2) can be found in, for e.g., [7, 8, 27].

When density is not a constant throughout the fluid, the vorticity equation becomes

ωt + u · ω = (ω · ∇)u +
∇ρ × ∇P

ρ2 ,

where in 2D, the cross product is understood as ∇⊥ρ · ∇P. One sees that fluid particles representing
different instantaneous density respond very differently to pressure gradients. Vorticity can be generated
from non-aligned density and pressure gradients (the baroclinic torque). Moreover, the regularity of the
density gradient does not propagate from the initial data. All of these indicate possible energy fluctuation
coming from the loss of smoothness of the density.

On the other hand, the roughness of the density can be “traded off” by assuming more regularity
of the velocity field. The general strategy to prove energy conservation is to mollify the momentum
equation and then test it against some suitable velocity-type test function. When passing to the limit as
the mollification parameter tends to zero, the commutator estimates are required for treating the nonlinear
terms. Compared with the homogeneous equations, the momentum equation in (1.1) contains a nonlinear
term ρu in the time derivative, and hence needs a commutator estimate (in time).
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Leslie-Shvydkoy [23] managed to avoid this time commutator estimate by using the momentum
m = ρu as the unknown variable instead of the velocity u. This way to obtain the energy conservation
one needs to choose the test function to be m

ρ in a regularized form. The price to pay is that (i) the
divergence-free structure of the test function is no longer valid, and hence additional assumptions on the
pressure has to be made; (ii) the density must be bounded away from zero.

Feireisl et al [19] took a more direct approach by assuming Besov regularity also in time to pertain
the divergence-free property of the test function and to allow for the existence of vacuum in the system.
Their method can also be applied to treat the case of isentropic compressible flows. What was proved
there is a stronger result, namely a local energy equality in the sense of distribution, under a different set
of regularity assumptions than those of [23]. In particular the integrability on the pressure is required,
as in [23]. Such an assumption can be removed when the global energy conservation is considered.
However what is proved in [19] is that the global energy is conserved also in the sense of distribution,
and hence it is still conceivable that the energy might fluctuate in time in a set of times of measure zero,
unless additional smoothness conditions are imposed.

The objective of this paper is to continue addressing the relation between the energy conservation and
the degree of regularity of the solutions for system (1.1). In particular we provide sufficient conditions on
the regularity of solutions to ensure the conservation of the total energy. Our approach is in the spirit of
Constantin-E-Titi [6], with additional care to the density term ρ. We choose to work with the unknowns
u and ρ, like in Feireisl et al [19]. The main differences between our method and the one in [19], which
also constitutes the main contribution of this paper, are explained in the paragraphs below. Note that
many of the ideas have been successfully developed to the case of compressible Navier-Stokes equations
[34], wherein the main purpose was to derive a priori estimates rather than energy equality. Further
development of the method does lead to the energy conservation of such flows [35]. Here we see that
this tool also works well for incompressible flows.

Global energy conservation and continuity at t = 0
Unlike in the homogeneous flows, where a spatially regularized velocity uε can be used as a test

function to generate the global energy, in the inhomogeneous case uε fails to possess enough temporal
regularity to qualify for a test function. This is why a further space-time cutoff function is used in [19],
and thus only a distributional energy equality can be obtained. Our approach makes strong use of the
incompressibility of uε and mollifies it in time by a time cutoff function. This allows one to prove the
global energy conservation in the strong sense on a time interval [δ,T ] for any δ > 0. Therefore the
remaining issue is to obtain the continuity of the energy at the initial time t = 0.

In the homogeneous case, the velocity field u is continuous at time t = 0, and hence the energy
conservation holds all the way up to the initial time. This is not necessarily true for inhomogeneous flows.
However from the energy point of view, the analogous requirement would be that

√
ρu is continuous in

the strong topology at t = 0. This can be done by studying the continuity of ρu and
√
ρ at t = 0. Using

the equations they satisfy, one can show that they are continuous at t = 0 in the weak topology, which,
together with the initial regularity on u, is enough to conclude the right continuity of

√
ρu in the strong

topology. Finally to continue the energy conservation up to the initial time, we introduce a special type
of temporal cutoff function which originally vanishes near t = 0, but will later be extended past t = 0
into t < 0.

