
LARGE-AMPLITUDE INTERNAL FRONTS IN TWO-FLUID SYSTEMS

ROBIN MING CHEN, SAMUEL WALSH, AND MILES H. WHEELER

Abstract. In this announcement, we report results on the existence of families of large-amplitude
internal hydrodynamic bores. These are traveling front solutions of the full two-phase incompressible
Euler equation in two dimensions. The fluids are bounded above and below by flat horizontal walls
and acted upon by gravity. We obtain continuous curves of solutions to this system that bifurcate
from the trivial solution where the interface is flat. Following these families to the their extreme,
the internal interface either overturns, comes into contact with the upper wall, or develops a highly
degenerate “double stagnation” point.

Our construction is made possible by a new abstract machinery for global continuation of mono-
tone front-type solutions to elliptic equations posed on infinite cylinders. This theory is quite
robust and, in particular, can treat fully nonlinear equations as well as quasilinear problems with
transmission boundary conditions.

1. Introduction

The world’s oceans are stratified in the sense that the fluid density increases with depth. While
small in relative terms, this density variation can dramatically affect the dynamics and, in particu-
lar, allows for the formation of large scale internal waves that remain coherent over long distances.
In many settings there are two regions with nearly constant density separated by a thin layer,
called the pycnocline, where density gradients are large. This permits the system to be modeled
as two constant density fluids with different densities, divided by a sharp interface along which
waves can propagate. Unlike surface waves in a homogeneous density fluid, these internal waves
can take the form of fronts or (smooth) hydrodynamical bores. These are steady solutions where
the internal interface is asymptotically flat both upstream and downstream of the wave but with
different heights.

Let us restrict attention to the simplest configuration where the two fluid layers are irrotational
and bounded from above and below by rigid flat boundaries as shown in Figure 1. There is an
extensive applied literature on this problem, mostly centered around linear or weakly nonlinear
model equations which are valid only for small amplitudes [18], as well as a growing body of
rigorous results. For bores in the full nonlinear equations, the first rigorous existence results date
back to the work of Amick and Turner [4], confirming formal predictions based on the weakly
nonlinear extended Korteweg–de Vries equation. Alternative proofs have subsequently been given
using different methods by Mielke [26], Makarenko [23], and the authors [7].

In this announcement, we report the first construction of genuinely large-amplitude bores. One
can no longer expect to base such an analysis on a well-chosen model equation, and instead we rely
on a new abstract global bifurcation theory tailored to front-type solutions of elliptic equations in
cylindrical domains [8].

1.1. Formulation and existence theory. The problem can be mathematically formulated as
follows. The unknown interface S = {(x, y) : y = η(x)} separates two open fluid regions D1 and
D2 as shown in Figure 1. Here the lower region D1 has constant density ρ1 > 0, and is bounded
below by a rigid barrier at height y = −λ. The upper region D2 is likewise bounded above by a
rigid barrier at y = 1− λ and has constant density 0 < ρ2 < ρ1. Note that the total height of the
channel is normalized to 1.
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Figure 1. A bore in a two layer fluid.

Assuming incompressibility, the velocity field in each fluid is given by (∂yψ,−∂xψ) for some
stream function ψ satisfying

∆ψ = 0 in D1 ∪D2 (1.1a)

together with the so-called kinematic boundary conditions

ψ = 0 on S ,

ψ = λ on y = −λ,
ψ = λ− 1 on y = 1− λ,

(1.1b)

and the dynamic boundary condition
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JρK
2

on S , (1.1c)

where F > 0 is a dimensionless parameter called the Froude number and J · K = ( · )2− ( · )1 denotes
the jump of a quantity across the interface S . These are supplemented with the asymptotic
conditions

∇ψ → (0,−1), η → 0 as x→ −∞, (1.1d)

η → λ+ − λ 6= 0 as x→ +∞ (1.1e)

as shown in Figure 1.
We are interested in classical solutions to (1.1) which enjoy the regularity

ψ ∈ C2+α
b (D1) ∩ C2+α

b (D2) ∩ C0
b(D1 ∪D2), η ∈ C2+α

b (R),

for a fixed α ∈ (0, 1), and where the subscript ‘b’ indicates uniform boundedness. As is well known
in the literature on internal waves, this situation is only possible provided the Froude number F
and constant λ+ are given explicitly by

F 2 =

√
ρ1 −

√
ρ2√

ρ1 +
√
ρ2
, λ+ =

√
ρ1√

ρ1 +
√
ρ2
, (1.2)

see for instance [22, Appendix A]. Note that we are working in units where the height of the channel
is the length scale, and the upstream (relative) velocity is the velocity scale.

