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Abstract We prove that the solution map of the b-family equation is Hölder continu-
ous as a map from a bounded set of Hs(R), s > 3

2 with Hr (R) (0 ≤ r < s) topology,
to C([0, T ], Hr (R)) for some T > 0. Moreover, we show that the obtained exponent
of the Hölder continuity is optimal when s − 1 < r < s.

1 Introduction

Russell’s observation of solitary water waves [63], which are not predicted by purely
linear models, motivated the development of nonlinear partial differential equations
for modeling wave phenomena in fluids, plasmas, elastic bodies, etc. In the context
of water waves, Boussinesq [6,7] developed the fundamental perturbation expansion
method (see [66] for a modern presentation). At the asymptotic expansion to the first
order in the small parameter representing the ratio of wave amplitude to undisturbed
fluid depth and the square of the ratio of fluid depth to wave length (the smallness
of such a parameter leads to the so-called “shallow water waves”), the well-known
Boussinesq equation [5]
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utt − uxx + (u2)xx + uxxxx = 0 (1.1)

and Korteweg-de Vries (KdV) equation [54]

ut + 6uux + uxxx = 0 (1.2)

arise.
Beyond Boussinesq and KdV, the asymptotic expansion at quadratic order produces

a broad class of asymptotically equivalent quasilinear shallow water wave equations
[28,29]. These equations are related by a continuous group of nonlinear, nonlocal
transformations which was first introduced for determining normal forms of shallow
water equations by Kodama [51–53]. Remarkably, three-dimensional incompressible
versions of these equations also arose in the study of the turbulence closure problem,
obtained by averaging the exact fluid equations at constant Lagrangian coordinate,
then making the Taylor hypothesis for frozen-in turbulence (see [11,32,33,41,58,59]
and references therein).

In this paper we will focus on a family of equations from the equivalent class derived
in [28,29]

{
ut + uux + Px = 0, t > 0, x ∈ R

u(0, x) = u0(x)
(1.3)

where the source term P is a convolution in the space variable x for fixed t

P = P(t, x) = 1

2
e−|x |/α0 ∗

(
b

2
u2 + α2

0

2
(3 − b)u2

x

)
, (1.4)

with u(t, x) the fluid velocity, α2
0 ≥ 0 a constant and b �= −1 a bifurcation parameter.

Equation (1.3) is also referred to as the b-family equation [26]. Note that Eqs. (1.3)
generalizes the following types of equations

(1) When α2
0 = b = 0, (1.3) becomes the inviscid Burgers equation [8,43].

(2) When b = 0 and α2
0 > 0, (1.3) becomes the inviscid Burgers-Alpha equation

[42].

The cases b = 2 and 3 are special values for the b-family equation.

(3) When α2
0 = 1 and b = 2, (1.3) becomes the Camassa-Holm (CH) equation [9,34].

(4) When α2
0 = 1 and b = 3, (1.3) becomes the Degasperis-Procesi (DP) equation

[27].

The CH and DP equations are both integrable. These two cases exhaust the integrable
candidates for the b-family [9,26], and most of the analytical properties of the b-family
equation can be extracted from the CH and DP equations [31,35]. In particular, in a
periodic setting, the CH equation, corresponding to b = 2, is the only case that can
be realized as an Euler equation for the geodesic flow on the Lie group Diff∞(S1) of
all smooth and orientation preserving diffeomorphisms on the circle [30].
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Note that in the momentum formulation, Eqs. (1.3)–(1.4) write

{
mt + umx = −bmux ,

m = (1 − α2
0∂2

x )u,
(1.5)

which is similar to the vorticity formulation of the three-dimensional Euler equation
for incompressible perfect fluids (U is the speed and ω its vorticity)

⎧⎨
⎩

ωt + (U · ∇)ω = (ω · ∇)U,

div U = 0,

curl U = ω.

(1.6)

In both (1.5) and (1.6) there is a coupling between a transport equation and a stationary
elliptic one. The stretching term (ω · ∇)U in (1.6) is also similar to the term −bmux

in (1.5).
Starting from Burgers [8] and Hopf [43], the Burgers equation (especially, the vis-

cous Burgers-Hopf equation) has always been used as a simple model to study shocks,
turbulence and other nonlinear phenomena in fluids. Equation (1.3) is a nonlinear
nonlocal deformation of the Burgers equation. However, the qualitative nature of the
solutions to (1.3) is very different from that of the Burgers equation. First, unlike
the Burgers equation, the CH and DP equations admit special solutions, namely the
peakons [9,26] of the form u(t, x) = ce−|x−ct |, c �= 0, which are smooth except at the
crests, where they are continuous, but have a jump discontinuity in the first derivative.
The peakons capture a feature that is characteristic for the waves of great height—
waves of the largest amplitude that are exact solutions of the governing equations for
water waves [16,65]. Both the CH and DP peakons are shown to be orbitally stable
[22,23,56].

Second, the H1(R) norm of the solutions to the Burgers equation blows up in finite
time as long as the initial data has a negative slope due to the strong nonlinear effect.
On the other hand, when the nonlocal terms are at present, the H1(R) norm of the CH
solution is conserved, and the H1(R) norm of the DP solution grows at most quadratic
in time [57]. In fact the appropriate blow-up mechanism for the CH and DP equations is
wave-breaking, i.e. the solution remains bounded while its slope becomes unbounded
in finite time (see [9,13–15,17–19,60,66] for the CH equation and [12,57,62,67,68]
for the DP equation).

What we will investigate here is another issue related to the well-posedness of
(1.3)–(1.4), namely the continuous dependence on the initial data. It is known that if
the local well-posedness of solutions to a certain evolutionary PDE can be established
by a solely fixed point theorem for contraction mappings, then the data-to-solution map
will be Lipschitz on the space where solutions live. For instance the KdV equation is
shown to be well-posed in Hs(R) with s > −3/4 and the solution map is Lipschitz on
the same Hs(R) [48]. One of the key ingredients is the Strichartz estimates achieved
from the strong dispersive effect.

When there is no dispersion, c.f. the Burgers equation, however, Kato [46] proved
the local well-posedness in Hk(R) for any integer k ≥ 2 and showed that the depen-
dence on initial data in Hk(R) is continuous but not Hölder continuous with any
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prescribed exponent. The phenomenon of not uniformly continuous for some disper-
sive equations can be found, for example in Kenig et al. [49].

In the case of nonlocal dispersive equations, there are also a number of papers
dealing with nonuniform continuity, see for example, Koch and Tzvetkov [50] for the
Benjamin-Ono equation, Himonas and Kenig [37], Himonas and Misiołek [38], and
Himonas et al. [40] for the CH equation, Himonas and Misiołek [39] for the Euler
equation.

On the other hand, if one relaxes the topology, the solution map may be uniformly
continuous or even Lipschitz continuous with respect to the weaker topology. In fact
in Theorem IV of [46], Kato obtained uniform continuity of solution maps to general
quasi-linear symmetric hyperbolic systems on the Sobolev spaces with integer index.
As stated in [46], the result is also valid for some equations with nonlocal term. It is not
hard to see that applying the theorem in [46] to the b-family equation one could infer
that the solution map is uniformly continuous from a bounded set of Hs(R) (s > 3

2
an integer), with the weaker Hs−2(R) topology, to the space C([0, T ]; Hs−2(R)) for
some T > 0. In [64], by constructing a suitable gauge transformation of the Benjamin-
Ono equation, Tao proved the Lipschitz continuity of the associated solution map from
a bounded set of H1(R)—the solution space, equipped with L2(R) norm—a weaker
topology, to C([0, T ], L2(R)). Such a method concerning the Lipschitz continuity in
a weaker topology is also applied in [36] recently.

The goal of the present paper is to investigate whether or not the solution map
in Hs(R) of (1.3)–(1.4) is Hölder continuous or even Lipschtz continuous in terms
in the Hr (R) topology, 0 ≤ r < s, and to determine a possible optimal Hölder’s
index.

The rest of the paper is organized as follows. In Sect. 2 we state our main theorems
on the Hölder continuity of the b-family data-to-solution map, and discuss the methods
used in our proofs, especially in proving the optimal Hölder index. In Sect. 3 we give
a refined estimates on the Burgers term and the nonlocal term and use that to establish
the Hölder continuity of the solution map. In Sects. 4 and 5 we transform the b-family
equation to a semilinear ODE system and establish the correspondence between the
solution to the original PDE and the one to the transformed ODE. In the last section
we construct special initial data to show that the Hölder exponent in Theorem 2.1 is
optimal.

Notation As above and henceforth, we denote by c, c1, c2, and C the various positive
constants depending only on b, s, r and h and by A = O(B) the estimate A ≤ cB.
For any constant p with 1 ≤ p < ∞, let L p(R) be the space of all the Lebesgue

measurable functions f such that | f |p = (∫
R

| f (x)|pdx
) 1

p < ∞. We also denote by
L∞(R) the space of all essentially bounded functions f with the standard norm

| f |∞ = inf
m(E)=0

sup
x∈R\E

| f (x)|.

For any number s ∈ R, let Hs(R) be the Sobolev space consisting of all tempered
distributions f such that

123



The Hölder continuity in weak topology

‖ f ‖s =
⎛
⎝∫

R

〈ξ 〉2s | f̂ (ξ)|2dξ

⎞
⎠

1
2

< ∞

with 〈ξ 〉 = (1 + |ξ |2) 1
2 , f̂ (ξ) = ∫

R
eixξ f (x)dx . For any function u = u(t, x) :

[0, T ] × R → R with T > 0, we denote its Fourier transform, L p-norm, Sobolev
norm and L2 inner product with respect to the variable x by û = û(t, ξ), |u|p =
|u(t, ·)|p, ‖u‖s = ‖u(t, ·)‖s and (·, ·). For s ∈ R, define an integral operator �s =
(I − ∂2

x )
s
2 on tempered distributions by

�s f = F−1(〈ξ 〉s f̂ ).

2 Main results

For simplicity, we will consider α2
0 = 1 in (1.4). The general α2

0 > 0 case can be
treated the same way. In this way, the b-family equation is

⎧⎨
⎩

ut + uux + Px = 0, t > 0, x ∈ R,

P = 1
2 e−|x | ∗ ( b

2 u2 + 3−b
2 u2

x

)
,

(2.1)

with initial data

u(0, x) = u0(x). (2.2)

As seen in the expression of P , one sees that 1
2 e−|x | is the Fourier transformation of

the Poisson kernel on R, that is, �−2 f = 1
2 e−|x | ∗ f.

Let s > 3
2 and write B(0, h) as a ball in Hs(R) centered on 0 with radius h > 0,

i.e.

B(0, h) = {u; ‖u‖s < h}.

Decompose the set � = {(s, r); s > 3
2 , 0 ≤ r < s} into (see Fig. 1)

�1 = {(s, r); s >
3

2
, 0 ≤ r ≤ s − 1, r ≥ 2 − s}, (2.3)

�2 = {(s, r); 3

2
< s < 2, 0 ≤ r < 2 − s}, �3 = {(s, r); s >

3

2
, s − 1 < r < s},

(2.4)
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Fig. 1 A schematic depiction of the Hölder continuity with exponent α = α(b, s, r) of the solution map of
the b-family equation for variables s and r . The solution map is on a bounded set of Hs (R) with topology
of Hr (R) and takes values in C([0, T ]; Hr (R)) for some T > 0. We have Lipschitz continuity when
(s, r) ∈ �1, and Hölder continuity when (s, r) ∈ �3. When b = 3, we have Lipschitz continuity in �2.
When b �= 3, we have Hölder continuity in �2

and define the function α = α(b, s, r) on � as

α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if (s, r) ∈ �1,

1, if b = 3 and (s, r) ∈ �2,
2(s−1)

s−r , if b �= 3 and (s, r) ∈ �2,

s − r, if (s, r) ∈ �3.

(2.5)

With these notations we now give our two principal results of the paper on the Hölder
(Lipschitz when α = 1) continuity of the solution map of the b-family equation in a
weaker topology.

Theorem 2.1 Assume s > 3
2 and 0 ≤ r < s. Then the solution map to (2.1)–(2.2)

is Hölder continuous with exponent α = α(b, s, r) defined in (2.5) as a map from
B(0, h), with Hr (R) norm to C([0, T ], Hr (R)), that is, there exist positive constants
T, c depending on b, s, r and h such that

‖u(t) − ũ(t)‖C([0,T ]; Hr (R)) ≤ c‖u(0) − ũ(0)‖α
r (2.6)

holds for all u(0), ũ(0) ∈ B(0, h), where u(t) and ũ(t) are solutions of (2.1) with
respectively initial data u(0) and ũ(0).