Regularity of ρ
The next difficulty comes from the fact that the commutator estimates for the nonlinear time deriva-

tive (ρu)t naturally requires the time regularity of ρ. However from the mass conservation, this time
regularity can be transferred to the spatial regularity of ρ, provided that one has an Lr control of divu; see
Remark 1.1 (2). As is explained earlier, the regularity of ∇ρ does not propagate by the flow. Therefore
imposing assumptions on ∇ρ seems to be a reasonable choice for the energy conservation. In particular,
doing so allows one to avoid assuming additional time regularity on the velocity field u, and hence can
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recover the classical result of Constantin-E-Titi [6]; see Remark 1.1 (1). Moreover, similar as in [19],
working with ρ and u makes it possible to choose test functions with a divergence-free structure. As a
consequence, our result applies to the case when vacuum is present.

Pressure
When the test function hits the pressure term in the momentum equation, it is natural to impose some

conditions on the pressure in order to obtain the energy equality. In the constant density case, the pressure
solves an elliptic equation

−∆P =
∑
i, j

∂xi∂x j(uiu j),

and thus the regularity of pressure can be inferred from the velocity. However for inhomogeneous flows,
such a conclusion does not hold unless the density is sufficiently regular. Therefore in the density-
dependent case it is common to assume certain regularity condition on the pressure; see [19, 23]. Here
we introduce a special test function that is divergence-free to remove the pressure term completely, so
that we need no assumption on the pressure.

1.1. Main results

The weak solution we are interested in here is in the sense of Leray-Hopf. That is,

Definition 1.1. We say (ρ,u) is a weak solution to (1.1)-(1.2) if it satisfies (1.1) in the sense of distribu-
tions with initial data given in (1.2), and that

E(t) ≤ E(0), for all t ≥ 0, (1.3)

where E(t) is the total energy

E(t) =

∫
TN

(
ρ|u|2

)
(t) dx.

We provide two types of sufficient regularity conditions on the weak solution of (1.1) that ensure the
conservation of the energy. The first one requires the control of ∇ρ to avoid additional time regularity
assumption on ρ. The definition of the Besov spaces Bα,∞p is given in Section 2.

Theorem 1.1. Let (ρ,u) be a weak solution of (1.1)-(1.2).

ρ ∈ L∞([0,T ] × TN) ∩ Lp(0,T ; W1,p(TN)), ρt ∈ Lr([0,T ] × TN),

u ∈ Lq(0,T ; Bα,∞q (TN))
(1.4)

for any 1
r + 2

q ≤ 1, 1
p + 3

q ≤ 1 and α > 1
3 ,

√
ρu ∈ L∞(0,T ; L2(TN)) (1.5)

and
u0 ∈ L2(TN).

Then the energy is conserved, that is, E(t) = E(0), for any t ∈ [0,T ].

Remark 1.1. (1) In the case of constant density, condition (1.4) recovers the classical result of Constantin-
E-Titi [6] by taking p = r = ∞ and q = 3.

(2) From the equation of mass conservation we see that the time regularity of ρ can be replaced by
some additional spatial regularity of u, say, for e.g., divu ∈ Lr([0,T ]×TN). The reason why we chose to
impose the regularity on ρt is to recover the result of Constantin-E-Titi [6].

(3) As is noted before, the notable differences between our results and the ones in [19, 23] are that
we are able to establish the global energy conservation on the whole time interval [0,T ], while in [19]

4



it is in the distributional sense; and we do allow the presence of vacuum state, whereas in [23] it is
excluded. Moreover, we do not need any assumption on the pressure. In terms of the method, one of
the new ingredients is the construction of a suitable class of test functions that maintain the divergence-
free structure, which help eliminate the pressure term. Another new ingredient lies in the proof for the
conservation up to the initial time, where our approach combines the weak continuity of

√
ρ and ρu to

ensure the strong right temporal continuity of
√
ρu.

