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ABSTRACT. We prove the existence of radially symmetric vortices of the static nonself-
dual Chern-Simons-Higgs equations with and without magnetic field in dimension 2. The
vortex profiles are shown to be monotonically increasing and bounded. For a given vortic-
ity n, when there is no magnetic field we prove that the n-vortices are stable for n = 0,±1.

1. INTRODUCTION

The Chern-Simons-Higgs (CSH) theory generally refers to a wide category of field-
theoretic models in (2 + 1) dimensional Minkowski space that contain a Chern-Simons
term in their action densities, see [2, 8, 9, 20]. These models have applications to several
important problems in condensed matter physics such as high-temperature superconduc-
tivity and quantum and fractional Hall effect ([2, 20]). CSH theory is one of the simplest
known anyonic models, i.e. a model that allows for quantized statistics of fractional values.

Define the Minkowski spacetime metric tensor g = diag(1,−1,−1), then in normalized
units, the Lagrangian density of the CSH theory is written ([8], [9])

Lcsh = DαuDαu+
µ

4
εαβγAαFβγ − λ2|u|2

(
1− |u|2

)2
(1.1)

where A = −iAαdx
α with Aα : R1,2 → R for α = 0, 1, 2 is the gauge potential with

covariant derivative DA = d− iA. The corresponding curvature FA = − 1
2Fβγdx

β ∧ dxγ

with Fβγ = ∂βAγ − ∂γAβ defines the gauge field, and u : R1,2 → C is the Higgs scalar
with Dαu = ∂αu− iAαu, α = 0, 1, 2. Furthermore, the antisymmetric Levi-Civita tensor
εαβγ is fixed by setting ε012 = 1 and µ, ε > 0 are the Chern-Simons coupling parameters.
Here εαβγAαFβγ is the Chern-Simons term. The Euler-Lagrange equations of (1.1) are

DαD
αu+ λ2u

(
|u|2 − 1

)(
3|u|2 − 1

)
= 0 (1.2)

µ

4
εαβγAαFβγ + J α = 0 (1.3)

where J α = (iu,Dαu) is the matter current.
Since α = 0 refers to time coordinates, we replaceD0 by ∂Φ = ∂t− iΦ and replaceDα

by ∇A = ∇− iA when α = 1, 2, where A = (A1, A2). Here (Φ, A) is the field potential.
The curvature tensor is defined by

F =

 0 −E1 −E2

E1 0 −h
E2 h 0

 , (1.4)
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where h = curlA and Eα = ∂tAα − ∂αΦ are the induced magnetic and electric fields,
respectively. We also use the standard current definition

J 0 = (iu, ∂Φu) = q, J α = (iu,∇Aαu) = jAα

for α = 1, 2 which are the charge and supercurrent, respectively. Hence we get the set of
CSH equations as

∂2
Φu = ∇2

Au+ λ2u
(
|u|2 − 1

)(
3|u|2 − 1

)
(1.5)

q = −µ
2

curlA (1.6)

jA =
µ

2
(E × e3). (1.7)

Well-posedness for the initial value problem for equations (1.5)-(1.7) can be found in [3]
and [4].

We look for static solutions. Setting ∂tu = 0 then equations (1.5)-(1.7) becomes

−Φ2u = ∇2
Au+ λ2u

(
|u|2 − 1

)(
3|u|2 − 1

)
Φ|u|2 =

µ

2
curlA

jA(u) =
µ

2
(∇Φ× e3).

Removing the electic field potential Φ, we are left with a system of coupled elliptic PDE’s

−µ
2

4
|curlA|2

|u|4
u = ∇2

Au+ λ2u
(
|u|2 − 1

)(
3|u|2 − 1

)
(1.8)

0 = −µ
2

4
curl
(curlA
|u|2

)
+ jA(u). (1.9)

The above static equations can be viewed as the Euler-Lagrange equations of the following
Chern-Simons-Higgs energy

Gcsh(u,A) =
1
2

∫
R2

|∇Au|2 +
µ2

4
|curlA|2

|u|2
+ λ2|u|2

(
1− |u|2

)2
dx. (1.10)

When there is no magnetic field the Chern-Simons-Higgs energy becomes

Ecsh(u) =
1
2

∫
R2

|∇u|2 + λ2|u|2(1− |u|2)2 dx, (1.11)

with the associated Euler-Lagrange equation

−∆u+ λ2u(1− |u|2)(1− 3|u|2) = 0. (1.12)

Due to the form of the potential in (1.10) and (1.11), locally minimizing configurations
should satisfy

|u| → 1, as |x| → ∞
or |u| → 0, as |x| → ∞.

We will only consider the first case which leads to the definition of the topological degree,
deg(u), of such a configuration:

deg(u) = deg
( u
|u|

∣∣∣
|x|=R

: S1 → S1
)
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for R sufficiently large. The degree is related to the phenomenon of flux quantization.
Indeed, an application of Stokes’ theorem to (1.7) and using (1.6) shows that a locally
minimizing energy configuration satisfies

deg(u) =
1
2π

∫
R2

curlA dx = − 1
µπ

∫
R2

q dx

so long as there is good decay at infinity. Therefore, topological vortices in CSH theory
carry both a quantized magnetic field and electrostatic charge.