Our first theorem is the following global bifurcation result [8].

Theorem 1.1 (Large-amplitude bores). Fix α ∈ (0, 1) and densities 0 < ρ2 < ρ1. There exist C0

curves

C± = {(ψ(s), η(s), λ(s)) : ±s ∈ (0,∞)}
of classical solutions to the internal wave problem (1.1)–(1.2) with the following properties.

(a) (Strict monotonicity) Each solution on C± is a strictly monotone bore:

±∂xη(s) < 0 on R,
±∂xψ(s) > 0 in D1(s) ∪D2(s) ∪S (s),

∂yψ(s) < 0 in D1(s) ∪D2(s).
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Figure 2. Limiting configurations of monotone bores.

(b) (Stagnation limit) Following C±, we encounter waves that are arbitrarily close to having a
horizontal stagnation point on the internal interface:

lim
s→±∞

sup
S (s)

∂yψi(s) = 0, for i = 1 or 2. (1.3)

(c) (Laminar origin) Both C− and C + emanate from the same laminar solution in that

η(s)→ 0, ∇ψ(s)→ (0,−1), λ(s)→ λ+± as s→ 0± .

An overview of the proof of Theorem 1.1 is given at the end of Section 2.5.

1.2. Overhanging water waves. The next result characterizes the limiting form of the profile
along C±.

Theorem 1.2 (Limiting interface).

(a) (Overturning or singularity) In the limit along C−, either the interface overturns in that

lim sup
s→−∞

‖∂xη(s)‖L∞(R) =∞,

or it becomes singular in that we can extract a translated subsequence

η(s) −→ η∗ ∈ Lip(R) in Cεloc for all ε ∈ (0, 1)

such that {y < η∗(x)} simultaneously fails to satisfy both an interior sphere and exterior
sphere condition at a single point on its boundary.

(b) (Overturning or contact) Following C +, either the interface overturns or it comes into
contact with the upper wall:

lim sup
s→∞

λ(s) = 1 or lim sup
s→∞

‖∂xη(s)‖L∞(R) =∞.

We conjecture that the singularity alternative in (a) can be eliminated with further analysis,
and hence that overturning occurs. This would be consistent with numerical work of Dias and
Vanden-Broeck [15], which suggests that the interfaces along C− overturn while those along C +

come into contact with the upper wall as shown in Figure 2 to form a so-called “gravity current”.
The conclusion of Theorem 1.2 should be compared with earlier work on overturning or over-

hanging water waves. These are waves for which the interface S ceases to be a graph. Since we
are speaking of traveling wave solutions, this configuration persists for all time, a quite strange
phenomenon that has sparked intense mathematical interest.

There are three main physical effects to be considered: gravity, surface tension forces along
the interface, and vorticity, either continuously distributed throughout the fluid or concentrated
into a internal vortex sheet as in (1.1). When only gravity is present, overturning waves cannot
exist [32, 3, 34]. When only surface tension forces or capillarity is present, on the other hand,
there is an exact family of overhanging periodic solutions due to Crapper [14]. These waves have
subsequently been perturbed by Akers, Ambrose, and Wright [1] and Córdoba, Enciso, and Grubic
[13] to obtain overhanging gravity-capillary waves where the (dimensionless) gravity is small. Very
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recently, another family of explicit overhanging waves has been discovered [16, 19, 20] where only
vorticity is present.

In the above existence results, gravity is either neglected or treated as a small parameter. How-
ever, numerical work has shown that overhanging waves can also exist when gravity effects are O(1),
and in particular in the absence of surface tension forces [28, 35]. Rigorous verification of these re-
sults remains an outstanding open problem, but significant progress has been made by Constantin,
Varvaruca, and Strauss [12]. They used global bifurcation theory to construct a continuous curve
of solutions, which in principle are allowed to overturn. Based on subsequent numerics [16, 17]
it is conjectured that these curves indeed contain overhanging waves, but a rigorous proof has so
far been elusive. We mention related work on periodic internal gravity waves [33, 24] and internal
gravity-capillary waves [2].