Moreover, we show that if (s, r) ∈ �3 the Hölder exponent s − r of the solution
map can not be improved to any larger number. More precisely, we have

Theorem 2.2 Assume s > 3
2 and s − 1 < r < s. Then the exponent s − r of the

solution map to (2.1)–(2.2) is optimal in the following sense: for any δ > 0 there
are constants λ0, t0 > 0, a family of constants cλ → ∞ as λ → 0 and a family of
functions uλ(0) ∈ B(0, h), 0 ≤ λ ≤ λ0 such that
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‖uλ(t0) − u0(t0)‖r ≥ cλ‖uλ(0) − u0(0)‖s−r+δ
r (2.7)

where uλ(t), 0 ≤ λ ≤ λ0 are solutions of (2.1) with initial data uλ(0) and h is a
positive constant depending only on b and s.

Methodology To prove Theorem 2.1 about the Hölder continuity of the solution
map, we need to estimate the Burgers nonlinear term uux and the nonlocal term Px in
the Hr (R) topology, which is done in Sect. 3 using a commutator type estimate similar
to the one in [55]. Applying the estimates to the difference of any two solutions with
initial data in a bounded set B(0, h) of Hs(R) infers the Hr (R)-Lipschitz continuity
of the solution map when the parameters (s, r) are in �1. Then interpolation method
implies the Hölder continuity of the solution map when those parameters are in �2
and �3, and Theorem 2.1 is obtained.

As for the optimality in �3, we need to construct initial data uλ
0(x) → u0

0 as λ → 0
so that the time evolution uλ(t) still converges to u0(t) in the Hr (R) topology, but for
any δ > 0, uλ(t) does not converge to u0(t) uniformly in Hr (R) with Hölder exponent
s − r + δ, that is,

‖uλ(t0) − u0(t0)‖r

‖uλ
0 − u0

0‖s−r+δ
r

→ ∞ as λ → 0 (2.8)

for some t0 > 0.
The proof of Theorem 2.2 is motivated from Example 5.2 in [46]. It is known that

the solution to the Burgers equation

ut + uux = 0, x ∈ R

with initial value u(0) = u0 can be written implicitly as

u = u0(x − tu). (2.9)

Let s ≥ 2 be an integer and γ be a number such that 0 < γ − s + 1
2 < 1. One may

consider the following family of initial data

uλ
0(x) = (λ + xγ

+)φ(x), −1 ≤ λ ≤ 1

where x+ = max{x, 0} and φ a smooth cutoff in |x | ≤ 2. Then if uλ(t, x) is the
solution corresponding to initial data uλ

0, then at any later time the constant λ �= 0
induces a spatial shift to the higher derivative of the difference uλ(t, x) − u0(t, x).
More explicitly,

∂s
x (u

λ − u0)(t, x) = [1 + o(1)]γ · · · (γ − s − 1)[(x − λt)γ−s
+ − xγ−s

+ ], (2.10)

where o(1) → 0 as x and λt tend to 0. Thus

‖uλ(t) − u0(t)‖s ≥ ‖∂s
x (u

λ(t) − u0(t))‖0 ≥ c|λt |γ−s+ 1
2 .
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Since ‖uλ
0(0) − u0

0(0)‖s = λ‖φ‖s and γ − s + 1
2 can be chosen arbitrarily small, it

follows that the solution map of the Burgers equation cannot be Hölder continuous in
the Hs-norm with any Hölder exponent.

In treating the b-family equation, there are two major difficulties. One difficulty is
that now r can be any real number, one needs to find an explicit way for the calculation
of the Hr (R) norm. The other one comes from the nonlocal term. Due to the nonlocal
term in the equation, the solution to the b-family equation does not have an implicit
formula like (2.9) and therefore it is difficult to get an explicit estimate like (2.10).
Thus it is not clear how to get a lower bound of the Hr -difference of solutions.

The first difficulty can be resolved using a formula for non-integer order Sobolev
norm (see, for example Theorem 7.48 of [1]), while the other issue needs a more
delicate argument. To understand the evolution of solutions of the b-family equation,
we will first transform Eq. (2.1) to a semilinear ODE system using a new set of
dependent variables. This idea is motivated by Constantin [14], Bressan and Constantin
[3]. Furthermore we show that solutions w(t, x) to the transformed ODE system lead
back to the unique solution u(t, x) of the b-family equation through an invertible
transformation η(t, x) with η(0, ·) = Id. More explicitly, we have u = w ◦ η−1. We
also prove that the transformations η and η−1 preserve the Hr (R) norm in the sense
that

c‖ f ‖r ≤ ‖ f ◦ η‖r ≤ C‖ f ‖r . (2.11)

Therefore for two solutions u, ū of (2.1), with the corresponding transformed ODE
solutions w, w̄ and the transformations η, η̄, we have

‖u − ū‖r ≥ ‖w ◦ η−1 − w ◦ η̄−1‖r − ‖w ◦ η̄−1 − w̄ ◦ η̄−1‖r .

From (2.11) and the Lipschitz continuity of solution maps of the ODE system, we see
that

‖w ◦ η̄−1 − w̄ ◦ η̄−1‖r ≤ c‖w0 − w̄0‖r = c‖u0 − ū0‖r .

From (2.11) we also see that

‖w ◦ η−1 − w ◦ η̄−1‖r ≥ c‖w
(
η−1 ◦ η̄

)
− w‖r .

In this way, a lower bound of the Hr (R) difference of solutions to the b-family
equation (2.1) can be obtained by working with the ODE solutions. Using a similar
initial data as in the Burgers case, the composition η−1 ◦ η̄ generates a “phase-shifting”
and hence determines the optimal Hölder exponent.
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3 The Hölder continuity

For r ≥ 0 and any ξ, ζ ∈ R, an elementary calculation and mean value theorem yield

(1 + ξ2)r ≤ c
[
(1 + (ξ − ζ )2

]r + (1 + ζ 2)r , (3.1)

and

|(1 + ξ2)
r
2 − (1 + ζ 2)

r
2 |

≤
{

c|ξ − ζ |
[
(1 + (ξ − ζ )2)

r−1
2 + (1 + ζ 2)

r−1
2

]
, if r > 1,

c|ξ − ζ |(1 + ζ 2)
r−1

2 , if 0 ≤ r ≤ 1,
(3.2)

see, for example, (2.1) and (2.2) in [55].
First we provide the following bas ic inequality which will be used in the proving

of Theorm 2.1.

Lemma 3.1 Given s > 3
2 and 0 ≤ r ≤ s − 1, let w and f be any two functions such

that w ∈ Hr (R), and f ∈ Hs(R). Then there is constant c depending only on s, r
such that the following inequality holds

∣∣∣∣∣∣
∫
R

�rw�r (w f )x dx

∣∣∣∣∣∣ ≤ c‖ f ‖s‖w‖2
r . (3.3)

Proof Using (3.1) and the Young inequality, we deduce that

|�r (w fx )|2

=
⎛
⎜⎝
∫
R

(1 + ξ2)r

⎛
⎝∫

R

ŵ(ξ − ζ ) f̂x (ζ )dζ

⎞
⎠

2

dξ

⎞
⎟⎠

1
2

≤
⎛
⎜⎝
∫
R

⎛
⎝∫

R

[
(1 + (ξ − ζ )2)

r
2 + (1 + ζ 2)

r
2
]|ŵ(ξ − ζ ) f̂x (ζ )|dζ

⎞
⎠

2

dξ

⎞
⎟⎠

1
2

≤ |�rw|2| f̂x |1 + |ŵ|p|(1 + ζ 2)
r
2 f̂x (ζ )| p̄, with

1

p
+ 1

p̄
= 1 + 1

2
.

Since s > 3
2 one finds

| f̂x |1 =
∫
R

| f̂x (ξ)|dξ ≤
⎛
⎝ ∫

R

(1 + ξ2)s | f̂ (ξ)|2dξ

⎞
⎠

1
2
⎛
⎝ ∫

R

1

(1 + ξ2)s−1 dξ

⎞
⎠

1
2

≤c‖ f ‖s .
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If r = 0 we take p = 2, which implies that p̄ = 1. It then follows that

|ŵ|p|(1 + ζ 2)
r
2 f̂x | p̄ = |w|2| f̂x |1 ≤ c‖w‖0‖ f ‖s ≤ c‖w‖r‖ f ‖s .

If 1
2 < r ≤ s − 1 we take p = 1. Hence p̄ = 2. It is also adduced that

|ŵ|p|(1 + ζ 2)
r
2 f̂x | p̄ = |ŵ|1|(1 + ζ 2)

r
2 f̂x |2 ≤ c‖w‖r‖ f ‖r+1 ≤ c‖w‖r‖ f ‖s .

The above estimates imply that for some fixed r0 ∈ ( 1
2 , s − 1]

‖w fx‖0 = |�0(w fx )|2 ≤ c‖ f ‖s‖w‖0 for w ∈ H0(R),

and

‖w fx‖r0 = |�r0(w fx )|2 ≤ c‖ f ‖s‖w‖r0 for w ∈ Hr0(R).

Using interpolation, the linear map T : w → w fx is continuous from Hr (R) to itself
for all 0 < r ≤ 1

2 , that is, for those r one has

‖w fx‖r ≤ c‖ f ‖s‖w‖r for w ∈ Hr (R),

and so it holds in the whole considered range 0 ≤ r ≤ s − 1. Therefore it follows
from the Schwarz inequality that the following estimate

∣∣∣∣∣∣
∫
R

�rw�r (w fx )dx

∣∣∣∣∣∣ ≤ |�rw|2|�r (w fx )|2 ≤ c‖ f ‖s‖w‖2
r (3.4)

holds for 0 ≤ r ≤ s − 1. Secondly, integrating by parts leads to the relation

∣∣∣∣∣∣
∫
R

f �rw�rwx dx

∣∣∣∣∣∣ ≤ 1

2

∣∣∣∣∣∣
∫
R

fx (�
rw)2dx

∣∣∣∣∣∣ ≤ 1

2
| fx |∞‖w‖2

r ≤ c‖ f ‖s‖w‖2
r .

(3.5)

Next one has

∣∣�r (wx f ) − f �rwx
∣∣
2

=
⎛
⎜⎝
∫
R

⎛
⎝∫

R

((1 + ξ2)
r
2 − (1 + ζ 2)

r
2 ) f̂ (ξ − ζ )ŵx (ζ )dζ

⎞
⎠

2

dξ

⎞
⎟⎠

1
2

.

123



The Hölder continuity in weak topology

In the case 0 ≤ r ≤ 1, the second estimate in (3.2) and the Young inequality imply

∣∣�r (wx f ) − f �rwx
∣∣
2

≤ c

⎛
⎜⎝
∫
R

⎛
⎝∫

R

|ξ − ζ || f̂ (ξ − ζ )|(1 + ζ 2)
r−1

2 |ŵx (ζ )|dζ

⎞
⎠

2

dξ

⎞
⎟⎠

1
2

≤ c| f̂x |1|�rw|2 ≤ c‖ f ‖s‖w‖r . (3.6)

In the case r > 1, the first estimate in (3.2) and the Young inequality lead to

∣∣�r (wx f ) − f �rwx
∣∣
2

≤
⎛
⎜⎝
∫
R

⎛
⎝∫

R

[
(1+(ξ−ζ )2)

r−1
2 +(1+ζ 2)

r−1
2

]
|ξ−ζ || f̂ (ξ−ζ )ŵx (ζ )|dζ

⎞
⎠

2

dξ

⎞
⎟⎠

1
2

≤ |ŵx |p|(1 + ξ2)
r
2 f̂ (ξ)| p̄ + |�rw|2| f̂x |1, with

1

p
+ 1

p̄
= 1 + 1

2
.

Taking p such that max{1, 2
2r−1 } < p < 2, one finds

|ŵx |p =
⎛
⎝∫

R

|ŵx (ξ)|pdξ

⎞
⎠

1
p

≤
⎛
⎝∫

R

(1 + ξ2)r |ŵ(ξ)|2dξ

⎞
⎠

1
2
⎛
⎝∫

R

1

(1 + ξ2)
(r−1)p

2−p

dξ

⎞
⎠

2−p
2p

≤ c‖w‖r .

Notice p̄ = 2p
3p−2 . The assumption r ≤ s − 1 gives

|(1 + ξ2)
r
2 f̂ (ξ)| p̄ =

⎛
⎝∫

R

(1 + ξ2)
r p̄
2 | f̂ (ξ)| p̄dξ

⎞
⎠

1
p̄

≤
⎛
⎝∫

R

(1 + ξ2)s | f̂ (ξ)|2dξ

⎞
⎠

1
2

×
⎛
⎝∫

R

1

(1 + ξ2)
(s−r)p
2(p−1)

dξ

⎞
⎠

p−1
p

≤ c‖ f ‖s .