1.1. Prior results. When µ = 1
λ , minimizers of the CSH energy satisfy a simpler system

of first order PDE’s. This self-dual mechanism was discovered by Hong-Kim-Pak [8] and
Jackiw-Weinberg [9] and has been the subject of rich mathematical development. The
resulting equations can allow for multivortex configurations and are similar to the Jaffee-
Taubes self-dual Ginzburg-Landau theory. We point to Caffarelli-Yang [2] and Tarantello
[18] for important results on the existence of such multivortex configurations in the self-
dual regime. However, once the self-dual regime is left, the theory is underdeveloped.
Immediately there are difficulties in understanding the term µ2

4
| curl A|2
|u|2 in the energy since

u vanishes at least once whenever deg(u) 6= 0.
In this paper we initiate a study of the CSH energies (1.10) and (1.11) on the plane

outside of the self-dual regime. We study, in particular, radially symmetric fields of the
form

u(n) = f (n)(r)einθ, (1.13)

A(n) = n
an(r)
r

~x⊥, (1.14)

where (r, θ) are polar coordinates, ~x⊥ = (−x2, x1)T , n is an integer which corresponds
to the degree of u, and f (n), an : [0,∞) → R. We note Han [7] studied radial symmetric
one-vortex solution in the self-dual regime µ = 1

λ .
There are some similarities to the rigorous study of planar vortex minimizers of the

Ginzburg-Landau energy

Ggl(u,A) =
1
2

∫
R2
|∇Au|2 + |curlA|2 + λ2

(
1− |u|2

)2

, (1.15)

which originated with the work of Plohr [13] and Berger-Chen [1]. The stability of (1.15)
was initiated by Guo [5] and completely characterized by Gustafson-Sigal [6]. When the
magnetic field is not present, the Ginzburg-Landau energy simplifies to

Egl(u) =
1
2

∫
R2
|∇u|2 + λ2

(
1− |u|2

)2

. (1.16)

Ovchinnikov-Sigal [12] established the existence and examined the stability of symmetric,
planar minimizers of (1.16). Our CSH existence proofs rely on the existence results of
[1, 12], as we look for minimizers in a constraint class of functions with finite Ginzburg-
Landau energy.

1.2. Main Results. We consider the existence problem of CSH n-vortex solutions, in the
cases when A ≡ 0 and A 6≡ 0, as well as the stability problem of the n-vortex in the
absence of the magnetic field potential A. One major difficulty with the existence problem
is that there are trivial global minimizers. Therefore, we need to employ an unusual con-
straint to force a minimizing sequence f (n) → 1 as r →∞. The main results of this paper
are the following:
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Theorem 1.1. For any n, there is a radially symmetric vortex solution u(n) = f (n)einθ of
degree n to equation (1.12). Moreover, f (n) minimizes the renormalized energy functional
Eren

csh given in (3.1) over a certain admissible set defined in (5.2). For n = 0,±1, u(n) are
local minima of Eren

csh .

The proof of the existence part of Theorem 1.1 is similar in spirit to the methods de-
veloped in [12] for Ginzburg-Landau energy. The primary difficulty is the existence of a
trivial global minimizer. In order to establish a nontrivial local minimizer, we examine a
minimizing sequence of a renormalized CSH energy in a constraint class of functions with
finite renormalized Ginzburg-Landau energy. The renormalized CSH energy functional
yields the same Euler-Lagrange equation (1.12). To show coercivity of our minimizing
sequence, we need to control the size of the set in which |u| ≤ 1

4 . This is done via a cov-
ering argument, similar to methods developed for Allen-Cahn by Modica-Mortola [11],
Ginzburg-Landau by Sandier [15], and Chern-Simons-Higgs by Kurzke-Spirn [10].

We want to point out that the potential term λ2|u|2(1 − |u|2)2 in the energy functional
(1.11) prevents us from getting partial convexity of the renormalized energy functional
unlike the partial convexity found by Ovchinnikov-Sigal [12] for the reduced Ginzburg-
Landau energy. Therefore, we are unable to prove uniqueness of the n-vortex solutions.

The second part of Theorem 1.1 concerns the stability property of the n-vortices for
n = 0,±1. When n = 0 it follows from the definition that a strict absolute minimum
is given by u(0) ≡ z for any z ∈ C with |z| = 1. The proof for n = ±1 uses a block
decomposition of the linearized operator for the energy functional which is similar to the
argument in [12]. However, because the potential term in the energy functional does not
imply partial convexity, the Hessian of the energy might induce some zero modes other than
the ones due to the symmetry breaking. We are able to show that the possible extra zero
mode is at most one-dimensional when n = ±1 and the vortices u(±1) are still minimizing
the energy along that direction. This, in turn, implies stability.