Theorem 1.2(a) is tantalizingly close to a proof of overturning. The only other possibility is
a highly degenerate type of singularity that has not been observed in numerics [15]. Moreover,
there is hope that such singularities could be ruled out through a completely local analysis. By
comparison, the global bifurcation results in [12, 33, 2] allow for a wide range of possibilities. The
price we pay for this apparent advantage is twofold. First, we work with a reformulation of (1.1)
that degenerates as an overturning wave is approached. This allows us to detect overturning more
easily, but prevents us from continuing further to obtain truly overhanging waves. Second, we
construct bores rather than periodic or solitary waves. This introduces serious difficulties related
to the unboundedness of the fluid domain as well as the lack of symmetry for the solutions. Once
these considerable obstacles have been overcome, however, we find ourselves with more concrete
information about the solutions than would be available in the periodic or solitary wave cases.

2. Global bifurcation of monotone fronts

2.1. Motivation from second-order ODEs. As mentioned above, Theorem 1.1 is obtained
through a much more general set of results on the global bifurcation of monotone fronts in elliptic
PDE. Before presenting those ideas, let us briefly discuss the setting of second-order ODEs where
it is easier to construct concrete examples.

In fact, an equation of this type is frequently used as a simplified model for the internal wave
system (1.1). Under the assumption that the waves are long (in some appropriate sense) but not
necessarily small amplitude, Miyata [27] and Choi–Camassa [10, 11] independently derived a time-
dependent PDE related to the Serre–Green–Naghdi system. Referred to as the MCC equation, this
model reduces to the extended Korteweg–de Vries equation mentioned in the introduction in the
small-amplitude limit, but it is far more accurate for waves of moderate and even large amplitude.
With our current notation, the MCC equation reads

ζ2
x =

3ζ2

2F 2

(λ+ ζ)(1− λ− ζ + F 2)ρ2 − (1− λ− ζ)(λ+ ζ − F 2)ρ1

(1− λ)2(λ+ ζ)ρ2 + λ2(1− λ− ζ)ρ1
(2.1)

in integrated form, where here we write ζ rather than η for the deflection of the interface to
emphasize the distinction with the full system (1.1). In differentiated form, (2.1) can be written as

ζ̈ + Vz(ζ, λ) = 0 (2.2)

for an explicit V = V (z, λ) that is analytic in its arguments and where dot denotes derivative in
x. Here we are viewing the densities ρ1, ρ2 as fixed and the Froude number F as given by (1.2), so
that the upstream depth λ of the lower fluid layer is the only parameter. A bore now corresponds
to a heteroclinic orbit of (2.2) connecting two distinct equilibria.

For general equations of the form (2.2) and a given pair of equilibria, it is relatively straight-
forward to formulate general conditions which guarantee the existence of heteroclinic orbits. For
instance we have the following.



LARGE-AMPLITUDE INTERNAL FRONTS IN TWO-FLUID SYSTEMS 5

Proposition 2.1. Consider the second-order ODE (2.2). Suppose that for a fixed parameter λ0,
there are two distinct rest points Z−(λ0) and Z+(λ0) that are conjugate in that

V (Z−(λ0), λ0) = V (Z+(λ0), λ0). (2.3)

Assume also that the potential satisfies a heteroclinic nondegeneracy condition

V (z, λ0) < V (Z±(λ0), λ0) for z between Z+(λ0) and Z−(λ0), (2.4)

and spectral nondegeneracy condition

Vzz(Z−(λ0), λ0), Vzz(Z+(λ0), λ0) < 0. (2.5)

Then there exists a solution (ζ0, λ0) to (2.2) with ζ0(x)→ Z±(λ0) as x→ ±∞.

Stated simply, the problem of finding heteroclinic solutions to the ODE (2.2) amounts to verifying
the existence of conjugate rest points of V ( · , λ0) satisfying a type of heteroclinic nondegeneracy
condition (2.4) and a spectral nondegeneracy condition (2.5). We can moreover consider the case
when there is a smooth family of conjugate rest points Z+(λ) and Z−(λ) that satisfy (2.3)–(2.5)
for λ in a neighborhood of λ0. It is not hard to see that there will then exist a local curve Kloc of
heteroclinic orbits bifurcating from (ζ0, λ0). Clearly, one can continue this curve at least as far as
the above hypotheses are satisfied along it.