(4) Notice that imposing regularity assumption on the vorticity ω in order to obtain energy conserva-
tion for the two-dimensional homogeneous Euler system has been considered by Cheskidov et. al. [5].
This is due to the fact that some additional spatial regularity of u can be recovered from ω. However
this is not true when only assuming spatial integrability on divu. It would be interesting to try to un-
derstand how an Lp control of the vorticity could affect the energy conservation for density-dependent
incompressible Euler system. This will be addressed in a forthcoming paper.

Our second theorem treats the case when density can experience large fluctuation. This covers a
rather wide range of situations including flows with mixing layers and vortex sheets. In this case we
need to impose extra time regularity on the velocity field u to compensate for the roughness of ρ.

Theorem 1.2. Let (ρ,u) be a weak solution of (1.1)-(1.2) in the sense of distributions. Assume

ρ ∈ L∞([0,T ] × TN), u ∈ Bβ,∞p (0,T ; Bα,∞q (TN)), (1.6)

where p, q ≥ 3 and α, β > 1/2,
√
ρu ∈ L∞(0,T ; L2(TN))

and
u0 ∈ L2(TN).

Then the energy is conserved, that is, E(t) = E(0), for any t ∈ [0,T ].

Remark 1.2. (1) In this theorem we do not pose any spatial and temporal regularity of ρ in the Besov
spaces. To see this, note that when dealing with the commutator estimates for (ρu)t, an integration by
parts places the time derivative on the test function which involves only the velocity u. Hence assuming
more time regularity on u would lead to the desired convergence.

(2) In [19] a similar situation is considered with ρ ∈ L1([0,T ]×TN), and the same regularity condition
on the velocity is required. Here the difference between our result and the one in [19], like in the previous
theorem, is that we are able to obtain the global energy conservation up to the initial time.

2. Besov Space and a commutator lemma

In this section we briefly recall some properties of the Besov space Bα,∞p (Ω), and prove a key estimate
which is similar to the commutator lemma in [18, 25].

For 0 < α < 1 and 1 ≤ p ≤ ∞, we define the Besov space to be the set of all functions equipped with
the following norm

‖w‖Bα,∞p (Ω) := ‖w‖Lp(Ω) + sup
ξ∈Ω

‖w(· + ξ) − w‖Lp(Ω∩(Ω−ξ)

|ξ|α
, (2.1)

where Ω − ξ = {x − ξ : x ∈ Ω}.

Next we define
f ε(t, x) := ηε ∗ f (t, x), t > ε,

where ηε = 1
εN+1 η( t

ε ,
x
ε ), and η(t, x) ≥ 0 is a smooth even function compactly supported in the space-time

ball of radius 1, and with integral equal to 1.
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Now we are ready to recall some classical properties of the Besov space as follows:

‖wε − w‖Lp(R+,Lq(Ω)) ≤ Cεα‖w‖Bβ,∞p (R+,Bα,∞q (Ω)) (2.2)

and
‖∇wε‖Lp(R+,Lq(Ω)) ≤ Cεα−1‖w‖Bβ,∞p (R+,Bα,∞q (Ω)), (2.3)

where we assume that β ≥ α > 0. We will rely on the following lemma which was proved in [18, 25].
The statement of the result we adopt here is in the spirit of [24].

Lemma 2.1. Let ∂ be a partial derivative in space or time. Let f , ∂ f ∈ Lp(R+ ×Ω), g ∈ Lq(R+ ×Ω) with
1 ≤ p, q ≤ ∞, and 1

p + 1
q ≤ 1. Then, we have∥∥∥[∂( f g)]ε − ∂( f gε)

∥∥∥
Lr(R+×Ω) ≤ C

(
‖ ft‖Lp(R+×Ω) + ‖∇ f ‖Lp(R+×Ω)

)
‖g‖Lq(R+×Ω)

for some constant C > 0 independent of ε, f and g, and with 1
r = 1

p + 1
q . In addition,

[∂( f g)]ε − ∂( f gε)→ 0 in Lr(R+ ×Ω)

as ε→ 0 if r < ∞.