We now turn to the full CSH energy (1.10). Our primary result is:

Theorem 1.2. For any n, there are radially symmetric field solutions of the form (1.13),
(1.14) to equations (1.8) and (1.9). In particular, the radial functions (f (n), an) minimize
the radial energy functional (1.10) and 1− f (n)(r), 1− an(r) → 0 as r →∞.

The proof of Theorem 1.2 also relies on the results for the Ginzburg-Landau energy.
We choose to minimize the energy functional over a constraint set suggested by Ginzburg-
Landau vortices, see Berger-Chen [1]. The difficulty now comes from the term µ2

4
|curlA|2
|u|2

in the energy functional (1.10). We show the pointwise convergence of that term by re-
covering A (in particular an(r)) from the induced magnetic field term µ2

4
|curlA|2
|u|2 . Then

a combination of weak lower semi-continuity and Fatou’s lemma gives the existence of
minimizers, which is also a solution to equations (1.8) and (1.9).

We further investigate the basic properties of the minimizers of the energy functional
(1.10). It is straightforward to establish regularity of the vortex profile; on the other hand
establishing monotonicity and/or maximum principles turns out to be tricky. In the end,
though, we are able to prove the following

Theorem 1.3. For any n, the radial functions (f (n), an) obtained in Theorem 1.2 are C∞

on (0,∞) and have the following properties (for n 6= 0):
(1) 0 < f (n) < 1 on (0,∞),
(2) 0 < an ≤ 1 on (0,∞),
(3) a′n ≥ 0, f (n)′ > 0.
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The maximum principle and monotonicity for an(r) can be established by a truncation
argument, similar to the method used by Berger-Chen [1] to establish monotonicity of the
planar, symmetric Ginzburg-Landau equations. The proof of the monotonicity for f (n)

cannot be attacked in the same way due to the nonconventional structure of the CSH en-
ergy. Truncation of f does not work effectively, due to the offsetting behavior of the terms
n2 f2(1−a)2

r and µ2

4
(a′)2

r2f2 in the energy. Furthermore, the elliptic equation for f :[
1
2
∆r − λ2f2(3f2 − 1)

] (
f2 − 1

)
= (f ′)2 +

n2

r2
(1− a)2f2 − µ2

4
n2

r2
(a′)2

f2

does not have a definite sign on the right-hand-side, hence no simple application of the
maximum principle. On the other hand, we use the first and second variations of the
energy, along with the Euler-Lagrange equations to prove that f (n)′(r) > 0. The bounds
on f (n) follow.

1.3. Discussion. One quantity that we have difficulty describing is the induced magnetic
field, h = curlA = (n/r)a′n(r) for r 6= 0. From Theorem 1.3 we know that h(r) ≥ 0
and that h → 0 as r → ∞. Furthermore, the Euler-Lagrange equation for (f (n), an) and
the regularity result one has that h → 0 as r → 0. Since there is a quantized amount of
magnetic field, we can conclude that h is roughly of annular shape in the plane. Although
we are unable to determine much explicit behavior of h, we nonetheless assert

Conjecture 1.4. The magnetic field profile h(r) has exactly one local maximum for any
positive µ and λ.

Another issue which turns out to be difficult to analyze at this moment is the instability
of vortices with large degree when A ≡ 0. The potential term in the energy indicates that
the 0 state may also be preferable. Numerically this in turn gives rise to the existence of
a sharp transition layer of O(1) thickness, at a distance of O(n2) from the origin. So far
no sharp analytical results can be obtained on the behavior of the transition layer, which
seems necessary to excite an unstable mode. We offer

Conjecture 1.5. When |n| ≥ 2, the n-vortices u(n) obtained in Theorem 1.1 are saddle
points of the renormalized energy, hence unstable.

It is natural to study the stability of the full CSH energy (1.10) as was done by Gustafson-
Sigal [6] for the Ginzburg-Landau energy (1.15). We note that the hessian of the CSH
energy (1.10) is significantly more complicated than the hessian of the Ginzburg-Landau
energy (1.15).

The rest of this paper is organized as follows. Sections 2-6 treat the case when A ≡ 0.
In Section 2 we compute the linearized operator of equation (1.12) and identify the zero-
modes of that operator due to symmetry-breaking. We renormalize the energy functional
(1.11) in Section 3 and then consider minimizing the renormalized energy. In Section 4 we
establish a certain covering property of the Ginzburg-Landau energy which controls the set
on which the amplitude of solution is small, which enables us to choose a constraint set of
the minimization problem. We provide an existence result of the n-vortex in Section 5. In
Section 6 we make a block-decomposition for the linearized operator and give a spectral
characterization of the operator, which provides the stability of the n-vortex for n = 0,±1.
In Section 7 we prove the existence of the n-vortex of the full equations (1.8) and (1.9),
when A 6≡ 0. In Section 8 we give some basic properties of those solutions.
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2. SYMMETRY BREAKING

A central feature of the the static Chern-Simons-Higgs energy functional Gcsh (and the
CSH equations) is its infinite-dimensional symmetry group. Specifically, Gcsh is invariant
under U(1) gauge transformations

u 7→ eiγu (2.1)
A 7→ A+∇γ (2.2)

for any smooth γ : R2 → R. In addition, Gcsh is invariant under coordinate translations
and rotation transformations. The same thing holds for Ecsh.