The above three estimates imply

∣∣�r (wx f ) − f �rwx
∣∣
2 ≤ c‖ f ‖s‖w‖r ,
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if 1 < r ≤ s − 1. Such estimate is confirmed in (3.6) under the condition 0 ≤ r ≤ 1.
Therefore it is true for all r with 0 ≤ r ≤ s −1. By the Schwarz inequality, we deduce
that

∣∣∣∣∣∣
∫
R

�rw(�r (wx f ) − f �rwx )dx

∣∣∣∣∣∣ ≤ |�rw|2|�r (wx f ) − f �rwx |22

≤ c‖ f ‖s‖w‖r . (3.7)

Using the decomposition gives

�rw�r (w f )x = �rw
(
�r (w fx ) + f �rwx + (�r (wx f ) − f �rwx )

)
,

In view of (3.4), (3.5) and (3.7), we obtain the desired results (3.3). ��
Next we give the following estimates related to the nonlocal terms.

Lemma 3.2 Given s > 3
2 , let w and f be any two functions such that w ∈ Hr (R),

and f ∈ Hs(R). Then there is a constant c depending only on s, r such that

∣∣∣∣∣∣
∫
R

�rw�r−2(w f )x dx

∣∣∣∣∣∣ ≤ c‖ f ‖s‖w‖2
r (3.8)

holds for 0 ≤ r ≤ s, and

∣∣∣∣∣∣
∫
R

�rw�r−2(wx fx )x dx

∣∣∣∣∣∣ ≤ c‖ f ‖s‖w‖2
r (3.9)

holds for 0 ≤ r ≤ s and s + r ≥ 2.

Proof It is known that

|�r−2(w f )x |2 =
⎛
⎜⎝
∫
R

(1 + ξ2)r−2ξ2

⎛
⎝∫

R

ŵ(ξ − ζ ) f̂ (ζ )dζ

⎞
⎠

2

dξ

⎞
⎟⎠

1
2

.

If 0 ≤ r ≤ 1 one finds

|�r−2(w f )x |2 ≤
⎛
⎜⎝
∫
R

⎛
⎝∫

R

|ŵ(ξ − ζ ) f̂ (ζ )|dζ

⎞
⎠

2

dξ

⎞
⎟⎠

1
2

≤ |ŵ|2| f̂ |1 ≤ c‖ f ‖s‖w‖r .
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If 1 < r ≤ s, it is inferred from (3.1) and the Young inequality that |�r−2(w f )x |2 is
less than

⎛
⎜⎝
∫
R

⎛
⎝∫

R

[
(1 + (ξ − ζ )2)

r−1
2 + (1 + ζ 2)

r−1
2

]
|ŵ(ξ − ζ ) f̂ (ζ )|dζ

⎞
⎠

2

dξ

⎞
⎟⎠

1
2

≤ ‖w‖r−1| f̂ |1 + |ŵ|2|(1 + ζ 2)
r−1

2 f̂ (ζ )|1 ≤ c‖ f ‖s‖w‖r .

The Cauchy–Schwarz inequality is then applied to obtain (3.8).
We now turn to the estimate (3.9). Applying the Hölder inequality, it is found that

|�r−2(wx fx )x |22 =
∫
R

(1 + ξ2)r−2ξ2dξ

⎛
⎝ ∫

R

(ξ − ζ )ŵ(ξ − ζ )ζ f̂ (ζ )dζ

⎞
⎠

2

≤
∫
R

(1 + ξ2)r−1dξ

∫
R

|ξ − ζ |2|ŵ(ξ − ζ )|2
(1 + ζ 2)s−1 dζ

≤
∫
R

(1 + ζ 2)s | f̂ (ζ )|2dζ

= ‖ f ‖2
s

∫
R

(1 + ξ2)r−1dξ

∫
R

|ζ |2|ŵ(ζ )|2
(1 + (ξ − ζ )2)s−1 dζ

= ‖ f ‖2
s

∫
R

|ζ |2|ŵ(ζ )|2g(ζ )dζ (3.10)

with

g(ζ ) =
∫
R

h(ξ, ζ )dξ and h(ξ, ζ ) =
(
1 + (ξ − ζ )2

)r−1

(1 + ξ2)s−1 .

If r = 1, one has g(ζ ) = ∫
R

c
(1+ξ2)s−1 dξ = c. It thus transpires from (3.10) that

|�−1(wx fx )x |2 ≤ c‖ f ‖s‖w‖1.

If r = s, Kato-Ponce’s estimates [47] and the assumption s > 3
2 yield

|�s−2(wx fx )x |2 ≤ |�s−1(wx fx )|2 ≤ |wx |∞‖ fx‖s−1 + | fx |∞‖wx‖s−1

≤ c‖ f ‖s‖w‖s .

By interpolation, the linear map T : w → (wx fx )x is continuous from Hr (R) to
Hr−2(R) for all 1 ≤ r ≤ s, that is, for each such r one has
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|�r−2(wx fx )x |2 ≤ c‖ f ‖s‖w‖r for w ∈ Hr (R). (3.11)

Now assume 0 ≤ r < 1 and s + r ≥ 2. Without loss of generality, suppose ζ > 2.
Let � ∪ (

ζ
2 , ζ − 1] ∪ (ζ − 1, ζ + 1] ∪ (ζ + 1, 2ζ ) be the decomposition of R with

� := {ξ ∈ R; ξ ≤ ζ
2 , or ξ > 2ζ }. One has |ξ − ζ | ≥ ζ

2 for ξ ∈ �, so

∫
�

h(ξ, ζ )dξ ≤ c

(1 + ζ 2)1−r

∫
�

1

(1 + ξ2)s−1 dξ ≤ c

(1 + ζ 2)1−r

with the help s > 3
2 . By change of variable ξ = ζ x, one has

ζ−1∫
ζ
2

h(ξ, ζ )dξ ≤ c

ζ−1∫
ζ
2

1

ξ2(s−1)(ξ − ζ )2(1−r)
dξ

= c

ζ 2(s−r)−1

1− 1
ζ∫

1
2

1

x2(s−1)(x − 1)2(1−r)
dx

≤ c

ζ 2(s−r)−1

1− 1
ζ∫

1
2

1

(x − 1)2(1−r)
dx .

An explicit calculation shows

1− 1
ζ∫

1
2

1

(x − 1)2(1−r)
dx =

⎧⎪⎨
⎪⎩

ln ζ
2 , if r = 1

2 ,

21−2r −ζ 1−2r

2r−1 , if r �= 1
2 ,

≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

21−2r

2r−1 , if 1
2 < r < 1,

ln ζ
2 , if r = 1

2 ,

ζ 1−2r

1−2r , if 0 ≤ r < 1
2 .

Then the conditions s + r ≥ 2 and s > 3
2 imply

ζ−1∫
ζ
2

h(ξ, ζ )dξ ≤ c

ζ 2(s−r)−1
·

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

21−2r

2r−1 , if 1
2 < r < 1,

ln ζ
2 , if r = 1

2 ,

ζ 1−2r

1−2r , if 0 ≤ r < 1
2 .

≤ c

(1 + ζ 2)1−r
.
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A similar argument yields

2ζ∫
ζ+1

h(ξ, ζ )dξ ≤ c

(1 + ζ 2)1−r
.

It is also found that

ζ+1∫
ζ−1

h(ξ, ζ )dξ ≤ c

ζ+1∫
ζ−1

1

(1 + ζ 2)s−1 dξ ≤ c

(1 + ζ 2)1−r
,

by applying s + r ≥ 2 again. The above estimates find that g(ζ ) ≤ c(1 + ζ 2)r−1

when 0 ≤ r < 1 and s + r ≥ 2, which combines with (3.10) yield (3.11) for such
parameters. So (3.11) is valid in the whole considered range 0 ≤ r ≤ s and s + r ≥ 2.
Using the Cauchy-Schwarz inequality and (3.11) yields (3.9). ��

It is known from [31,35] that the b-family equation is locally well-posed for s >

3/2. It is also found that the time of existence of the solution has a lower bound Tm

and the Hs(R) norm of the solution u(t) is controlled by the Hs(R) norm of u0 for
any t ∈ [0, Tm]. This result was obtained by Himonas and Kenig in [37] for the CH
equation, and it can be extended using the same argument to our case of the general
b-family.

Proposition 3.3 ([37]) Let s > 3/2 and u(t, x) ∈ C([0, T0]; Hs(R)) be the unique
solution of the Cauchy problem (2.1)–(2.2). Then its lifespan (the maximal existence
time) is greater than

Tm := 1

2cb,s

1

‖u0‖s
, (3.12)

where cb,s is a constant depending only on b and s. Also we have

‖u(t)‖s ≤ 2‖u0‖s, 0 ≤ t ≤ Tm . (3.13)

Proof of Theorem 2.1 Let s > 3
2 . By [31,35] for any initial data u0 ∈ B(0, h) there

exists a unique solution u ∈ C([0, T0]; Hs(R))∩C1([0, T0]; Hs−1(R)) to (2.1)–(2.2)
for some T0 > 0. By Proposition 3.3, the lifespan T0 satisfies

T0 ≥ Tm ≥ 1

2cb,sh
:= T

for some constant cb,s depending only on b and s. Let ũ be the solution to (2.1)
corresponding to ũ(0) ∈ B(0, h). Write w = u − ũ and f = 1

2 (u + ũ). Then w

satisfies the equation

wt + (w f )x + �−2 (bw f + (3 − b)wx fx )x = 0, t ∈ [0, T ]. (3.14)
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We also have that initial data w(0) = u(0) − ũ(0). By (3.13) we know ‖ f (t)‖s ≤ c
for t ∈ [0, T ].

(i) The Lipschitz continuity in domain �1. Let 0 ≤ r ≤ s − 1 and s + r ≥ 2.
Applying the operator �r to the both sides of (3.14) and then multiplying the
resulting expression by �rw and integrating over R with respect to x , it follows
from (3.3), (3.8) and (3.9) that

1

2

d

dt
‖w(t)‖2

r = −
(
�rw,�r (w f )x + b�r−2(w f )x + (3 − b)�r−2(wx fx )x

)

≤ c‖w(t)‖2
r (3.15)

for t ∈ [0, T ]. Then ‖w(t)‖r ≤ ecT ‖w(0)‖r ≤ c‖w(0)‖r , that is,

‖u(t) − ũ(t)‖r ≤ c‖u(0) − ũ(0)‖r

holds for t ∈ [0, T ] and the Lipschitz continuity in domain �1 is obtained.
(ii) The Lipschitz continuity in domain �2 when b = 3. When b = 3, applying (3.3)

and (3.8), (3.15) becomes

1

2

d

dt
‖w(t)‖2

r = −
(
�rw,�r (w f )x + b�r−2(w f )x

)
≤ c‖w(t)‖2

r

Thus the same argument as in (i) implies the Lipschitz continuity.
(iii) The Hölder continuity in domain �2 when b �= 3. Let 0 ≤ r < 2 − s with

3
2 < s < 2. By interpolation, the boundedness of ‖w(t, ·)‖s on [0, T ] and result
in (i), it follows that

‖w(t)‖r ≤ ‖w(t)‖2−s ≤ c‖w(0)‖2−s ≤ c‖w(0)‖
2(s−1)

s−r
r ‖w(0)‖

2−s−r
s−r

s

≤ c‖w(0)‖
2(s−1)

s−r
r .

This in turn implies the Hölder continuity of the solution map in Hr (R) norm
with exponent 2−s−r

s−r .

(iv) The Hölder continuity in domain �3. Let s − 1 < r < s with s > 3
2 . Applying

the interpolation inequality, the boundedness of ‖w(t, ·)‖s on [0, T ] and result
in (i) yield

‖w(t)‖r ≤c‖w(t)‖s−r
s−1‖w(t)‖1−s+r

s ≤ c‖w(t)‖s−r
s−1 ≤c‖w(0)‖s−r

s−1 ≤c‖w(0)‖s−r
r .