For the purpose of this paper, we need to extend the above lemma to the Besov space.

Lemma 2.2. Let f ∈ Bβ,∞p1 (R+, Bα,∞p2 (Ω)), g ∈ Lq1(R+; Lq2(Ω)) with β ≥ α, 1 ≤ p1, p2, q1, q2 ≤ ∞. Then,
we have

‖( f g)ε − f gε‖Lr1 (R+,Lr2 (Ω)) ≤ C‖g‖Lq1 (R+,Lq2 (Ω))‖ f ‖Bβ,∞p1 (R+,Bα,∞p2 (Ω)),

for some constant C > 0 independent of f and g, and with 1
ri

= 1
pi

+ 1
qi

, i = 1, 2. In addition,

‖( f g)ε − f gε‖Lr1 (R+,Lr2 (Ω)) ≤ Cεα → 0

as ε→ 0 if ri < ∞.

Proof. Considering

( f g)ε − f gε =

∫
R+×Rd

( f (s, y)g(s, y) − f (t, x)g(s, y)) ηε(|t − s|, |x − y|) ds dy

=

∫
R+×Rd

g(s, y) ( f (s, y) − f (t, x)) ηε(|t − s|, |x − y|) ds dy

=

∫
R+×Rd

g(t − r, x − z)
(
f (t − r, x − z) − f (t, x − z) + f (t, x − z) − f (t, x)

)
ηε(|r|, |z|) dr dz

=

∫
R+×Rd

g(t − r, x − z)
( ( f (t − r, x − z) − f (t, x − z)

)
rβ

rβ +

(
f (t, x − z) − f (t, x − z)

)
|z|α

|z|α
)
ηε(|r|, |z|) dr dz

≤ Cεα
∫
R+×Rd

g(t − r, x − z)
( ( f (t − r, x − z) − f (t, x − z)

)
rβ

+

(
f (t, x − z) − f (t, x − z)

)
|z|α

)
ηε(|r|, |z|) dr dz

for any (t, x), thus we have

‖( f g)ε − f gε‖Lr1 (R+,Lr2 (Ω)) ≤ C‖g‖Lq1 (R+,Lq2 (Ω))‖ f ‖Bβ,∞p1 (R+,Bα,∞p2 (Ω))ε
α. �
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3. Proof of Theorem 1.1

We introduce a function Φ(t, x) = (ψ(t)uε)ε as a test function for deriving the energy equality, where
ψ(t) ∈ D(0,+∞) is a test function, with D(0,+∞) being the class of all smooth compactly supported
functions on (0,+∞). Here we further remark that this function vanishes near t = 0. However, later it is
needed to extend the result for ψ(t) ∈ D(−1,+∞) in order to recover the initial value of the energy.

Note that ψ(t) is compactly supported in (0,∞). Hence Φ is a well-defined test function for t ∈ (0,∞)
and for ε small enough. Multiplying Φ on both sides of the second equation in (1.1), one obtains∫ T

0

∫
TN

Φ
[
(ρu)t + div(ρu ⊗ u) + ∇P

]
dx dt = 0,

which in turn yields ∫ T

0

∫
TN
ψ(t)uε

[
(ρu)t + div(ρu ⊗ u) + ∇P

]ε dx dt = 0, (3.1)

where we have used the fact that η(−t,−x) = η(t, x).
The first term in (3.1) can be computed as∫ T

0

∫
TN
ψ(t)uε ((ρu)t)ε dx

=

∫ T

0

∫
TN
ψ(t)

[
((ρu)t)ε − (ρuε)t

]
uε dx dt +

∫ T

0

∫
TN
ψ(t)(ρuε)tuε dx dt

=: Aε +

∫ T

0

∫
TN
ψ(t)ρ∂t

|uε|2

2
dx dt +

∫ T

0

∫
TN
ψ(t)ρt|uε|2 dx dt.