The following theorem from [12] is crucial in our analysis

Theorem 2.1 (Ovchinnikov-Sigal [12]). Let u0 be a solution to the abstract equation
F (u) = 0 breaking a one parameter subgroup g(s) of the symmetry group of this equation.
Let T be the generator of g(s). Then DF (u0)Tu0 = 0, where DF (u0) is the linearized
operator around u0.

When the magnetic field A ≡ 0 the Chern-Simons-Higgs energy reduces to (1.11). We
let Lu be the linearized operator around u, i.e.

lim
ε,δ→0

∂ε∂δEcsh(u+ εξ + δη) = 〈Lu(ξ), η〉 = Re
∫

R2
η̄Lu(ξ) dx.

A simple computation gives

Lu(ξ) =
[
−∆ + λ2(9|u|4 − 8|u|2 + 1)

]
ξ +

[
λ2(6|u|2 − 4)

]
u2ξ̄. (2.3)

In the radially symmetric case, we are looking for solutions of the form (1.13). An
immediate consequence of Theorem 2.1 is:

Corollary 2.2. The functions u(n)
x1 , u

(n)
x2 and iu(n) solve the linearized equation

Lu(n)(ξ) = 0,

where Lu(ξ) is given in (2.3).

We will also need the following lemma later

Lemma 2.3. We have

u(n)
x1

=
1
2

(
f (n)′ − n

r
f (n)

)
ei(n+1)θ +

1
2

(
f (n)′ +

n

r
f (n)

)
ei(n−1)θ (2.4)

u(n)
x2

= − i
2

(
f (n)′ − n

r
f (n)

)
ei(n+1)θ +

i

2

(
f (n)′ +

n

r
f (n)

)
ei(n−1)θ. (2.5)

A proof of this lemma can be found in [12].

3. RENORMALIZED ENERGY FUNCTIONAL

Lemma 3.1. If u ∈ C1(R2) such that |u| → 1 as |x| → ∞ and deg(u) 6= 0, then
Ecsh = ∞, where Ecsh is given in (1.11).

Proof. Take u = feiϕ with f = |u|. Then

|∇u|2 = f2|∇ϕ|2 + |∇f |2 ≥ f2|∇ϕ|2.
Because f → 1 at ∞, ∃R sufficiently large such that |f |2 > 1/2 for all |x| ≥ R. Hence∫

R2
|∇u|2 dx ≥

∫
|x|≥R

1
2
|∇ϕ|2 dx =

1
2

∫ ∞

R

∫ 2π

0

r|∇ϕ|2dθdr.
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We also have that for r ≥ R

2πdeg(u) =
∫
|x|=r

d(argu) =
∫
|x|=r

dϕ

≤
∫
|x|=r

|dϕ| =
∫ 2π

0

r|∇ϕ|dθ

≤ r
(
2π
∫ 2π

0

|∇ϕ|2dθ
)
.

Therefore ∫ 2π

0

|∇ϕ|2dθ ≥ 2π(deg(u))2

r2
,

and then

2Ecsh ≥
∫

R2
|∇u|2 dx ≥ π(deg(u))2

∫ ∞

R

1
r2
rdr = ∞.

�

We renormalize the energy as follows. Let χ(x) ∈ C∞(R2) such that 0 ≤ χ(x) ≤ 1,
χ(x) = 1 for for |x| ≥ 2, and χ(x) = 0 for |x| ≤ 1. Define the renormalized CSH energy
functional to be

Eren
csh (u) =

1
2

∫
R2

(
|∇u|2 − (deg(u))2

r2
χ+ λ2|u|2(1− |u|2)2

)
dx, (3.1)

where r = |x|. Then the renormalized energy functional has the same Euler-Lagrange
equation (1.12).

4. FURTHER PROPERTIES ABOUT GINZBURG-LANDAU ENERGY

Consider the renormalized Ginzburg-Landau energy functional as in [12]

Eren
gl (u) =

1
2

∫
R2

(
|∇u|2 − (degu)2

r2
χ+ λ2(1− |u|2)2

)
dx, (4.1)

From [12] we know that for any n there exists a unique radially symmetric vortex u(n) =
f (n)einθ such that f (n) minimizes

Eren
gl (f) =

1
2

∫
R2

(
|∇f |2 +

n2

r2
(f2 − χ) + λ2(1− f2)2

)
dx (4.2)

among all real f such that Eren
gl (f) <∞. Denote

K(n) = Eren
gl (f (n)).
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We also have the following estimate, via the Cauchy -Schwarz inequality