This completes the proof of Theorem 2.1. ��

4 An equivalent semilinear system to the b-family equation

As mentioned in Sect. 2, we follow the ideas of [3] and [14] to transform formally the
Cauchy problem (2.1)–(2.2) into an equivalent semilinear system (see 4.10–4.11).
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Suppose that u(t, ·) ∈ C([0, T1]; Hs(R)) with s > 3
2 and T1 > 0 is a solution to

problem (2.1)–(2.2). The associated Lagrangian scale of (2.1) is established by the
initial value problem

d

dt
η(t, x) = u(t, η(t, x)), η(0, x) = x (4.1)

for each fixed x ∈ R. By functions u and η we set

w(t, x) := u(t, η(t, x)), v(t, x) := ux (t, η(t, x)), q(t, x) := ηx (t, x). (4.2)

Here ux (t, η(t, x)) = ∂
∂z u(t, z)

∣∣∣
z=η(t,x)

and the convention is used in the following

of this paper. The definition of q yields

η(t, x1) − η(t, x) =
x1∫

x

q(t, x2)dx2. (4.3)

Recalling the definition of P in (2.1), a change of variables z = η(t, x1) and (4.3)
lead to

P(t, η(t, x)) = 1

4

∫
R

e−|η(t,x)−z| [bu2 + (3 − b)u2
x

]
(t, z)dz

= 1

4

∫
R

e−|η(t,x)−η(t,x1)|
[
bu2 + (3 − b)u2

x

]
(t, η(t, x1))ηx (t, x1)dx1

= 1

4

∫
R

e−|∫ x1
x q(t,x2)dx2| [bw2q + (3 − b)v2q

]
(t, x1)dx1,

Px (t, η(t, x)) = 1

4

⎛
⎜⎝

∞∫
η(t,x)

−
η(t,x)∫
−∞

⎞
⎟⎠ e−|η(t,x)−z| [bu2 + (3 − b)u2

x

]
(t, z)dz

= 1

4

⎛
⎝

∞∫
x

−
x∫

−∞

⎞
⎠ e−|η(t,x)−η(t,x1)|

[
bu2 + (3 − b)u2

x

]
(t, η(t, x1))

×ηx (t, x1)dx1

= 1

4

⎛
⎝

∞∫
x

−
x∫

−∞

⎞
⎠ e−|∫ x1

x q(t,x2)dx2| [bw2q + (3 − b)v2q
]
(t, x1)dx1

where the new variables w, v and q are given in (4.2). We further define Q =
Q(w, v, q)(t, x) and R = R(w, v, q)(t, x) as
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Q := 1

4

∫
R

e−|∫ x1
x q(x2)dx2| [bw2q + (3 − b)v2q

]
(x1)dx1, (4.4)

R := 1

4

⎛
⎝

∞∫
x

−
x∫

−∞

⎞
⎠ e−|∫ x1

x q(x2)dx2| [bw2q + (3 − b)v2q
]
(x1)dx1. (4.5)

In view of Eqs. (4.1) and (2.1) it is found that the variable w(t, x) evolves with time
in the form

∂tw(t, x) = (ut + uux )(t, η(t, x)) = −Px (u(t, η(t, x))) = −R (4.6)

with R given in (4.5). Differentiating formally (2.1) with respect to x one finds

uxt + uuxx + u2
x −

(
b

2
u2 + 3 − b

2
u2

x

)
+ P = 0

by the identity (1 − ∂2
x )P = b

2 u2 + 3−b
2 u2

x . Combining this relation with (4.1) gives

∂tv(t, x) = (uxt + uuxx )(t, η(t, x)) =
(

b

2
u2 − b − 1

2
u2

x − P

)
(t, η(t, x))

= b

2
w2 − b − 1

2
v2 − Q (4.7)

with Q given in (4.4). From the definitions of η, q and v, we have

∂t q(t, x) = ∂t∂xη(t, x) = ∂x∂tη(t, x) = ∂x u(t, η(t, x))

= ux (t, η(t, x)) · ηx (t, x) = vq. (4.8)

From (4.1) and (4.2) it follows that for x ∈ R

w(0, x) = u(0, η(0, x)) = u(0, x), v(0, x) = ux (0, η(0, x)) = ux (0, x),

q(0, x) = ηx (0, x) = 1. (4.9)

For s ∈ R, let X := Hs(R) × Hs−1(R) × Hs−1(R) be a Banach space with norm

‖(u1, u2, u3)‖X = (‖u1‖2
s + ‖u2‖2

s−1 + ‖u3‖2
s−1)

1
2 ,

and

Y := X + {(0, 0, 1)} = {(w, v, q); (w, v, q − 1) ∈ X}

be a shifting of X . In connection with Eqs. (4.6)–(4.9) we consider the following
abstract ordinary differential equations on a subset K (see (4.15) for its definition) of
Y in terms of dependent variables (w, v, q)
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⎧⎪⎨
⎪⎩

d
dt w = −R,
d
dt v = b

2w2 − b−1
2 v2 − Q,

d
dt q = vq,

(4.10)

and initial data

⎧⎪⎨
⎪⎩

w(0, x) = u0(x),

v(0, x) = u0
x (x),

q(0, x) = 1,

(4.11)

where Q = Q(w, v, q) and R = R(w, v, q) are given respectively in (4.4) and (4.5),
and u0 ∈ Hs(R). Solutions to the Cauchy problem (4.10)–(4.11) can be obtained as
a fixed point of the following integral transformation

T : (w, v, q) −→ (w, v, q) (4.12)

from C([0, T1]; K ) to itself for sufficiently small T1 > 0, where

⎧⎪⎨
⎪⎩

w(t, x) = u0(x) − ∫ t
0 R(τ, x)dτ,

v(t, x) = u0
x (x) + 1

2

∫ t
0

[
bw2 − (b − 1)v2 − 2Q

]
(τ, x)dτ,

q(t, x) = 1 + ∫ t
0 (vq)(τ, x)dτ.

More precisely, we have

Theorem 4.1 Assume u0 ∈ Hs(R) with s > 3
2 . Then the Cauchy problem (4.10)

–(4.11) has a unique solution (w0, v0, q0) ∈ C1([0, T1]; Y ) for some T1 > 0.

Remark 4.2 From the classical result of fixed point theorem applied to the integral
equations, we have

(i) There exist positive numbers μ and T2 ≤ T1, depending on u0, such that if ‖u(0)−
u0‖s ≤ μ, then the solution (w, v, q) of (4.10) with initial value (u(0), ux (0), 1)

exists on a common interval [0, T2].
(ii) The solution map of (4.10)–(4.11) is Lipschitz continuous in a neighborhood of

u0 in the following sense: the esitimate

‖(w̃, ṽ, q̃)(t) − (w, v, q)(t)‖C([0,T2]; X) ≤ c‖(w̃, ṽ, q̃)(0) − (w, v, q)(0)‖X

≤ c‖ũ(0) − u(0)‖s (4.13)

holds for all ũ(0), u(0) satisfying ‖ũ(0) − u0‖ ≤ μ and ‖u(0) − u0‖ ≤ μ, where
(w̃, ṽ, q̃) and (w, v, q) are solutions of (4.10) with initial data (ũ(0), ũx (0), 1)

and (u(0), ux (0), 1), respectively.

To prove Theorem 4.1, we need the following lemma for ρ > 1
2 (see Theorem 8.3.1

of [44] in one space dimension).
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Lemma 4.3 (Hörmander) If ρ1 + ρ2 ≥ 0, then there is a constant c > 0 such that

‖ f g‖ρ ≤ c‖ f ‖ρ1‖g‖ρ2 for f ∈ Hρ1(R), g ∈ Hρ2(R) (4.14)

provided ρ ≤ ρ j , j = 1, 2 and ρ ≤ ρ1 + ρ2 − 1
2 , with the second inequality strict if

ρ1 or ρ2 or −ρ equals 1
2 .

Proof of Theorem 4.1 Let K ⊂ Y be a bounded domain of the form

K = {(w, v, q) ∈ Y ; ‖(w − u0, v − u0
x , q − 1)‖X ≤ q0} (4.15)

with 0 < q0 � 1 and u0 ∈ Hs(R) by assumption. Notice that K is a convex subset
of Y and closed under the topology of Y . Denote by F the map

(w, v, q) �−→
(
−R, bw2 − (b − 1)v2 − 2Q, vq

)
. (4.16)

We aim to prove that F maps K into X and it is Lipschitz continuous on K .

Applying the Sobolev embedding H
1
2 +(R) ↪→ L∞(R) and (4.14), and using q =

(q − 1) + 1, the assumption (w, v, q − 1) ∈ X infers that

bw2 − (b − 1)v2, vq,
[
bw2 + (3 − b)v2

]
q ∈ Hs−1(R), (4.17)

and the following map

(w, v, q) �−→
(

bw2 − (b − 1)v2, vq,
[
bw2 + (3 − b)v2

]
q
)

(4.18)

is Lipschitz continuous from K into Hs−1(R) × Hs−1(R) × Hs−1(R). The Sobolev
embedding infers

|w|∞, |v|∞ ≤ c, 0 < c1 < q ≤ c2 (4.19)

for (w, v, q) ∈ K . In view of (4.19), the definition of Q in (4.4) yields

|Q|2 ≤ 1

4

⎛
⎜⎝
∫
R

∣∣∣∣∣∣
∫
R

e−|∫ x1
x q(x2)dx2| [bw2q + (3 − b)v2q

]
(x1)dx1

∣∣∣∣∣∣
2

dx

⎞
⎟⎠

1
2

≤ c|q|∞|e−c1|·| ∗ (w2 + v2)|2 ≤ c(|w|22 + |v|22)(‖q − 1‖s−1 + 1), (4.20)

and the same estimate holds for |R|2. Differentiating R and Q we obtain (in the sense
of distribution in D′(R))

Rx = −1

2

[
bw2 + (3 − b)v2 − 2Q

]
q,
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Rxx = Rq2 − [bwwx + (3 − b)vvx ] q − 1

2

[
bw2 + (3 − b)v2 − 2Q

]
qx , · · ·

(4.21)

and

Qx = Rq,

Qxx = −1

2

[
bw2 + (3 − b)v2 − 2Q

]
q2 + Rqx ,

Qxxx = Rq3 − [bwwx + (3 − b)vvx ] q2

−3

2

[
bw2 + (3 − b)v2 − 2Q

]
qqx + Rqxx , · · · (4.22)

The estimate (4.20) and the expression for Rx infer

|Rx |2 ≤
[

b

2
‖w‖2

s + 3 − b

2
‖v‖2

s−1 + |Q|2
]

|q|∞
≤ c(‖w‖2

s + ‖v‖2
s−1)(‖q − 1‖s−1 + 1)2,

so Rx ∈ L2(R) and R ∈ H1(R). Similarly, Q ∈ H1(R) with the same estimate.
Notice that for k ≥ 2, ∂k

x R (and ∂k
x Q) is a rational combination of w, v, q, R, Q and

derivatives of w, v and q up to k − 1 order. Moreover, it is linear in ∂k−1
x w, ∂k−1

x v and
∂k−1

x q. Let s = m + β with m an integer and 0 ≤ β < 1. Without loss of generality,
one can assume m = 2. Then (w, v, q − 1) ∈ H2+β(R) × H1+β(R) × H1+β(R)

implies wx ∈ H1+β(R) and vx , qx ∈ Hβ(R). Decomposing q as (q − 1) + 1 and
applying (4.14) infer that every term of the right hand side of Rxx belongs to Hβ(R),
for example, using (4.14) in the case ρ1 = 1, ρ2 = β = ρ leads to Qqx ∈ Hβ(R).
Thus Rxx ∈ Hβ(R), therefore R ∈ Hs(R). Similarly, (4.22) implies Q ∈ Hs(R), and

‖R‖s, ‖Q‖s ≤ c(‖w‖2
s + ‖v‖2

s−1)(‖q − 1‖s−1 + 1)[s]+1 (4.23)

with [s] being the largest integer less than or equal to s. It then follows from(4.17) and
(4.23) that the transformation F defined in (4.16) maps K into X .

Now we show that the transformation F is Lipschitz continuous from the bounded
domain K into X . In view of (4.18), we need only to show that the maps

(w, v, q) �−→ R, (w, v, q) �−→ Q

from K into Hs(R) and Hs−1(R) respectively are Lipschitz continuous. We only
consider the first map, the other one can be considered similarly. For (w1, v1, q1) and
(w2, v2, q2) ∈ K , denote by

(w̃, ṽ, q̃)=(w2−w1, v2−v1, q2−q1), (w̄, v̄, q̄)=(w1+w2, v1+v2, q1+q2),
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and

Q̃ = Q(w2, v2, q2) − Q(w1, v1, q1), R̃ = R(w2, v2, q2) − R(w1, v1, q1).