(3.2)

Similarly, the second term in (3.1) can be treated as∫ T

0

∫
TN
ψ(t)uε (div(ρu ⊗ u))ε dx dt

=

∫ T

0

∫
TN
ψ(t)

[
(div(ρu ⊗ u))ε − div(ρu ⊗ uε)

]
uε dx dt

+

∫ T

0

∫
TN
ψ(t)div(ρu ⊗ uε)uε dx dt

=: Bε +

∫ T

0

∫
TN
ψ(t)ρu · ∇

|uε|2

2
dx +

∫ T

0

∫
TN
ψ(t)div(ρu)|uε|2 dx dt

= Bε −
∫ T

0

∫
TN
ψ(t)ρt

|uε|2

2
dx,

(3.3)

where an integration by parts and the first equation of (1.1) are used to obtain the last equality.
Note that from (1.4), ρt ∈ Lr([0,T ] × TN). Therefore the last term of the right-hand side in (3.2) and

the second term of the right-hand side in (3.3) are well-defined. Thanks to (3.1), (3.2) and (3.3), we have

−

∫ T

0

∫
TN
ψt

1
2
ρ|uε|2 dx dt + Aε + Bε = 0. (3.4)

From (1.4) and (2.2), one obtains∫ T

0

∫
TN

1
2
ρ|uε|2ψt dx dt −→

∫ T

0

∫
TN

1
2
ρ|u|2ψt dx dt as ε→ 0. (3.5)
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To derive the energy equality from (3.4) in the distributional sense, we will apply Lemma 2.1 to prove

Aε(t, x)→ 0 (3.6)

as ε goes to zero.
In fact, note from (1.4) that ρt ∈ Lr([0,T ] × TN). Thus, Lemma 2.1 gives

|Aε| ≤ ‖ψ(t)‖L∞(0,T )

∫ T

0

∫
TN

∣∣∣∣uε[((ρu)t)ε − (ρuε)t]
∣∣∣∣ dx dt

≤ C‖ψ(t)‖L∞(0,T )
(
‖ρt‖Lr([0,T ]×TN ) + ‖∇ρ‖Lp([0,T ]×TN )

)
‖u‖2Lq(0,T ;Lq(TN )),

provided that 1
r + 2

q ≤ 1 and 1
p + 2

q ≤ 1. Moreover, as ε tends to zero, we have

Aε → 0.

We are not able to apply Lemma 2.1 to control Bε directly because there is no estimate on ∇(ρu) in
Lp. Instead, we will use Lemma 2.2. In fact,

Bε =

∫ T

0

∫
TN
ψ(t)

[
(div(ρu ⊗ u))ε − div(ρu ⊗ uε)

]
uε dx dt

= −

∫ T

0

∫
TN
ψ(t)

[
(ρu ⊗ u)ε − (ρu ⊗ uε)

]
∇uε dx dt

=

∫ T

0

∫
TN
ψ(t)

(
div (ρu ⊗ u)ε − div[ρ(u ⊗ u)ε]

)
uε dx dt−∫ T

0

∫
TN
ψ(t)ρ[(u ⊗ u)ε − u ⊗ uε]∇uε dx dt

= B1ε + B2ε.

Note that ∇ρ is bounded in Lp(0,T ; Lp(TN)), we are able to apply Lemma 2.1 to have

|B1ε| ≤ C‖u‖3Lq(0,T ;Lq(TN ))‖∇ρ‖Lp(0,T ;Lp(TN ))

provided that 3
q + 1

p ≤ 1. This implies that B1ε tends to zero as ε goes to zero. This convergence does not
depend on the value of α.

Meanwhile, Note that

(u ⊗ u)ε − u ⊗ uε = ((u ⊗ u)ε − uε ⊗ uε) + (uε ⊗ uε − u ⊗ uε).