Eren
gl (f) =

1
2

∫
R2

(
|∇f |2 +

n2

r2
(f2 − χ) + λ2(1− f2)2

)
dx

≥ 1
2

∫
R2

(
|∇f |2 +

λ2

2
(1− f2)2

)
dx− 1

2

∫
1≤r≤2

n2

r2
dx

+
1
2

∫
r≥2

(n2

r2
(f2 − 1) +

λ2

2
(1− f2)2

)
dx

≥ 1
2

∫
R2

(
|∇f |2 +

λ2

2
(1− f2)2

)
dx− 1

2

∫
1≤r≤2

n2

r2
dx−

∫
2≤r

n4

λ2r4
dx

=
1
2

∫
R2

(
|∇f |2 +

λ2

2
(1− f2)2

)
dx−

(
n2π ln 2 +

n4π

4λ2

)
≥
∫

R2

λ√
2
|∇f ||1− f2| dx−

(
n2π ln 2 +

n4π

4λ2

)
.

Let N (n) =
(
n2π ln 2 + n4π

4λ2

)
, then∫

R2

λ√
2
|∇f ||1− f2| dx ≤ 1

2

∫
R2

(
|∇f |2 +

λ2

2
(1− f2)2

)
dx ≤ Eren

gl (f) +N (n).

(4.3)

For any open set Ω we define

H1
∞(Ω) = inf

{
Σ2rj : Ω ⊂

⋃
j

Brj (xj)
}
, (4.4)

then H1
∞(Ω) ≤ H1(∂Ω), as noted in [15]. We can see that

t 7→ H1
∞({x : f(x) ≤ t})

is an increasing function.
Suppose there exists some large R such that f ≥ 1/2 on ∂BR. Hence

Eren
gl (f) +N (n) ≥ λ√

2

∫
R2

|∇f ||1− f2| dx

=
λ√
2

∫ ∞

0

|1− t2|H1
(
f−1(t)

)
dt

≥ λ√
2

∫ 1/2

1/4

|1− t2|H1
(
f−1(t)

)
dt

≥ λ√
2

∫ 1/2

1/4

|1− t2|H1
∞({x ∈ BR : f(x) ≤ t})dt

≥ λ√
2
H1
∞
(
{x ∈ BR : f(x) ≤ 1

4
}
) ∫ 1/2

1/4

(1− t2)dt

=
41
192

λ√
2
H1
∞
(
{x ∈ BR : f(x) ≤ 1

4
}
)

≥ λ

10
H1
∞
(
{x ∈ BR : f(x) ≤ 1

4
}
)
.
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where we need the assumption that f ≥ 1/2 on ∂BR between the third and fourth lines.
Therefore {x ∈ BR : f(x) ≤ 1/4} ⊂

⋃
j Brj

(xj) with∑
j

rj ≤
5
λ

(Eren
gl (f) +N (n)). (4.5)

Note that estimate (4.5) is independent of R.

5. EXISTENCE OF RADIALLY SYMMETRIC VORTICES WHEN A ≡ 0

Let u = feinθ with f real. Then |∇u|2 = n2f2|∇θ|2 + |∇f |2. Hence

Eren
csh (u) =

1
2

∫
R2

(
|∇f |2 +

n2

r2
(f2 − χ) + λ2f2(1− f2)2

)
dx ≡ E(f). (5.1)

Take a positive number M and consider the set

A(n)
M = {f real | Eren

gl (f) < K(n) +M, E(f) <∞}. (5.2)

Recall that Eren
gl (f) is defined in (4.2).

Therefore A(n)
M is not empty and from the continuity of the functionals Eren

gl (f) and

E(f) we know that A(n)
M is open. Now we consider minimizing E over the constraint set

A(n)
M .
The main result of this section is the following

Theorem 5.1. For any given n, there is an M such that the functional E(f) has a min-
imizer f (n) on A(n)

M . Such minimizer f (n) is radially symmetric, 0 ≤ f (n) ≤ 1, and
u(n) = f (n)einθ is an n-vortex, i.e. solution to equation (1.12) of degree n. If |n| ≥ 1,
then f (n) is monotonically increasing.

Proof. We first show that E(f) > −∞ on A(n)
M . We provide two ways.

Method 1: Let f ∈ A(n)
M . Taking f̄ = |f | ∧ 1 we have

E(f̄) ≤ E(f), Eren
gl (f̄) ≤ Eren

gl (f),

which shows f̄ ∈ A(n)
M . Therefore it suffices to consider 0 ≤ f ≤ 1. Let v =

√
f2, where

p̄(r) = 1
2π

∫ 2π

0
p(r, θ) dθ. Then

v2 = f2, v4 ≤ f4, |∇ru|2 ≤ |∇rf |2.
Hence

Eren
gl (v) ≤ Eren

gl (f), E(v) ≤ E(f),

which shows that it suffices to consider f being radially symmetric.
From (4.3) we know that 1− f ∈ H1(R2). For any s > 0,∫ s

1/s

|f ′|dr ≤
(∫ s

1/s

1
r
dr
)1/2(∫ s

1/s

(f ′)2rdr
)1/2

≤
(∫ s

1/s

1
r
dr
)1/2(∫

R2
(f ′)2 dx

)1/2

<∞,

so f ′ ∈ L1[1/s, s], which implies f is absolutely continuous on [1/s, s]. Therefore we get
f(r) ∈ C(0,∞).