Applying Proposition 2.1 to the MCC model (2.1), we find that for any λ ∈ (0, 1) there is always
a unique smooth heteroclinic orbit connecting the rest points Z−(λ) = 0 and Z+(λ) = λ+, where
here λ+ is given by (1.2). Recall that for the full problem, numerical evidence [15] suggests that
some bores are instead overturning. Such waves would violate the long-wave assumption made in
the derivation of (2.1), and so this discrepancy is to be expected.

2.2. Monotone fronts solutions to elliptic PDE. Keeping in mind the above discussion, con-
sider now the following (fully) nonlinear PDE:

A(y, u,∇u,D2u, λ) = 0 in Ω,

B(y, u,∇u, λ) = 0 on Γ1,

u = 0 on Γ0,

(2.6)

where λ ∈ R is a parameter, and the domain Ω = R×Ω′ is an infinite cylinder with bounded base
Ω′ ⊂ Rd−1. For simplicity, assume that Ω is connected with a C2+α boundary ∂Ω = Γ0 ∪ Γ1, for
a fixed α ∈ (0, 1) and such that Γ0 ∩ Γ1 = ∅. Points in Ω will be denoted (x, y), where x ∈ R and
y ∈ Ω′.

We assume that A and B are real analytic in all of their arguments and that (2.6) is uniformly
elliptic with a uniformly oblique boundary condition on Γ1. Through the Dubreil-Jacotin transform,
the internal waves problem (1.1) can be rewritten roughly in this form with upstream layer depth
ratio as the parameter. In fact, the dynamic condition (1.1c) will lead to a nonlinear transmission
problem, but this can be handled through a small modification.

Define a front to be a solution (u, λ) of (2.6) that enjoys the classical regularity u ∈ C2+α
b (Ω)

and has distinct point-wise limits as x→ −∞ and x→ +∞; thinking of water waves, we call these
the upstream and downstream states, respectively. From the structure of the equation, one can
prove that they are in fact x-independent solutions of (2.6). We call a front monotone provided
∂xu ≤ 0 (or ∂xu ≥ 0) in Ω, and strictly monotone if ∂xu < 0 (or ∂xu > 0) in Ω ∪ Γ1.

Fronts are the PDE analogues of heteroclinic solutions to the ODE (2.2) with the (unbounded)
axial direction identified with the evolution variable. We may then ask: (i) under what conditions
does (2.6) support (monotone) fronts, and (ii) do these fronts persist for non-perturbative param-
eter values. The first of these questions has been pursued by many authors. The most common
approaches include monotonicity methods [5, 36] and center manifold reduction [21, 25], which has
been applied to our system (1.1) in [4, 26, 7].
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Our main abstract result addresses the second problem, namely the global continuation of a given
curve Cloc of perturbative strictly monotone fronts. In brief, it gives conditions analogous to those
of Proposition 2.1 under which the local curve Cloc can be extended to a larger curve C of strictly
monotone fronts. These hypotheses are discussed in the next subsection. In Section 2.4, we give a
sharp set of alternatives that characterize the limiting behavior as one follows the resulting global
curve to its extreme. The statement of the global bifurcation theorem is found in Section 2.5.

2.3. Hypotheses. In what follows, we suppose that there exists a local curve Cloc of strictly
monotone front solutions to (2.6). To simplify the notation, it is useful to write (2.6) as the
abstract operator equation

F (u, λ) = 0.

One can easily verify that F is real analytic as a mapping C2+α
b (Ω)× R→ Cαb (Ω)× C1+α

b (Γ1).
First, we note that the system (2.6) is invariant under translation in x, and so ∂xu lies in

ker Fu(u, λ) by an elliptic regularity argument. For simplicity, we assume that along the local
curve the kernel is exactly one dimensional:

ker Fu(u, λ) = span{∂xu} for all (u, λ) ∈ Cloc. (H1)

The next hypothesis corresponds to the spectral non-degeneracy condition (2.5) in the ODE
setting. For a monotone front (u, λ), the Fréchet derivative Fu(u, λ) is a linear elliptic operator
whose coefficients have well-defined limits as x → ±∞. Restricting the domain to x-independent
functions, this gives elliptic operators on Ω′ that we call the transversal linearized operators at
x = +∞ and x = −∞. One can show that these will have principal eigenvalues that we will denote
by σ±0 (u, λ). Recall from elliptic theory, the principal eigenvalue is real and lies strictly to the right
of the rest of the spectrum.