Using the same argument as in [6], we can show that∣∣∣∣∣∣
∫ T

0

∫
TN
ψ(t)ρ(u ⊗ u)ε − uε ⊗ uε)∇uε dx dt

∣∣∣∣∣∣ ≤ C‖u‖3Lq(0,T ;Bα,∞q (TN ))ε
3α−1 → 0,

as ε→ 0 for α > 1
3 . We calculate∫ T

0

∫
TN
ψ(t)ρ(uε ⊗ uε − u ⊗ uε)∇uε dx dt

=
1
2

∫ T

0

∫
TN
ψ(t)ρ(uε − u)∇|uε|2 dx dt

= −
1
2

∫ T

0

∫
TN
ψ(t)div(ρuε − ρu)|uε|2 dx dt

= −
1
2

∫ T

0

∫
TN
ψ(t)div(ρuε − (ρu)ε + (ρu)ε − ρu)|uε|2 dx dt

= Rε +
1
2

∫ T

0

∫
TN
ψ(t)(ρεt − ρt)|uε|2 dx dt,
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By Lemma 2.1, we have Rε → 0 as ε→ 0. Again since ρt is bounded in Lr([0,T ] × TN), we have

1
2

∫ T

0

∫
TN
ψ(t)(ρεt − ρt)|uε|2 dx dt → 0

as ε→ 0 for any 0 < α ≤ 1.
Thus, Bε tends to zero as ε→ 0 for any 1

r + 2
q ≤ 1, 1

p + 3
q ≤ 1 and α > 1

3 .

We are ready to pass to the limits in (3.4). Letting ε go to zero and using (3.5)-(3.6), what we have
proved is that in the limit,

−

∫ T

0

∫
TN
ψt

1
2
ρ|u|2 dx dt = 0 (3.7)

for any test function ψ ∈ D(0,∞). This in turn implies that

dE(t)
dt

= 0 in the sense of distribution. (3.8)

The goal now is to obtain the exact energy conservation up to the initial time. An approximation
argument shows that (3.7) remains valid for functions ψτ belonging only to W1,∞. First we prove the
continuity of (

√
ρu)(t) in the strong topology as t → 0+. For this we compute

ess lim sup
t→0+

∫
TN
|
√
ρu −

√
ρ0u0|

2 dx

≤ ess lim sup
t→0+

(∫
TN
ρ|u|2 dx −

∫
TN
ρ0|u0|

2 dx
)

+ ess lim sup
t→0+

(
2
∫
TN

√
ρ0u0(

√
ρ0u0 −

√
ρu) dx

)
.

(3.9)

This together with the (1.3) yields

ess lim sup
t→0+

∫
TN
|
√
ρu −

√
ρ0u0|

2 dx

≤ 2ess lim sup
t→0+

∫
TN

√
ρ0u0(

√
ρ0u0 −

√
ρu) dx =: W.

(3.10)

To show the continuity of (
√
ρu)(t) in the strong topology as t → 0+, we need W = 0. To this end,

for any fixed φ ∈ D(TN) satisfying divφ = 0, we define the function f on [0,T ] as

f (t) =

∫
TN

(ρu)(t, x) · φ(x) dx.

Note from (1.4) that the function ∫
TN

(ρu)(t, x) · φ(x) dx

is continuous function with respect to t ∈ [0,T ]. On the other hand, note from (1.4) and (1.5) that

ρ ∈ L∞(0,T ; L∞(TN)) and
√
ρu ∈ L∞(0,T ; L2(TN)),

and hence we obtain that
ρu ∈ L∞(0,T ; L2(TN)).