9



Due to the definition of A(n)
M and (4.3) we know that |f | → 1, we can take R large

enough so that f ≥ 1/2 for |x| ≥ R. For f ≥ 1/4 we have

n2

r2
(f2 − 1) + λ2f2(1− f2)2 ≥ − n4

4λ2f2r4
≥ − 4n4

λ2r4
.

Therefore we have

E(f) ≥ 1
2

∫
r≥1

(n2

r2
(f2 − 1) + λ2f2(1− f2)2

)
dx

≥ 1
2

∫
r≥1,f≥1/4

(n2

r2
(f2 − 1) + λ2f2(1− f2)2

)
dx+

1
2

∫
r≥1,f<1/4

n2

r2
(f2 − 1) dx

≥
∫

r≥1

− 4n4

λ2r4
dx − n2

∣∣{x : f(x) < 1/4}
∣∣

≥ −2n4

λ2
− 25n2

λ2

(
K(n) +M +N (n)

)2
> −∞, (5.3)

where we’ve used (4.5) in getting the fourth inequality.
Method 2: We use an averaging method by Struwe [17]. From (4.3), (5.2) and f ≥ 0

we know that there exists some C sufficiently large such that

C ≥
∫

R≤|x|≤2R

|∇f |2 + (1− f2)2 dx ≥
∫

R≤|x|≤2R

|∇f |2 + (1− f)2 dx

≥ R inf
r∈[R,2R]

∫
∂Br

|∇f |2 + (1− f)2 dω.

Hence there exists r∗ ∈ [R, 2R] such that∫
∂Br∗

|∇f |2 + (1− f)2 dω ≤ 2C
R
,

which shows

‖1− f‖H1(∂Br∗ ) ≤
√

2C
R
.

Since we have the H1 bound of 1− f on the circle, we may apply the Morrey’s inequality
to get

‖1− f‖C0,1/2(∂Br∗ ) ≤
√

2C
R
.

Suppose there is some point r∗eiθ∗ ∈ ∂Br∗ such that f(r∗eiθ∗) ≤ 1/2 then

|1− f(r∗eiθ)| ≥ |1− f(r∗eiθ∗)| − |f(r∗eiθ∗)− f(r∗eiθ)|

≥ 1
2
− |r∗eiθ∗ − r∗e

iθ|1/2

√
2C
R

≥ 1
2
− |θ∗ − θ|1/2

√
2Cr∗
R

≥ 1
2
− 2

√
C|θ∗ − θ| > 1

4
10



if we consider |θ∗ − θ| < 1/(8
√
C). Therefore

2C
R

≥
∫

∂Br∗
T
{|θ∗−θ|<1/(8

√
C)}

|1− f |2r∗ dθ

>
1
16
r∗

1
8
√
C
>

R

128
√
C
,

which is a contradiction if we choose R to be sufficiently large. Therefore, for any large
R, there is some r∗ ∈ [R, 2R] such that f ≥ 1/2 on ∂Br∗ , and (4.5) also holds for such
r∗. We also notice that the estimate (4.5) is independent of R. The rest follows from the
similar argument for (5.3).

Hence we’ve shown that E(f) is bounded from below on A(n)
M . We take a minimizing

sequence fm ∈ A(n)
M such that

lim
m→∞

E(fm) = inf
u∈A(n)

M

E(u).

Without loss of generality we may assume 0 ≤ fm ≤ 1. Otherwise we consider f̄m =
|fm| ∧ 1. Since

E(f̄m) ≤ E(fm), Eren
gl (f̄m) ≤ Eren

gl (fm),

{f̄m} would also be a minimizing sequence in A(n)
M .

Let gm = 1− fm, then 0 ≤ gm ≤ 1. We have

K(n) +M > Eren
gl (fm) =

1
2

∫
R2

(
|∇gm|2 +

n2

r2
(f2

m − χ) + λ2g2
m(1 + fm)2

)
dx

≥ 1
2

∫
R2

(
|∇gm|2 −

2n2

r2
χ|x|≥1gm + λ2g2

m

)
dx

≥ 1
2

∫
R2

(
|∇gm|2 +

λ2

2
g2

m

)
dx−

∫
R2

1
λ2

n4

r4
χ|x|≥1 dx.

Hence ∫
R2

(
|∇gm|2 + g2

m

)
dx ≤ C,

for some fixed C <∞. Therefore we have up to a subsequence that

gm → g0 weakly in H1

gm → g0 a.e. in R2.

Let f0 = 1− g0, then

E(f0) ≤ lim inf
m→∞

E(fm).

On the other hand since 0 ≤ fm ≤ 1 we have that

E(fm) ≤ Eren
gl (fm) < K(n) +M.

Therefore f0 ∈ A(n)
M , and

E(f0) = inf
u∈A(n)

M

E(u).