In analogy to the assumption (2.5) in Proposition 2.1, we focus on the situation where

σ−0 (u, λ), σ+
0 (u, λ) < 0 for all (u, λ) ∈ Cloc. (H2)

Observe that (H2) is equivalent to the essential spectrum of the limiting linearized operators being
properly contained in left complex half-plane C−.

The final hypothesis is made with an eye towards applications. Usually, one obtains Cloc through
a preliminary local bifurcation argument. A common scenario on unbounded domains is that Cloc

originates from an x-independent solution to (2.6) that is singular in the sense that the linearized
operator there fails to be Fredholm. With that in mind, suppose that Cloc admits the C0 parame-
terization

Cloc = {(u(ε), λ(ε)) : 0 < ε < ε0} ⊂ F−1(0),

where

(u(ε), λ(ε))→ (u0, λ0) as ε→ 0+, and σ+
0 (u0, λ0) = 0 or σ−0 (u0, λ0) = 0. (H4)

We label this condition (H4) rather than (H3) for consistency with [8].

2.4. Alternatives. Taking for granted that Cloc can be extended, the next question is what we
might encounter at the extreme of the resulting global curve. To form intuition for the PDE case,
let us consider in tandem the simpler task of continuing the curve Kloc of heteroclinic solutions to
the ODE (2.2).

An obvious possibility is that the heteroclinic orbits persist for all parameter values (hence λ is
unbounded along the curve) or that arbitrarily large fronts exist (that is, ζ is unbounded in norm).
This alternative has a straightforward translation to the PDE setting: we say that a sequence of
monotone fronts {(un, λn)} experiences blowup provided that

‖un‖C2+α(Ω) + |λn| −→ ∞. (A1)
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Figure 3. An ODE of the form (2.2) that experiences a heteroclinic degeneracy (A2).
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Figure 4. An ODE of the form (2.2) that experiences a spectral degeneracy (A3).

Note that in applications, it is often necessary to formulate the theory for (u, λ) lying in an open
subset of C2+α(Ω) × R rather than the whole space. For example, our analysis of internal waves
supposes the absence of horizontal stagnation, which corresponds to a pointwise inequality for a
certain derivative of u. In that case, the definition of blowup will include the possibility that the
sequence limits to the boundary of this set.

Another alternative for the ODE (2.2) is that the heteroclinic nondegeneracy condition (2.4)
is violated in the limit. It could then happen that the heteroclinic orbit between the equilibria
Z−(λ) and Z+(λ) breaks down and a new heteroclinics is born that connects one of them to an
intermediate rest point as in Figure 3. For the PDE (2.6), the upstream and downstream states
play the role of the equilibria in the original heteroclinic orbit, and the intermediate equilibrium
would correspond to a distinct x-independent solution.

To formulate this more precisely, observe that by composing with a sequence of translations in
the x-direction, we can shift the incipient intermediate state upstream or downstream so that the
solutions locally — but not uniformly — converge to a new front. With that in mind, we say that
a sequence of strictly monotone fronts {(un, λn)} experiences a heteroclinic degeneracy if there is a
sequence xn → ±∞ so that the three limits

lim
x→∓∞

lim
n→∞

un(x+ xn, · ), lim
n→∞

lim
x→+∞

un(x, · ), lim
n→∞

lim
x→−∞

un(x, · ) exist and are distinct.

(A2)
One can further assume that (un( · + xn, · ), λn) converges in C2

loc(Ω) to a monotone front (u∗, λ∗).
Finally, it can happen that as we continue Kloc, the spectral non-degeneracy condition (2.5)

fails. Figure 4 shows how this might occur in a specific example. For λ < λ∗, there is a monotone
increasing heteroclinic orbit connecting the constant solutions Z− = 0 and Z+ = 1. This orbit
persists for λ = λ∗, but the spectral condition (2.5) is violated at Z−. The Jacobian matrix for the
corresponding planar system will then cease to be invertible downstream, and the orbit no longer
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decays exponentially as x→ −∞. For λ > λ∗, the heteroclinic orbit degenerates into a homoclinic
orbit to ζ = 1, while ζ = 0 becomes a center.