By (4.19), we have

|w̄|∞, |v̄|∞, |q̄|∞ ≤ c. (4.24)

Adding and subtracting e−|∫ x1
x q1(x2)dx2| [bw2

2q2 + (3 − b)v2
2q2

]
(x1)dx1 to the inte-

grand of 4R̃, we find

4R̃

=
⎛
⎝

∞∫
x

−
x∫

−∞

⎞
⎠ e−|∫ x1

x q1(x2)dx2| [bw2
1 q̃ + bw̄w̃q2 + (3 − b)v2

1 q̃

+ (3 − b)v̄ṽq2

]
(x1)dx1

+
⎛
⎝

∞∫
x

−
x∫

−∞

⎞
⎠ f

[
bw2

2q2 + (3 − b)v2
2q2

]
(x1)dx1 := I + II. (4.25)

with f = e−|∫ x1
x q2(x2)dx2|−e−|∫ x1

x q1(x2)dx2|. From (4.19) and (4.24) , it thus transpires
that

∫
R

I 2dx ≤
∫
R

∣∣∣∣∣∣
∫
R

e−c1|x−x1|
∣∣∣bw2

1 q̃+bw̄w̃q2+(3 − b)v2
1 q̃+(3 − b)v̄ṽq2

∣∣∣ dx1

∣∣∣∣∣∣
2

dx

=
∣∣∣e−c1|x | ∗ |bw2

1 q̃ + bw̄w̃q2 + (3 − b)v2
1 q̃ + (3 − b)v̄ṽq2|

∣∣∣2
2

≤ c
∣∣∣e−c1|x | ∗ (|w̃| + |q̃| + |ṽ|)

∣∣∣2
2

≤ c|(w̃, ṽ, q̃)|22. (4.26)

By the estimate ez − 1 = z

(∑∞
n=1

zn−1

n!
)

, one has (without loss of generality, we

assume x1 ≥ x)

f = e−|∫ x1
x q1(x2)dx2| (e

∫ x1
x q̃(x2)dx2 − 1

)
= e−|∫ x1

x q1(x2)dx2| z

( ∞∑
n=1

zn−1

n!

)

where z = ∫ x1
x |q̃(x2)|dx2. Applying the Hölder inequality and (4.19), there appears

the relation

| f | ≤ ce−c1|x−x1||q̃|2|x − x1| 1
2

∞∑
n=1

(2q0)
n−1|x − x1|n−1

n!
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≤ c|q̃|2e−c1|x−x1|+ c1
2 |x−x1|+2q0|x−x1| ≤ c|q̃|2e− c1

4 |x−x1|

where q0 � 1 is given in (4.15). It then follows from (4.19) and the Young inequality
that

∫
R

II 2dx ≤ c|q̃|22
∣∣∣e− c1

4 |x | ∗
[
bw2

2 + (3 − b)v2
2

]∣∣∣2
2

≤ c|q̃|22,

which and (4.25), (4.26) lead to |R̃|2 ≤ c|(w̃, ṽ, q̃)|2. Using similar arguments to
obtaining (4.23), one gets ‖I‖s, ‖II‖s ≤ c‖(w̃, ṽ, q̃)‖X , and

‖R̃‖s ≤ c‖(w̃, ṽ, q̃)‖X (4.27)

Thus the Lipschitz continuity of F from K into X is established, and for T1 > 0
sufficiently small, the transformationT of (4.12) is a contraction map on C([0, T1]; K ).
In consequence, the Cauchy problem (4.10)–(4.11) has a unique solution on [0, T1].
This completes the proof of Theorem 4.1. ��

5 Solutions to the b-family equation

We show that any solution to the Cauchy problem (2.1)–(2.2) can be written as a
composition of two functions related to the geodesic flows. More precisely, we have

Proposition 5.1 Assume u0 ∈ Hs(R) with s > 3
2 . Let (w, v, q) ∈ C1([0, T2]; Y ) be

the solution to (4.10) with initial value (u(0), ux (0), 1) such that ‖u(0) − u0‖s ≤ μ

with μ and T2 given in Remark 4.2. Then, for each fixed t ∈ [0, T2] the function

η(t, x) := x +
t∫

0

w(τ, x)dτ (5.1)

has an inverse x = x(t, η) on R, and the function u : [0, T2] × R → R defined by

u(t, η(t, x)) := w(t, x), (5.2)

is the unique solution to the b-family Eq. (2.1) with initial data u(0) on [0, T2].
Remark 5.2 It is known that ηt = w by the definition of η(t, x). This in turn implies
that we can define u by setting u = ηt ◦ η−1, the composition of ηt and the inverse
function of η. This formula is well related to the geodesic flows in the group of
diffeomorphisms on R (see, for example, [14,61]).

The proof of Proposition 5.1 is approached via a series of lemmas.

Lemma 5.3 Under the assumption of Proposition 5.1, the function u defined in (5.2)
satisfies the b-family Eq. (2.1) in C([0, T2] × R).
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Proof Since X is a reflexive space, we deduce from the Rademacher Theorem [2] in
infinite dimensional form that the functions on the left hand side of (4.10) are well
defined in X , for a.e. t ∈ [0, T2], then (4.10) can be interpreted as equalities in X for
a.e. t ∈ [0, T2]. Let Cb(R) be the space of bounded continuous functions in R. By the
Sobolev embedding of Hρ(R) with ρ > 1

2 into Cb(R) one infers for a.e. t ∈ [0, T2]
the equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d
dt w = −R,
d
dt wx = −Rx ,
d
dt v = b

2w2 − b−1
2 v2 − Q,

d
dt q = vq,

(5.3)

hold in Cb(R). As w, v and q are Lipschitz continuous with respect to t for each x ∈ R,
(4.4) and (4.5) imply R, Rx and Q have the same property. The last three equations
in (5.3) and the expression of Rx in (4.21) yield

d

dt
wx =

(
b

2
w2 + 3 − b

2
v2 − Q

)
q = d

dt
(vq),

which, together with wx (0, x) = ux (0, x) = (vq)(0, x), imply for each x ∈ R

wx (t, x) = (vq)(t, x) for t ∈ [0, T2]. (5.4)

This in turn implies from the last equation of (5.3) that

d

dt
q = wx with q(0, x) = 1.

On the other hand, the definition of η infers that, for each fixed x ∈ R, ηx satisfies the
same differential equation with the same initial value, it then follows that

ηx = q for t ∈ [0, T2], x ∈ R. (5.5)

By (4.13) ‖v(t, ·)‖s−1 ≤ c for t ∈ [0, T2], and hence from Sobolev embedding |v| ≤ c
on [0, T2] × R. We can conclude from the last equation in (5.3) that

0 < c1 ≤ ηx (t, x) = q(t, x) = e
∫ t

0 v(τ,x)dτ ≤ c2 (5.6)

for t ∈ [0, T2] and all x ∈ R. Hence η(t, ·) : R → R is invertible for every t ∈ [0, T2]
and its inverse function x(t, η) satisfies

0 < c−1
2 ≤ xη(t, η) = 1

ηx (t, x)
< c−1

1 . (5.7)
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Differentiating (5.2) with respect to x and taking into account (5.4), one gets

ux (t, η(t, x)) · ηx (t, x) = wx (t, x) = (vq)(t, x),

which and ηx = q > 0 in (5.6) yield

v(t, x) = ux (t, η(t, x)). (5.8)

On the other hand, the definition of R in (4.5) and the identity ηx = q in (5.5) imply

R(t, x) = −1

4

⎛
⎝

∞∫
x

−
x∫

−∞

⎞
⎠ e−|η(t,x)−η(t,x1)|

[
bw2 + (3 − b)v2

]
(x1)dη(t, x1).

Then we deduce from (5.8) and the first equation of (5.3) that

wt (t, x(t, z)) = −R(t, x(t, z)) = −Pz(t, z).

Differentiating both sides of (5.2) with respect to t , we have

ut (t, η(t, x)) + ux (t, η(t, x)) · ηt (t, x) = wt (t, x).

Replacing x by x(t, z) and using the definition u = ηt ◦ η−1 yield

ut (t, z) + ux (t, z)u(t, z) = wt (t, x(t, z)) = −Pz(t, z), z ∈ R.

Consequently, u satisfies (2.1) in C([0, T2]× R). This completes the proof of Lemma
5.3.

Remark 5.4 Recall that wx = vq, ηx = q in (5.4) and (5.5). In the case when b = 2,
(2.1) refers to the CH equation. It then follows from (5.3) that

d

dt
‖u(t, ·)‖2

1 = d

dt

∫
R

(w2q + v2q)(t, x)dx = 0

Hence ‖u(t)‖1 is conserved on [0, T2]. The Sobolev embedding theorem (see e.g. [14]
for best constant) may be applied to obtain

|w(t, ·)|∞ = |u(t, ·)|∞ ≤ 1√
2
‖u(t, ·)‖1 = 1√

2
‖u(0)‖1 (5.9)

for t ∈ [0, T2]. Given some x0 ∈ R such that ux (0, x0) < −‖u(0)‖1, then a wave-
breaking phenomenon can be found from the third equation in (5.3) and Q ≥ 0. So the
solution of equations in (4.10) would blow up in finite time. This is different from the
semilinear equations in Bressan and Constantin [3], where the solutions exist globally
in time.
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Lemma 5.5 Under the assumption of Proposition 5.1, we have for each t ∈ [0, T2]

η(t, ·) − Id, x(t, ·) − Id ∈ C1([0, T2]; Hs(R)), (5.10)

where Id is the identity function on R.

Proof The proof is divided into two steps.

Step 1 The definition of η(t, x) in (5.1) yields η(t, x) − x = ∫ t
0 w(τ, x)dτ . For

t ∈ [0, T2] fixed, the Minkowski inequality then gives rise to

|η(t, x) − x |2 =
⎛
⎜⎝
∫
R

∣∣∣∣∣∣
t∫

0

w(τ, x)dτ

∣∣∣∣∣∣
2

dx

⎞
⎟⎠

1
2

≤
t∫

0

⎛
⎝∫

R

|w(τ, x)|2 dx

⎞
⎠

1
2

dτ

≤ T2 max
0≤τ≤T2

|w(τ, ·)|2. (5.11)

Let η(k)(t, x) denote the kth derivative of η with respect to the space variable x . Then
a similar arguments as in (5.11) implies

|(η(t, x) − x)(k)|2 ≤ T2 max
0≤τ≤T2

|w(k)(τ, ·)|2, (5.12)

for integers 1 ≤ k ≤ m with m an integer such that s = m + β and 0 ≤ β < 1.
If β = 0, then (5.11) and (5.12) lead to η(t, ·) − Id ∈ Hs(R).
If 0 < β < 1, differentiating both sides of (5.1) m times with respect to x , one has

|η(m)(t, x1) − η(m)(t, x2)|2
|x1 − x2|1+2β

=
∣∣∣∣∣∣

t∫
0

w(m)(τ, x1) − w(m)(τ, x2)

|x1 − x2| 1
2 +β

dτ

∣∣∣∣∣∣
2

.

Integrating both sides on R
2 and applying the Minkowski inequality yield

‖η(m)(t, ·)‖β ≤
t∫

0

⎛
⎜⎝

∫

R2

|w(m)(τ, x1) − w(m)(τ, x2)|2
|x1 − x2|1+2β

dx1dx2

⎞
⎟⎠

1
2

dτ

≤ T2 max
0≤τ≤T2

‖w(m)(τ, ·)‖β (5.13)

with the notation

‖ f (m)‖β =
⎛
⎜⎝

∫

R2

| f (m)(x1) − f (m)(x2)|2
|x1 − x2|1+2β

dx1dx2

⎞
⎟⎠

1
2

. (5.14)
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By Theorem 7.48 of [1], ‖ f ‖2
s = ‖ f ‖2

m + ‖ f (m)‖2
β for f ∈ Hs(R). Then (5.11)–

(5.13) lead to η(t, ·) − Id ∈ Hs(R) for each t ∈ [0, T2]. The above arguments and the
equality η(t2, x) − η(t1, x) = ∫ t2

t1
w(τ, x)dτ yield the C1 continuity with respect to

t . Hence, the first property of (5.10) holds.

Step 2 Replacing x in (5.1) by x(t, η) yields x(t, η) − η = − ∫ t
0 w(τ, x(t, η))dτ for

t ∈ [0, T2] and η ∈ R. Let t ∈ [0, T2] be fixed. The Minkowski inequality then implies

|x(t, η) − η|2 =
⎛
⎜⎝
∫
R

∣∣∣∣∣∣
t∫

0

w(τ, x(t, η))dτ

∣∣∣∣∣∣
2

dη

⎞
⎟⎠

1
2

≤
t∫

0

⎛
⎝∫

R

|w(τ, x(t, η))|2 dη

⎞
⎠

1
2

dτ

≤ c

t∫
0

⎛
⎝∫

R

|w(τ, x)|2 dx

⎞
⎠

1
2

dτ ≤ cT2 max
0≤τ≤T2

|w(τ, ·)|2. (5.15)

Here the estimate dη = ηx (t, x)dx ≤ cdx is applied in the third inequality. Denote
x (k)(t, η) the kth derivative of x(t, η) with respect to the space variable η. As x(t, η)

is a bi-Lipschitz function of η, and w(τ, x) has an L2 derivative with respect to x , the
composite function w(τ, x(t, η)) has an L2 derivative with respect to η by Theorem
2.2.2. of [69], and for τ, t ∈ [0, T2]

(w(τ, x(t, η)))(1) = w(1)(τ, x(t, η))x (1)(t, η) (5.16)

in the sense of L2(R). Thus

(x(t, η) − η)(1) = −
t∫

0

w(1)(τ, x(t, η))x (1)(t, η)dτ.