Next we show that f0 is radially symmetric, using the same method in [12].
11



Let v =
√
f2
0 , where p̄(r) ≡ 1

2π

∫ 2π

0
p(r, θ) dθ. Then

v2 = f2
0 , v

4 ≤ f4
0 , |∇ru|2 ≤ |∇rf0|2.

Hence

E(v) ≤ E(f0), and Eren
gl (v) ≤ Eren

gl (f0),

and the equality holds only if f0 is radially symmetric. Thus f0 must be radially symmetric.
Now we show that there exists an M such that f0 is an interior minimizer. Let fk

0 be

the minimizer of E(f) over A(n)
M+1/k for k = 1, 2, . . . . If fk

0 is not an interior minimizer
then by previous argument we know 0 ≤ fk

0 ≤ 1 and

E(fk
0 ) = inf{E(u) : u ∈ A(n)

M+1/k} ≤ E(fk−1
0 ), Eren

gl (fk
0 ) = K(n) +M + 1/k.

(5.4)

Therefore allEren
gl (fk

0 ) are uniformly bounded byK(n)+M+1. From (4.3), 0 ≤ fk
0 ≤ 1,

and the fact that
∫

R2 (1 − fk
0 )2 dx ≤

∫
R2 (1 − (fk

0 )2)2 dx we have that ‖1 − fk
0 ‖H1 is

uniformly bounded. Hence 1− fk
0 (r) ⇀ 1− f0(r) in H1. Since fk

0 are radial, from [19],
radial H1 functions on R2 decays like r−1/2. We know further that fk

0 (r) → f0(r) a.e..
Thus applying the weak-lower semicontinuity of norms, Fatou’s lemma and (5.4) we get

E(f0) ≤ lim inf
k→∞

E(fk
0 ) = E(f1

0 ), Eren
gl (f0) ≤ lim inf

k→∞
Eren

gl (fk
0 ) = K(n) +M.

In this way we see that f0 is an interior minimizer of A(n)
M+1/k for any k.

Now we prove that f ′0 > 0. Since f0 minimizes E(f), E′(f0) = 0, E′′(f0) ≥ 0. We
have

E′(f) = −∆rf +
n2

r2
f + λ2f(1− f2)(1− 3f2) (5.5)

E′′(f) = −∆r +
n2

r2
+ λ2(15f4 − 12f2 + 1). (5.6)

Differentiating E′(f0) with respect to r to obtain

(E′′(f0) +
1
r2

)f ′0 =
2n2

r3
f0.

Since f0 ≥ 0 and f0 6≡ 0, applying the maximum principle (see, [16], Theorem B.4) we
obtain that f ′0 > 0 when |n| ≥ 1. Hence we obtain further that f0(r) > 0 for r > 0.

Lastly, since f0 is radially symmetric, we have ∇f0 · ∇θ = 0. Hence

∆(f0einθ) =
(
∆f0 −

n2

r2
f0

)
einθ

and therefore together with (5.5) we obtain that f0einθ satisfies the equation

−∆u+ λ2u(1− |u|2)(1− 3|u|2) = 0.

Since deg(f0einθ) = n, we have completed the proof of Theorem 5.1. �

Remark 5.2. When n = 0, it follows from the definition that a strict absolute minimum is
given by u(0) ≡ z for any z ∈ C with |z| = 1.

12



6. STABILITY

We follow the argument in [12] to consider the stability of the critical points of the
renormalized Chern-Simons-Higgs energy functional, Eren

csh (u). It is discussed in [12] that
this question is related to the spectral property of the Hessian of the energy functional,
HessEren

csh (u).
We compute HessEren

csh (u) to be

HessEren
csh (u) =

(
−∆ + λ2(9|u|4 − 8|u|2 + 1) 2λ2(3|u|2 − 2)u2

2λ2(3|u|2 − 2)ū2 −∆ + λ2(9|u|4 − 8|u|2 + 1)

)
.

(6.1)
Denote

~ξ =
(
ξ
ξ̄

)
, (6.2)

then we also have
HessEren

csh (u)~ξ =
−−−→
Lu(ξ), (6.3)

where Lu(ξ) is the linearized operator given in (2.3). Using the same notation as in [12],
we denote Sym Null HessEren

csh (u) to be the maximal null space of HessEren
csh (u) due to

symmetry breaking. Then it is known that
(i) HessEren

csh (u) ≥ 0 and Null HessEren
csh (u) = Sym Null HessEren

csh (u) ⇒ u is a local
minimum of Eren

csh (u),
(ii) HessEren

csh (u) has a negative eigenvalue ⇒ u is a saddle point of Eren
csh (u).

The main stability result of this section is

Theorem 6.1. u(n) are local minima of Eren
csh (u) for n = 0,±1.