From equation (1.1) we further know that

d
dt

∫
TN

(ρu)(t, x) · φ(x) dx =

∫
TN
ρu ⊗ u : ∇φ dx, (3.11)
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which is bounded due to (1.5). Therefore from [18, Corollary 2.1] it follows that

ρu ∈ C([0,T ]; L2
weak(TN)). (3.12)

Applying the same argument to ρt = −div(ρu) with divu = 0, we have

√
ρ ∈ C([0,T ]; Lb

weak(TN)) (3.13)

for any b > 1.
We now estimate W as follows

W := 2ess lim sup
t→0+

∫
TN

u0(ρ0u0 −
√
ρ0ρu) dx

≤ 2ess lim sup
t→0+

∫
TN

u0(ρ0u0 − ρu) dx

+ 2ess lim sup
t→0+

∫
TN

u0(
√
ρ −
√
ρ0)
√
ρu dx.

(3.14)

Meanwhile, by (1.4), we have

√
ρu ∈ Lq(0,T ; Lq(TN)) for any q > 3. (3.15)

Using (3.12), (3.13) and (3.15) in (3.14), one deduces W = 0 provided that u0 ∈ L2(TN). Thus, we have

ess lim sup
t→0+

∫
TN
|
√
ρu −

√
ρ0u0|

2 dx = 0,

which gives us
(
√
ρu)(t)→ (

√
ρu)(0) strongly in L2(TN) as t → 0+. (3.16)

Similarly, one has the right temporal continuity of
√
ρu in L2, that is, for any t0 ≥ 0,

(
√
ρu)(t)→ (

√
ρu)(t0) strongly in L2(TN) as t → t+0 . (3.17)

Now for t0 > 0, we choose some positive τ and α such that τ + α < t0 and define the following test
function

ψτ(t) =



0, 0 ≤ t ≤ τ,
t − τ
α

, τ ≤ t ≤ τ + α,

1, τ + α ≤ t ≤ t0,
t0 − t
α

, t0 ≤ t ≤ t0 + α,

0, t0 + α ≤ t.

Substituting the above test function into (3.7) we have that

1
α

∫ τ+α

τ

∫
TN

1
2
ρ|u|2 dxds −

1
α

∫ t0+α

t0

∫
TN

1
2
ρ|u|2 dxds = 0.

Sending α→ 0 and using the right continuity of
√
ρu in L2 yields

E(τ) − E(t0) = 0.

Finally sending τ→ 0, from (3.16) we have E(t0) = E(0), completing the proof of Theorem 1.1.
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4. Proof of Theorem 1.2

Following the previous section, we have

−

∫ T

0

∫
TN
ψt

1
2
ρε|uε|2 dx dt + Aε + Bε = 0, (4.1)

with

Aε =

∫ T

0

∫
TN
ψ(t)

(
((ρu)t)ε − (ρεuε)t

)
uε dx dt (4.2)

and

Bε =

∫ T

0

∫
TN
ψ(t)

(
(div(ρu ⊗ u))ε − div(ρu ⊗ uε)

)
uε dx dt. (4.3)

To prove Theorem 1.2, we need to show

Aε → 0, and Bε → 0 as ε→ 0.

We handle the term Aε as follows

Aε = −

∫ T

0

∫
TN
ψt

(
(ρu)ε − ρεuε

)
uε dx dt −

∫ T

0

∫
TN
ψ

(
(ρu)ε − ρεuε

)
uεt dx dt

=: A1ε + A2ε.

The first term can be estimated as

|A1ε| ≤ C(ψt)
∫ T

0

∫
TN

∣∣∣(ρu)ε − ρεu
∣∣∣ |uε| dx dt + C(ψt)

∫ T

0

∫
TN

∣∣∣ρεu − ρεuε∣∣∣ |uε| dx dt.