By (5.7), a similar argument as in (5.15) leads to

|(x(t, η) − η)(1)|2 ≤ c2T2 max
0≤τ≤T2

|w(1)(τ, ·)|2. (5.17)

If m ≥ 2, applying the bi-Lipschitz change of coordinates formula (5.16) for those
functions again gives

x (2)(η) = − 1

(η(1)(x))3
η(2)(x),

x (3)(η) = − 1

(η(1)(x))4
η(3)(x) + 3

(η(1)(x))5
(η(2)(x))2, (5.18)

. . .

x (m)(η) = − 1

(η(1)(x))m+1
η(m)(x) + · · · + 1

(η(1)(x))in
Hn,
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where Hi , 1 ≤ i ≤ n, are polynomials of η(2)(t, x), . . . , η(m−1)(t, x) with no zero
order term η(t, x), where n, i1, . . . , in are positive integers depending on m. From
(5.6), (5.11) and (5.12) we deduce

|x (k)(t, ·)|2 ≤ c, k = 2, . . . , m. (5.19)

If β = 0 then (5.15), (5.17) and (5.19) lead to x(t, ·) − Id ∈ Hs(R).
If 0 < β < 1, we consider only the case m = 3 for simplicity of notation. It is

inferred from (5.6) that

|η1 − η2| ≥ c|x1 − x2| (5.20)

for ηi = η(t, xi ) ∈ R, i = 1, 2 and any t ∈ [0, T2] fixed. Applying (5.6), (5.18) and
(5.20) gives

‖(x(t, η) − η)(3)‖β =
∫

R2

|x (3)(η1) − x (3)(η2)|2
|η1 − η2|1+2β

dη1dη2

≤ c
∫

R2

|x (3)(η1) − x (3)(η2)|2
|x1 − x2|1+2β

dx1dx2 ≤ cI + cII (5.21)

with

I =
∫

R2

|η(3)(x1)(η
(1)(x2))

4 − η(3)(x2)(η
(1)(x1))

4|2
|x1 − x2|1+2β

dx1dx2,

II =
∫

R2

|(η(2)(x2))
2(η(1)(x1))

5 − (η(2)(x1))
2(η(1)(x2))

5|2
|x1 − x2|1+2β

dx1dx2.

This in turn implies that

I ≤
∫

R2

|η(3)(x1) − η(3)(x2)|2 · |η(1)(x2)|8
|x1 − x2|1+2β

dx1dx2

+
∫

R2

|η(3)(x2)|2 · |(η(1)(x2))
4 − (η(1)(x1))

4|2
|x1 − x2|1+2β

dx1dx2

≤ c
∫

R2

|η(3)(x1) − η(3)(x2)|2
|x1 − x2|1+2β

dx1dx2

+c
∫

R2

|η(3)(x2)|2 · |η(1)(x2) − η(1)(x1)|2
|x1 − x2|1+2β

dx1dx2 := I1 + I2.
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The fact that η(t, x) − x ∈ Hs(R) in Step 1 and the definition of the intrinsic Hs(R)

norm then imply

I1 = c‖(η(t, x) − x)(3)‖β ≤ c‖η(t, ·) − Id‖s .

The calculation of I2 is decomposed into two cases.
(a) 0 < β ≤ 1

2 . Write the set E = {(x1, x2) ∈ R
2 : |x1 − x2| < 1}. Applying the

Lipshcitz continuity of η(1)(x) with respect to x in the domain E and the boundedness
of η(1)(x) in the complement of E lead to

I2 ≤ c
∫
E

|η(3)(x2)|2
|x1 − x2|2β−1 dx1dx2 + c

∫

R2\E

|η(3)(x2)|2
|x1 − x2|1+2β

dx1dx2

= c
∫

|z|<1

1

|z|2β−1 dz
∫
R

|η(3)(x2)|2dx2 + c
∫

|z|>1

1

|z|1+2β
dz

∫
R

|η(3)(x2)|2dx2

≤ c|η(3)(t, ·)|2 ≤ c‖η(t, ·) − Id‖2
s .

(b) 1
2 < β < 1. In this case η(3)(t, ·) ∈ L∞ from Sobolev embedding. Since

s − 1 ≥ β, we have (η(t, ·) − Id)(1) ∈ Hs−1(R) ⊂ Hβ(R). Using intrinsic Sobolev
we get

I2 ≤ |η(3)(t, ·)|2∞
∫

R2

|η(1)(x2) − η(1)(x1)|2
|x1 − x2|1+2β

dx1dx2

= |η(3)(t, ·)|2∞‖(η(t, x) − x)(1)‖2
β ≤ c‖η(t, ·) − Id‖2

s .

With a slightly more complicated calculation, the term I I can be estimated by the same
term as in (5.21). Combining (5.15), (5.17), (5.19) and (5.21) we find x(t, ·) − Id ∈
Hs(R). The identities η(t, x(t, η)) = η, ηt = w and ηx = q infer that xt (t, η) =
w(t,x(t,η))
q(t,x(t,η))

. Using similar arguments as before we get w(t,x(t,·))
q(t,x(t,·)) ∈ Hs(R), then the

equation

x(t, η) − η =
t∫

0

w(τ, x(τ, η))

q(τ, x(τ, η))
dτ

implies the C1 continuity of x(t, ·) − Id with respect to t in Hs(R). ��
Next we prove that the transformations η and η−1 “preserve” the Hr (R) norm.

Lemma 5.6 Under the assumptions of Proposition 5.1 one gets f (x(t, ·)) ∈ Hs(R)

for any f ∈ Hs(R) and any t ∈ [0, T2], and the estimates

c1‖ f ‖r ≤ ‖ f (x(t, ·))‖r ≤ c2‖ f ‖r (5.22)
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are valid for 0 ≤ r ≤ s, where the constants c1, c2 depend only on u0, μ and T2 (see
Remark 4.2 for μ and T2), and is independent of r .

Proof Write g(t, η) = f (x(t, η)). Applying chain rule as in (5.16), the assumption
that f ∈ Hs(R) and the fact x(t, η) − η ∈ Hs(R) with s = m + β in (5.10) yield

g(1)(η) = f (1)(x))x (1)(η),

g(2)(η) = f (2)(x))(x (1)(η))2 + f (1)(x))x (2)(η),

. . . (5.23)

g(m)(η) = f (m)(x))(x (1)(η))m + · · · + f (1)(x))x (m)(η).

Let r = n + γ with n an integer and 0 ≤ γ < 1. For simplicity of notation, we only
consider the case n = 2 and γ > 0. We have

‖g(2)(t, ·)‖2
γ =

∫

R2

|g(2)(η1) − g(2)(η2)|2
|η1 − η2|1+2γ

dη1dη2

≤ c
∫

R2

| f (2)(x(η1)))(x (1)(η1))
2 − f (2)(x(η2)))(x (1)(η2))

2|2
|η1 − η2|1+2γ

dη1dη2

+
∫

R2

| f (1)(x(η1)))x (2)(η1) − f (1)(x(η2))x (2)(η2)|2
|η1 − η2|1+2γ

dη1dη2.

The same arguments as in the proof of Lemma 5.5 yield the second inequality of
(5.22). This also infers ‖ f̄ (η(t, ·))‖r ≤ c‖ f̄ ‖r for any f̄ ∈ Hs and any t ∈ [0, T2].
Replacing f̄ (·) by f (x(t, ·)) and applying the identity x(t, η(t, ·)) = Id yield the first
inequality of (5.22). ��

Proof of Proposition 5.1 From (5.22) we have u(t, ·) = w(t, x(t, ·)) ∈ Hs(R) for
t ∈ [0, T2]. Next we show

u(t, ·) ∈ C1([0, T2]; Hs−1(R)) and u(t, ·) ∈ C([0, T2]; Hs(R)). (5.24)

For t0, t ∈ [0, T2], the definition of u gives

u(t, η) − u(t0, η) = h1(t, η) + h2(t, η),

where

h1(t, η) = w(t, x(t, η)) − w(t, x(t0, η)), h2(t, η) = w(t, x(t0, η)) − w(t0, x(t0, η)).

From Theorem 4.1 we know w(t, ·) ∈ C1([0, T2]; Hs(R)). This, together with (5.22)
imply that for 0 ≤ r ≤ s

‖h2(t, ·)‖r ≤ c‖w(t, ·) − w(t0, ·)‖r ≤ c|t − t0|. (5.25)
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Applying mean value theorem we have for 0 ≤ k ≤ m − 1

w(k)(t, x(t, ·)) − w(k)(t, x(t0, ·)) =
1∫

0

w(k+1)(t, θ(t, ·))dθ · (x(t, ·) − x(t0, ·)),

where θ(t, ·) = θx(t, ·) + (1 − θ)x(t0, ·) is bi-Lipschitz about space variables and
θ(t, ·) − Id ∈ Hs(R). Then (5.10) implies

|w(l)(t, x(t, ·)) − w(l)(t, x(t0, ·))|2 = O(|t − t0|) for 0 ≤ l ≤ m − 2, and

‖w(m−1)(t, x(t, ·)) − w(m−1)(t, x(t0, ·))‖β = O(|t − t0|). (5.26)

From (4.14), (5.23), (5.10), and (5.26) we obtain ‖h1(t, ·)‖s−1 ≤ c|t − t0|, which
together with (5.25) prove the first part of (5.24).

Let ϕ ∈ C∞
c (R) such that

∫
R

ϕ(x)dx = 1 and ϕn(x) = nϕ(nx), n ≥ 1. We have

lim
t→t0

∣∣∣w(m)(t, x(t, ·)) − w(m)(t, x(t0, ·)
∣∣∣
2

= lim
t→t0

lim
n→∞

∣∣∣(w(m)(t, x(t, ·)) − w(m)(t, x(t0, ·))) ∗ ϕn

∣∣∣
2

= lim
n→∞ lim

t→t0

∣∣∣(ϕn(· − x(t, ·)) − ϕn(· − x(t0, ·))) ∗ w(m)(t, ·)
∣∣∣
2

= 0 (5.27)

where we used the Lebesgue dominated convergence theorem to interchange the limits.
If β = 0, from (4.14) and (5.23), we deduce from (5.26), (5.27) and (5.10) that

limt→t0 ‖h1(t, ·)‖m = 0, which together with (5.25) lead to the second part of (5.24).
If 0 < β < 1, we have

lim
t→t0

‖w(m)(t, x(t, ·)) − w(m)(t, x(t0, ·))‖2
β = lim

t→t0

∫

R2

|w̃(t, η1, η2)|2
|η1 − η2|1+2β

dη1dη2

= lim
t→t0

lim
n→∞

∫

R2

|(w̃(t, η1, η2)) ∗ ϕn|2
|η1 − η2|1+2β

dη1dη2

= lim
n→∞ lim

t→t0

∫

R2

|ϕ̃n(t, η1, η2, ·) ∗ w(m)(t, ·)|2
|η1 − η2|1+2β

dη1dη2 = 0,

where w̃(t, η1, η2) ∈ L1
loc(R

2) for fixed t ∈ [0, T2] is given as

w(m)(t, x(t, η1)) − w(m)(t, x(t0, η1)) − w(m)(t, x(t, η2)) + w(m)(t, x(t0, η2)),

and ϕ̃n(t, η1, η2, z) represents

ϕn(z − x(t, η1)) − ϕn(z − x(t0, η1)) − ϕn(z − x(t, η2)) + ϕn(z − x(t0, η2)).
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Then the same arguments as in the case β = 0 implies limt→t0 ‖h1(t, ·)‖s = 0 and
hence proves the second part of (5.24).

Since u(t, ·) ∈ C1([0, T2]; Hs−1(R)) satisfies (2.1) by (5.24), the estimates of
the Hölder continuity in Theorem 2.1 in turn imply the uniqueness of u in the space
C([0, T2]; Hs(R)). ��

6 Proof of Theorem 2.2

Let s = m + β > 3
2 with m an integer and β ∈ [0, 1). Let r ∈ (s − 1, s). Define

β0 =
⎧⎨
⎩

1
2 − β, when β ∈ [0, 1

2 )

3
4 − β

2 , when β ∈ [ 1
2 , 1).

(6.1)

This in turn implies that β0 ∈ (0, 1
2 ]. Set

s1 = s − 1

2
− ε and β1 = β − 1

2
+ ε (6.2)

with

ε = 1

2
min{β0, 1 − s + r, δ} (6.3)

where δ > 0 is given in the assumption of Theorem 2.2. Then we know

β1 ∈ (−1/2, 0) when β ∈ [0, 1/2),

β1 ∈ (0, 1 − ε) when β ∈ [1/2, 1),

s1 > m − 1, m − 1 + β1 > 0. (6.4)

Varying ε slightly, we can suppose that s1 is not an integer.
Motivated by Example 5.2 in [46], we choose the following family of initial data

uλ(0, x) = (λ + εxm+β1+ )φ(x), 0 ≤ λ ≤ 1, (6.5)

where x+ = max{0, x} and φ ∈ C∞
c (R) such that φ(x) = 1 for |x | ≤ 2 and φ(x) = 0

for |x | ≥ 4.