The analogous scenario in the PDE setting should naturally involve the spectrum of the lin-
earized problem at infinity. In particular, we say a sequence of strictly monotone fronts {(un, λn)}
experiences spectral degeneracy if

σ−0 (un, λn)→ 0 or σ+
0 (un, λn)→ 0. (A3)

Recalling (H2), we see that spectral degeneracy indicates resonance: the essential spectrum of the
linearized problem upstream or downstream moves through the origin. Were this to occur, F will
lose semi-Fredholmness and its zero-set may not be relatively compact. In connection to traveling
waves in reaction-diffusion equations, (A3) corresponds to the onset of “essential instability” [30,
31].

2.5. Statement of abstract results. Having developed the necessary intuition, we are now pre-
pared to present the main global bifurcation theorem.

Theorem 2.2 (Global bifurcation). Consider the elliptic PDE (2.6). Let Cloc be a curve of strictly
monotone front solutions which bifurcates from a singular point as in (H4) and satisfies the kernel
(H1) and spectral (H2) conditions. Then Cloc is contained in a global C0 curve

C := {(u(s), λ(s)) : 0 < s <∞} ⊂ F−1(0)

of strictly monotone front solutions with the properties enumerated below.

(a) (Alternatives) For any sequence sn → +∞, along some subsequence, (u(sn), λ(sn)), the
blowup (A1), heteroclinic degeneracy (A2), or spectral degeneracy (A3) alternative will
occur.

(b) (Analyticity) At each point, C admits a local real-analytic reparameterization.
(c) For all s sufficiently large, (u(s), λ(s)) 6∈ Cloc. In particular, C is not a closed loop.

It bears repeating that the above theorem applies to a broad class of problems as it makes
no structural hypotheses on the system beyond analyticity of (A,B) and ellipticity. There is a
substantive body of work on fronts for semi-linear PDEs arising in reaction-diffusion equations (see
[36] and the references therein). To the best of our knowledge, however, Theorem 2.2 is the first
systematic treatment that applies even to fully nonlinear problems. For example, in addition to
the water wave applications discussed above, the general theory is used in a forthcoming paper to
construct large nonlinear elastostatic fronts [9].

Theorem 2.2 is also distinctive in that it avoids making assumptions on the compactness proper-
ties of F beyond the local curve. Classical global bifurcation theory makes comparatively stringent
requirements that are appropriate for elliptic PDEs set on bounded domains but not the present
problem. For instance, Buffoni–Toland [6] ask that the zero-set F−1(0) be locally compact and
Fu(u, λ) be Fredholm index 0 for (u, λ) ∈ F−1(0). The seminal work of Rabinowitz [29] assumes
that F is locally proper and Fredholm index 0 throughout its domain (though it need not be
analytic).

The basic philosophy inherent to our approach is that, on unbounded domains, it is more natural
to think of the failure of these compactness properties as an alternative, and then seek to classify
it in terms of qualitative features of the solutions. It is truly remarkable that the simple set of
possibilities for the ODE (2.2), when properly interpreted, exhaustively categorize the limiting
behavior for solution curves to the vastly more complicated PDE (2.6).

Let us conclude by briefly outlining how Theorem 2.2 is used to construct large-amplitude bores.
Local curves Cloc of small-amplitude monotone front solutions to the internal wave problem (1.1)
were obtained in [4, 26, 23, 7]. In [7] this was done using a novel center manifold reduction method
that is particularly well suited to verifying that the hypotheses (H1), (H2), and (H4) hold. Due to
its variational structure, (1.1) possess several conserved quantities: the mass flux, energy, and flow



LARGE-AMPLITUDE INTERNAL FRONTS IN TWO-FLUID SYSTEMS 9

force through any vertical cross-section of the fluid domain must be the same. The upstream and
downstream states must therefore be conjugate in that the values of these three quantities will agree.
For (1.1), this requirement is so restrictive that, in fact, at every λ, there is a unique downstream
state that is conjugate to the fixed upstream state. This insight drastically simplifies the task of
computing the spectrum of the transversal linearized operators at x = ±∞, and indeed, we are
able to rule out spectral degeneracy (A3) entirely. It also disqualifies the heteroclinic degeneracy
alternative, as the three limiting states in (A2) would be distinct and pairwise conjugate, which is
impossible. Thus blowup (A1) occurs as we follow the global bore curve. Through elliptic regularity
theory, we obtain uniform a priori bounds that show this must coincide with the stagnation limit
(1.3).
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