We can then use Lemma 2.2 to control the first term of the right-hand side of the above as follows∫ T

0

∫
TN

∣∣∣(ρu)ε − ρεu
∣∣∣ |uε| dx dt ≤ Cεα‖ρ‖L∞(0,T ;L∞(TN ))‖u‖2Bβ,∞p (0,T ;Bα,∞q (TN ))

→ 0;

and the second term as∫ T

0

∫
TN

∣∣∣ρεu − ρεuε∣∣∣ |uε| dx dt

≤ C‖ρε‖L∞(0,T ;L∞(TN ))‖uε − u‖Lp(0,T ;Bα,∞q (TN ))‖uε‖Lp(0,T ;Bα,∞q (TN ))

≤ Cεα‖ρ‖L∞(0,T ;L∞(TN ))‖u‖2Lp(0,T ;Bα,∞q (TN )) → 0

as ε→ 0, where p, q ≥ 2. In this section, we assume that α ≤ β.
Similar argument applying to A2ε yields

|A2ε| ≤ C
∫ T

0

∫
TN

∣∣∣(ρu)ε − ρεuε
∣∣∣ |uεt | dx dt

≤ C
∫ T

0

∫
TN

∣∣∣(ρu)ε − ρεu
∣∣∣ |uεt | dx dt + C

∫ T

0

∫
TN

∣∣∣(ρεu)
− ρεuε

∣∣∣ |uεt | dx dt

≤ 2C‖ρ‖L∞(0,T ;L∞(TN ))‖u‖Bβ,∞p (0,T ;Bα,∞q (TN ))ε
2α−1,

which converges to zero as ε goes to zero when α > 1/2. Thus, we have Aε → 0 as ε goes to zero.
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To handle Bε,

|Bε| ≤ C
∫ T

0

∫
TN

∣∣∣(ρu ⊗ u)ε − (ρu)ε ⊗ uε
∣∣∣ |∇uε| dx dt

≤ C
∫ T

0

∫
TN

∣∣∣(ρu ⊗ u)ε − (ρu)ε ⊗ u
∣∣∣ |∇uε| dx dt

+ C
∫ T

0

∫
TN

∣∣∣(ρu)ε ⊗ u − (ρu)ε ⊗ uε
∣∣∣ |∇uε| dx dt

=: B1ε + B2ε.

Note that u ∈ Bβ,∞p (0,T ; Bα,∞q (TN)). From Lemma 2.2 we conclude that

B1ε ≤ C‖u‖3
Bβ,∞p (0,T ;Bα,∞q (TN ))

ε2α−1 → 0,

and
B2ε ≤ C‖u‖3

Bβ,∞p (0,T ;Bα,∞q (TN ))
ε2α−1 → 0,

for any α > 1/2 and p, q ≥ 3.
Letting ε→ 0 in (4.1), one obtains

−

∫ T

0

∫
TN
ψt

1
2
ρ|u|2 dx dt = 0.

Because the regularity of ρ and u allow us to have

√
ρ ∈ C([0,T ]; L2

weak(TN))

and
√
ρu ∈ C([0,T ]; L2(TN)).

Thus, we can repeat the same argument in Section 3 to show∫
TN

1
2
ρ|u|2(t) dx =

∫
TN

1
2
ρ0|u0|

2 dx

for any t ∈ [0,T ].
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[2] T. Buckmaster, C. De Lellis, and L. Székelyhidi, Jr., Dissipative Euler flows with Onsager-critical
spatial regularity. Comm. Pure and Appl. Math. 69 (2016), 1613-1670.
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[12] C. De Lellis, and L. Székelyhidi, Jr., Dissipative Euler flows and Onsager’s conjecture. J. Eur.
Math. Soc. (JEMS) 16 (2014), 1467-1505.

[13] J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler
and Navier-Stokes equations. Nonlinearity 13 (2000), 249-255.

[14] L. C. Evans, Partial differential equations. Second edition, Graduate Studies in Mathematics, 19.
American Mathematical Society, Providence, RI, 2010.

[15] G. L. Eyink. Energy dissipation without viscosity in ideal hydrodynamics: I. Fourier analysis and
local energy transfer. Phys. D 78 (1994), 222-240.

[16] G. L. Eyink and K. R. Sreenivasan, Onsager and the theory of hydrodynamic turbulence. Reviews
of Modern Physics 78 (2006), 1-46.
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