Proposition 6.1 There exists a positive constant h such that ‖uλ(0, ·)‖2
s ≤ h for all

0 < δ ≤ 1 and 0 ≤ λ ≤ 1.

Proof If β = 0, the proof is trivial. If 0 < β < 1, from the intrinsic Sobolev norm
(5.14) and symmetry we obtain that

‖(xm+β1+ φ)(m)‖2
β = 2(I1 + I2 + II)
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where

I1 =
∞∫

0

dx1

x1
2∫

0

|xβ1
1 φ(x1) − xβ1

2 φ(x2)|2
|x1 − x2|1+2β

dx2 ≤ c

8∫
0

dx1

x1
2∫

0

x2β−1+2ε
1

x1+2β
1

dx2

+c

∞∫
8

dx1

4∫
0

x2β−1+2ε
2

x1+2β
1

dx2 = O(ε−1) + O(1) = O(ε−1),

I2 =
∞∫

0

dx1

x1∫
x1
2

|xβ1
1 φ(x1) − xβ1

2 φ(x2)|2
|x1 − x2|1+2β

dx2 ≤ c

8∫
0

dx1

x1∫
x1
2

x2β1−2
1

|x1 − x2|2β−1 dx2

≤ c

8∫
0

x2β−3+2ε
1 dx1

x1
2∫

0

η1−2βdη = O(ε−1),

and

II =
0∫

−∞
dx1

∞∫
0

|xβ1
2 φ(x2)|2

|x1 − x2|1+2β
dx2 ≤ c

0∫
−1

dx1

4∫
0

x2β−1+2ε
2

x2β+ε
2 |x1|1−ε

dx2

+c

−1∫
−∞

dx1

4∫
0

1

|x1|1+2β
dx2 = O(ε−2) + O(1) = O(ε−2),

where use has been made of the mean-value theorem and change of variables in
calculating I2. Thus

‖εxm+β1+ φ‖2
s = ‖εxm+β1+ φ‖2

m + ‖(εxm+β1+ φ)(m)‖2
β = O(1).

Observing ‖λφ‖s = O(λ), the claim ‖uλ(0, ·)‖2
s ≤ h for some h > 0 follows. ��

Moreover, it is easy to see that for r ≥ 0

‖uλ(0) − u0(0)‖r = ‖λφ(·)‖r = λ‖φ‖r , (6.6)

and uλ(0, x) is smooth except at the origin.
For any nonnegative integer k, let Ck

loc(R\{0}) be the space of continuous functions
in R\{0} with continuous derivatives of order up to k (not necessarily bounded). If
ρ = k + γ with 0 < γ < 1, the space of locally Hölder class Cρ

loc(R\{0}) is the set
of all of functions u such that for any compact interval I ⊂ R\{0} there is a constant
cI depending on I such that

max
0≤i≤k

sup
x∈I

|u(i)(x)| + sup
x,η∈I,x �=η

|u(k)(x) − u(k)(η)||x − η|−γ ≤ cI .
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Replacing R\{0} by R and cancel the condition that the constant cI depends on I , the
above definition yields the space Cρ(R) of Hölder class on R.

We need some multiplicative properties and the Sobolev embedding for the Hölder
class. To this end, a weaker version of Proposition 8.6.8 and 8.6.10 of [44] will be
contented:

(i) if ρ > 0 and it not an integer, then there is a constant cρ such that

‖u1u2‖Cρ(R) ≤ cρ‖u1‖Cρ(R)‖u2‖Cρ(R); (6.7)

(ii) if ρ > 1
2 , then it follows

‖u‖
Cρ− 1

2 −ν
(R)

≤ cρ‖u‖ρ (6.8)

for any ν > 0 such that ρ − 1
2 − ν > 0 is not an integer.

For any δ > 0 we choose ε and uλ(0, ·) as at the beginning of this section. From
(6.6) and Remark 4.2 there exist λ0, T2 > 0 such that for each initial data uλ(0, ·)
with 0 ≤ λ ≤ λ0 system (4.10) has a unique solution (wλ(t, ·), vλ(t, ·), qλ(t, ·)) ∈
C([0, T2]; Y ). For simplicity of notation, in the rest of this paper we suppress the super-
script of (w0(t, ·), v0(t, ·), q0(t, ·)) and denote Q = Q(w, v, q) and R = R(w, v, q)

as in (4.4) and (4.5). First we show some properties of v(m−1) in a neighborhood of
x = 0.

Lemma 6.2 Assume s = m + β > 3
2 with m an integer and 0 ≤ β < 1. Then there

exists a positive number x̄ such that for t ∈ [0, T2]
(i) for β ∈ [0, 1) and x < 0

v(m−1)(x) = O(1); (6.9)

(ii) for β ∈ [0, 1
2 ) and 0 < x < x̄

c1xβ1 ≤ v(m−1)(x) ≤ c2xβ1; (6.10)

(iii) for β ∈ [ 1
2 , 1) and x1 ∈ (−4x0, x0), x2 ∈ (2x0, 3x0) with 0 < 4x0 ≤ x̄

c1xβ1
0 ≤ v(m−1)(x2) − v(m−1)(x1) ≤ c2xβ1

0 , (6.11)

v(m−1)(x2 − 4x0) − v(m−1)(x1 − 4x0) = O(x1−ε
0 ). (6.12)

Proof First, we prove

w(t, ·) ∈ Cm
loc(R\{0}) and v(t, ·), q(t, ·) ∈ Cm−1

loc (R\{0}). (6.13)
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By (6.8) one finds that (w(t, ·), v(t, ·), q(t, ·)) satisfies

⎧⎪⎨
⎪⎩

d
dt w = −R,
d
dt v = b

2w2 − b−1
2 v2 − Q,

d
dt q = vq,

(6.14)

in the Hölder classes Cs1(R)×Cs1−1(R)×Cs1−1(R) with R(t, ·), Q(t, ·) ∈ Cs1(R) for
t ∈ [0, T2], where s1 is defined in (6.2). Observe that w2(t, ·) ∈ Cs1(R) from (6.7), and
we know that the initial data v(0, ·) = u0

x (0, ·) ∈ Cs1
loc(R\{0}). We can then apply the

fixed point theorem to the second equation of (6.14) in the space C([0, T2], Cs1(I )) on
any compact interval I ⊂ R\{0}, with terms w2 and Q being regarded as independent
of v. Then we have

v(t, ·) ∈ Cs1
loc(R\{0}). (6.15)

Using (6.15), q(0, ·) = 1 ∈ Cs1
loc(R\{0}) and the third equation of (6.14), the above

arguments lead to

q(t, ·) ∈ Cs1
loc(R\{0}). (6.16)

Applying (4.21) and (6.7), (6.15) and (6.16) improves the regularity of R(t, ·) to
Cs1+1

loc (R\{0}). Now w(0, ·) = u0(0, ·) ∈ Cs1+1
loc (R\{0}) and the first equation of

(6.14) yield w(t, ·) ∈ Cs1+1
loc (R\{0}). Thus s1 > m − 1 in (6.4) leads to (6.13).

We are now in a position to consider the estimates for v(m−1). We claim that the
boundedness of (w2)(m−1), Q(m−1), v, . . ., v(m−2) gives the following estimate

−c|v(m−1)(t, x)| − c ≤ d

dt
v(m−1)(t, x) ≤ c|v(m−1)(t, x)| + c

for t ∈ [0, T2] and a fixed x ∈ R\{0}. In fact, it is clearly true for m = 1. If m ≥ 2,
differentiating the second equation of (6.14) with respect to x (m − 1) times implies
that the coefficient of v(m−1) is −(b − 1)v. Moreover v(m−1)(0, x) = 0 for x < 0
from (6.5), which leads to (6.9). On the other hand, since v(m−1)(0, x) = εxβ1 > 0
for 0 < x ≤ 1, we see that for t ∈ [0, T2]

cεxβ1 − c ≤ v(m−1)(t, x) ≤ cεxβ1 + c. (6.17)

If β ∈ [0, 1
2 ) then β1 < 0 by (6.4). Taking x̄ > 0 small enough, we obtain (6.10) from

(6.17).
If β ∈ [ 1

2 , 1), then (w2)(m−1), Q(m−1), v ∈ C1−ε(R), and hence

(w2)(m−1)(x2) − (w2)(m−1)(x1), Q(m−1)(x2) − Q(m−1)(x1) = O(x1−ε
0 ). (6.18)

Set f (t) = v(m−1)(t, x2) − v(m−1)(t, x1). We claim for t ∈ [0, T2]
(v2)(m−1)(x2) − (v2)(m−1)(x1) = O( f (t)) + O(x1−ε

0 ). (6.19)
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As this is obvious for m = 1, we can assume m ≥ 2. From Leibniz formula, (v2)(m−1)

is a rational combination of

vv(m−1), v(1)v(m−2), . . . , v([ m−1
2 ])v([ m

2 ]). (6.20)

Notice that 0 < v(m−1)(0, x) ≤ c for x > 0, then relation (6.17) yields v(m−1)(t, x) =
O(1), which together with v ∈ C1−ε(R) imply

v(x2)v
(m−1)(x2) − v(x1)v

(m−1)(x1) = v(x2) f (t) + (v(x2) − v(x1))v
(m−1)(x1)

= f (t)v(x2) + O(x1−ε
0 ).

The estimates concerning the other terms in (6.20) are of the form O(x1−ε
0 ), i.e.,

v(k)(x2) − v(k)(x1) = O(x1−ε
0 ), and v(k)(x) = O(1)

for k = 0, . . . , m − 2. Thus (6.19) holds. In view of (6.18) and (6.19), it follows from
the second equation of (6.14) that

− c| f (t)| − cx1−ε
0 ≤ d

dt
f (t) ≤ c| f (t)| + cx1−ε

0 for t ∈ [0, T2]. (6.21)

Hence from c1xβ1
0 ≤ f (0) ≤ c2xβ1

0 we have

c1xβ1
0 − cx1−ε

0 ≤ f (t) ≤ c2xβ1
0 + cx1−ε

0 .

Since β1 < 1 − ε by (6.4), taking x̄ > 0 sufficiently small we obtain (6.11). The
differential inequality (6.21) is also valid if f (t) is replaced by v(m−1)(t, x2 − 4x0) −
v(m−1)(t, x1 − 4x0) and then f (0) = 0. Thus we obtain (6.12) for t ∈ [0, T2]. ��

Now we give some estimates regarding the intrinsic Sobolev norms which will be
needed in the proof of Theorem 2.2.

Lemma 6.3 Let s > 3
2 . There exist positive numbers x̄ , t0 ∈ (0, T2] and a ∈ (0, 1)

such that the estimates

g(t0), |h(t0)| ≥ cxβ1
0 and b(t0) ≥ cxβ1+1

0 (6.22)

hold for x1 ∈ (ax0, 2ax0) and x2 ∈ (2x0, 3x0) with 0 < 4x0 ≤ x̄ , where

g(t) := (w(m)(x2) − w(m)(x2 − 4x0))(t),

h(t) := (w(m)(x2) − w(m)(x1) − w(m)(x2 − 4x0) + w(m)(x1 − 4x0))(t),

b(t) := (w(m−1)(x2) − w(m−1)(x1) − w(m−1)(x2 − 4x0) + w(m−1)(x1 − 4x0))(t).

Proof We divide the proof of Lemma 6.3 into three cases.
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Case 1 β ∈ [0, 1
2 ). Then m ≥ 2 since s > 3

2 . We have q(t, x) = e
∫ t

0 v(τ,x)dτ from the
third equation of (6.14) and the initial condition q(0) = 1. Applying Leibniz formula,
we have

q(1) = e
∫ t

0 v(τ)dτ

t∫
0

v(1)(τ )dτ,

· · · (6.23)

q(m−1) = e
∫ t

0 v(τ)dτ

⎛
⎝

t∫
0

v(1)(τ )dτ

⎞
⎠

m−1

+ · · · + e
∫ t

0 v(τ)dτ

t∫
0

v(m−1)(τ )dτ.

From w(1) = vq and (6.13) one gets for x ∈ R\{0}

w(m) = (vq)(m−1) = v(m−1)q + (m − 1)v(m−2)q(1) + · · · + vq(m−1). (6.24)

Note that all terms in (6.24) except the first and the last are bounded because of Sobolev
embedding. From (6.10) and (6.23) we know |q(m−1)(t, x)| ≤ ctxβ1 for 0 < x < x̄ ,
and then (6.24), |v| ≤ c and β1 < 0 by (6.4) yield

g(t0) ≥ cxβ1
0 − ct0xβ1

0 − c ≥ cxβ1
0 ,

h(t0) ≤ c(1 + t0)xβ1
0 − c(1 − t0)(ax0)

β1 + c ≤ −cxβ1
0

provided that x̄ , t0, a > 0 are sufficiently small. Notice that

w(m−1) = v(m−2)q + (m − 2)v(m−3)q(1) + · · · + vq(m−2). (6.25)

Using mean value theorem, (6.9), q ≥ c > 0 and (6.23) we have

(v(m−2)(x2) − v(m−2)(x1))q(x2) = v(m−1)(x̄1)q(x2) · (x2 − x1) ≥ cxβ1+1
0 ,

v(m−2)(x1)(q(x2) − q(x1)) = v(m−2)(x1)q
(1)(x̄2) · (x2 − x1) = O(t xβ1+1

0 )

with x̄1, x̄2 ∈ (x1, x2). Summing up the above two yields

I1 := (v(m−2)(x2)q(x2) − v(m−2)(x1)q(x1))(t0) ≥ cxβ1+1
0

if t0 is chosen small. Using (6.10), similar arguments lead to

I2 := (v(m−2)(x2 − 4x0)q(x2 − 4x0) − v(m−2)(x1 − 4x0)q(x1 − 4x0))(t0) = O(x0).

Hence I1 − I2 ≥ cxβ1+1
0 . Such estimates of the intermediate and the last terms in

(6.25) are of the order O(x0) and O(t xβ1+1
0 ), respectively. So we proved
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b(t0) ≥ cxβ1+1
0 − ct0xβ1+1

0 − cx0 ≥ cxβ1+1
0

provided that x̄ , t0 > 0 are sufficiently small.

Case 2 β ∈ ( 1
2 , 1) and m = 1. Since ez − 1 = z + o(z) for |z| � 1, from (6.11) it

follows that

|q(t, x2) − q(t, x1)| = e
∫ t

0 v(τ,x1)dτ |e
∫ t

0 (v(τ,x2)−v(τ,x1))dτ − 1|

≤ c

t∫
0

|v(τ, x2) − v(τ, x1)|dτ + o(xβ1
0 ) ≤ ctxβ1

0 .

Then q ≥ c > 0, |v| ≤ c and (6.11) give

(w(1)(x2) − w(1)(x1))(t0) = ((v(x2) − v(x1))q(x2) + v(x1)(q(x2) − q(x1)))(t0)

≥ cxβ1
0 − ct0xβ1

0 ≥ cxβ1
0 (6.26)

provided t0 is chosen small. Similarly applying (6.12) it follows

w(1)(x2 − 4x0) − w(1)(x1 − 4x0))(t0) = O(x1−ε
0 ),

which together (6.26) and β1 < 1 − ε by (6.4) lead to

h(t0) ≥ cxβ1
0 − cx1−ε

0 ≥ cxβ1
0

if x̄ > 0 is small. The estimate for g(t0) can be obtained directly from (6.26). By the
mean value theorem and (6.26), one has

b(t0) = (w(1)(x̄1) − w(1)(x̄2))(t0) · (x2 − x1) ≥ cxβ1
0 · x0 ≥ cxβ1+1

0

provided that x̄ > 0 is small, where x̄1 ∈ (x1, x2), x̄2 ∈ (x1 − 4x0, x2 − 4x0).

Case 3 β ∈ [ 1
2 , 1) and m ≥ 2. Denote by

I : = v(m−1)(x2)q(x2) − v(m−1)(x2 − 4x0)q(x2 − 4x0)

= (v(m−1)(x2) − v(m−1)(x2 − 4x0))q(x2)

+ (q(x2) − q(x2 − 4x0))v
(m−1)(x2 − 4x0).

Recall that q ≥ c > 0 and |v(m−1)| ≤ c. Then (6.11) and the Hölder continuity of q
yield

I ≥ cxβ1
0 − cx1−ε

0 ≥ cxβ1
0 . (6.27)
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From (6.23), estimates of the intermediate terms and the last term in (6.24) are of order
O(x1−ε

0 ) and O(t xβ1
0 ), respectively. Thus

g(t0) ≥ cxβ1
0 − ct0xβ1

0 − cx1−ε
0 ≥ cxβ1

0

provided that x̄ , t0 > 0 are small (since β1 < 1 − ε by (6.4)). Applying the similar
arguments, we have

v(m−1)(x2)q(x2) − v(m−1)(x1)q(x1) − v(m−1)(x2 − 4x0)q(x2 − 4x0)

+ v(m−1)(x1 − 4x0)q(x1 − 4x0) ≥ cxβ1
0 .

Thus

h(t0) ≥ cxβ1
0 − ct0xβ1

0 − cx1−ε
0 ≥ cxβ1

0

if x̄ , t0 > 0 are sufficiently small.
The estimate for b(t0) can be obtained by combining the arguments in Case 1 for

b(t0) and the above for g(t0). ��
Denote ηλ(t, x), 0 ≤ λ ≤ λ0, the function determined by (5.1) corresponding to the

initial data uλ(0, ·) given in (6.5), and xλ(t, η) its inverse function. Next we establish
the estimates concerning the space shift.

Lemma 6.4 Assume s > 3
2 . Then for 0 < λ ≤ 1 the estimate

xλ(t, η0(t, x)) = x − λt[1 + O(λm−1+β1) + O(t)] (6.28)

holds for |x | ≤ 2λ and t ∈ [0, T2].
Proof Let Rλ = R(wλ, vλ, qλ). Since s > 3

2 , one infers from ‖Rλ(σ, ·)‖s ≤ c for
0 ≤ σ ≤ T2 and 0 < λ ≤ 1 that |Rλ

x (σ, ·)|∞ ≤ c. By mean value theorem there is a
θ = θ(λ, σ, x) such that

Rλ(σ, x) = Rλ(σ, 0) + Rλ
x (σ, θx) · x

for 0 ≤ σ ≤ T2, |x | ≤ 2λ and 0 < λ ≤ 1. Integrating both sides of the first equation
of (6.14) on [0, τ ] gives

wλ(τ, x) = wλ(0, x) −
τ∫

0

Rλ(σ, x)dσ.

Applying (5.1) andwλ(0, x) = uλ(0, x) in (6.5), we deduce from the last two equations
that for |x | ≤ 2λ and t ∈ [0, T2]
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ηλ(t, x) = x +
t∫

0

⎛
⎝wλ(0, x) −

τ∫
0

Rλ(σ, x)dσ

⎞
⎠ dτ

= x + t (λ + εxm+β1+ )φ(x) −
t∫

0

τ∫
0

(Rλ(σ, 0) + Rλ
x (σ, θx) · x)dσdτ

= x + λt
[
1 + O(λm−1+β1) + O(t)

]
−

t∫
0

τ∫
0

Rλ(σ, 0)dσdτ (6.29)

where we have used φ(x) = 1 for |x | ≤ 2 and |Rλ
x (σ, ·)|∞ ≤ c. The same argument

is valid for η0 = η0(t, x) and it follows that

η0(t, x) = x + λt
[

O(λm−1+β1) + O(t)
]

−
t∫

0

τ∫
0

R(σ, 0)dσdτ

for |x | ≤ 2λ and t ∈ [0, T2], where R = R(w0, v0, q0) with (w0, v0, q0) the solution
of (4.10) corresponding to initial data u0(0, ·). Note (6.29) gives

xλ(t, η) = η − λt
[
1 + O(λm−1+β1) + O(t)

]
+

t∫
0

τ∫
0

Rλ(σ, 0)dσdτ.

Using (4.27), (4.13) and (6.6) one has

|Rλ(σ, 0) − R(σ, 0)| ≤ |Rλ(σ, ·) − R(σ, ·)|∞ ≤ c‖Rλ(σ, ·) − R(σ, ·)‖s

≤ c‖uλ(0) − u0(0)‖s ≤ cλ.

It then follows from the last three equations that

xλ(t, η0(t, x)) = x − λt
[
1 + O(λm−1+β1) + O(t)

]
+ O(λt2)

= x − λt
[
1 + O(λm−1+β1) + O(t)

]

for |x | ≤ 2λ and t ∈ [0, T2]. Hence, the proof of (6.28) is complete. ��
Proof of Theorem 2.2 Assume s = m + β with m an integer, 0 ≤ β < 1, and
r ∈ (s − 1, s). From (5.22) we have

‖wλ(xλ)(t) − w(xλ)(t)‖r ≤ c‖wλ(t) − w(t)‖r ≤ c‖wλ(t) − w(t)‖s

for t ∈ [0, T2]. It then follows from (4.13) and (6.6) that

‖wλ(xλ)(t) − w(xλ)(t)‖r ≤ c‖uλ(0) − u0(0)‖s ≤ cλ. (6.30)
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Using the identity x0(t, η0(t, ·)) = Id, the first inequality of (5.22) yields

‖w(xλ)(t) − w(x0)(t)‖r ≥ c‖w(xλ(η0(·)))(t) − w(·)(t)‖r . (6.31)

Note m − 1 +β1 > 0 by (6.4). We can take t0 ∈ (0, T2] and λ0 ∈ (0, 1] sufficiently
small such that |O(λ

m−1+β1
0 )| + |O(t0)| ≤ 1

2 , and t0 and x̄ = 5λ0t0 satisfy the
assumptions of Lemma 6.2 and Lemma 6.3. We rewrite (6.28) as

xλ(t0, η
0(t0, x)) = x − 4x0 for |x | ≤ 2λ and 0 < λ ≤ λ0,

with

x0 := λt0
4

[1 + O(λ
m−1+β1
0 ) + O(t0)].

Then x0 ≥ 1
8λt0. Write

f λ(x) :=
(
w(m)(x − 4x0) − w(m)(x)

)
(t0).

Again, there are three cases to be considered.

Case 1 r = m. By the first estimate of (6.22), we have

| f λ|22 =
∫
R

| f λ(x)|2dx ≥ c

3x0∫
2x0

(λt0)
2β−1+2εdx ≥ c(λt0)

2(β+ε).

This in turn implies that

‖w
(

xλ(η0(·))
)

(t0) − w(·)(t0)‖r ≥ | f λ|2 ≥ c(λt0)
β+ε = c(λt0)

s−r+ε,

which together with (6.31) lead to

‖w(xλ)(t0) − w(x0)(t0)‖r ≥ c(λt0)
s−r+ε. (6.32)

Case 2 r = m + γ with 0 < γ < β. Denote by � := (ax0, 2ax0) × (2x0, 3x0). The
second estimate of (6.22) implies

| f λ(x1) − f λ(x2)| ≥ c(λt0)
β1 for (x1, x2) ∈ �.
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Thus

‖ f λ‖γ =
∫∫

R×R

∣∣ f λ(x1) − f λ(x2)
∣∣2

|x1 − x2|1+2γ
dx1dx2 ≥

∫∫
�

∣∣ f λ(x1) − f λ(x2)
∣∣2

|x1 − x2|1+2γ
dx1dx2

≥ c

2ax0∫
ax0

3x0∫
2x0

(λt0)
2β−1+2ε(λt0)

−1−2γ dx1dx2 = c(λt0)
2(β−γ+ε).

Then using the intrinsic Sobolev norm we have

‖w(xλ(η0(·)))(t0) − w(·)(t0)‖r ≥ ‖(w(xλ(η0(·))(t0) − w(·)(t0))(m)‖γ

≥ c(λt0)
β−γ+ε = c(λt0)

s−r+ε

since β − γ = s − r . Hence (6.31) also implies (6.32) in this case.

Case 3 r = (m − 1) + γ with 0 ≤ β < γ < 1. Using the third estimate of (6.22),
relation (6.32) can be verified in a similar way as in Case 2 and the proof is therefore
omitted.

Applying (6.30) and (6.32) we obtain

‖uλ(t0) − u0(t0)‖r = ‖wλ(xλ)(t0) − w(x0)(t0)‖r

≥ ‖w(xλ)(t0) − w(x0)(t0)‖r − ‖wλ(xλ)(t0) − w(xλ)(t0)‖r

≥ c(λt0)
s−r+ε − cλ ≥ c(λt0)

s−r+ε

for λ > 0 small with the help s − r + ε < 1 by (6.3). Now for any δ > 0 the last
estimate and (6.6) infer

‖uλ(t0) − u0(t0)‖r ≥ c(λt0)
s−r+ε = cts−r+ε

0 λε−δ‖uλ(0) − u0(0)‖s−r+δ
r

which gives (2.7) with cλ = cts−r+ε
0 λε−δ . Since ε < δ by (6.3), we have cλ → ∞ as

λ → 0. This completes the proof of Theorem 2.2. ��
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