Theorem 6.1 says that the n-vortices are stable for |n| = 0, 1. From Remark 5.2 we
know that when n = 0, f (0) ≡ 1 and the corresponding 0-vortex u(0) is an absolute
minimum. Hence we only argue the case when n = ±1

From the previous argument we know that we need to understand the spectrum of
HessEren

csh (u). Without loss of generality we assume n = 1. The case n = −1 can be
treated the same way by observing that u(1) = u(−1).

We begin with an elementary harmonic analysis of the linearized operator Lu(n) which
is closely related to HessEren

csh (u) (see (6.3)). Consider a function ξ(r, θ) in polar coordi-
nates and expand it in the Fourier series in θ

ξ(r, θ) =
∞∑

k=−∞

ξk(r)eikθ,

where the Fourier coefficients are given by

ξk(r) =
1
2π

∫ 2π

0

ξ(r, θ)e−ikθdθ.

Consider a map Π of measurable functions ξ : R2 → C into measurable functions

ξ̂ =
⊕

k≥n

(
ξk

ξ̄2n−k

)
. If ξ’s are endowed with inner product

〈~ξ, ~η〉 = 2Re
∫

R2
ξ̄η dx,

13



where ~ξ is given in (6.2), then Π is unitary, provided ξ̂’s are endowed with the inner product

〈ξ̂, η̂〉 = Re〈ξn, ηn〉+
∑
k>n

Re
〈(

ξk
ξ̄2n−k

)
,

(
ηk

η̄2n−k

)〉
.

Define the real linear operator L̂u(n) on functions ξ̂ by

L̂u(n)(Πξ) = ΠLu(n)(ξ). (6.4)

We first give the characterization of L̂u(n) .

Lemma 6.2. The operator L̂u(n) is block diagonal of the form

L̂u(n)(ξ) =
⊕
k≥n

Lk
u(n)

(
ξk

ξ̄2n−k

)
, (6.5)

where Lk
u(n) are given by

Lk
u(n) =

 
−∆r + k2

r2 + λ2(9|u(n)|4 − 8|u(n)|2 + 1) 2λ2|u(n)|2(3|u(n)|2 − 2)

2λ2|u(n)|2(3|u(n)|2 − 2) −∆r + (2n−k)2

r2 + λ2(9|u(n)|4 − 8|u(n)|2 + 1)

!
,

(6.6)

where ∆rf = 1
r∂r(r∂rf).

Proof. First it is easily checked that“
Lu(n)(ξ)

”
k

=
h
− ∆r +

k2

r2
+ λ2(9|u(n)|4 − 8|u(n)|2 + 1)

i
ξk +

h
λ2(6|u(n)|2 − 4)

i
|u(n)|2ξ̄2n−k.

(6.7)

Since ∆ = ∆r + r−2∂2
θ , we have

(−∆ξ)k = −∆rξk +
k2

r2
ξk.

Moreover we have(
(u(n))2ξ̄

)
k

= |u(n)|2(2π)−1/2

∫ 2π

0

ei2nθ ξ̄e−ikθdθ

= |u(n)|2(2π)−1/2

∫ 2π

0

ξe−i(2n−k)θdθ = |u(n)|2ξ̄2n−k.

Therefore (6.7) implies(
(Lu(n)ξ)k

(Lu(n)ξ)2n−k

)
= Lk

u(n)

(
ξk

ξ̄2n−k

)
,

which, due to (6.4), yields (6.5). �

Lemma 6.3. For n ≥ 1, we have the following characterization of the linear operators:
(1) Ln

u(n) ≥ 0 and if 0 is an eigenvalue then it is non-degenerate.
(2) Ln+1

u(n) ≥ 0 and 0 is its non-degenerate eigenvalue.
(3) Lk

u(n) ≥ 0 for k ≥ 3n and 0 is not an eigenvalue.
(4) The continuous spectrum

cont specLk
u(n) = [0,∞),

for any k.
14



Proof.
(1) Due to the breaking of the gauge symmetry we have

Lu(n)(iu(n)) = 0.

After separating out the angular variable we obtain[
−∆r +

n2

r2
+ λ2(3f4

n − 4f2
n + 1)

]
fn = 0,

where fn = |u(n)|. We can rewrite the equation as[
−∆r +

n2

r2
+ 4λ2(1− f2

n)− 3λ2(1− f4
n)
]
fn = 0.

Since fn > 0, bounded and /∈ L2(R+, rdr), we can apply Theorem B.1 in [12] to conclude
that the operator −∆r + n2

r2 + λ2(3f4
n − 4f2

n + 1) is non-negative, 0 is not its eigenvalue,
and any solution g to the equation[

−∆r +
n2

r2
+ λ2(3f4

n − 4f2
n + 1)

]
g = 0

is of the form g = cf where c is some constant.
Also since fn minimizes E(f) we have

E′′(fn) = −∆r +
n2

r2
+ λ2(15f4

n − 12f2
n + 1) ≥ 0.

Suppose E′′(fn) has an eigenvalue 0, and the corresponding eigenfunction is ψ0(r). Then
we can write

0 = E′′(fn)ψ0 =
[
−∆r +

n2

r2
+ 4λ2(3f4

n − 3f2
n + 1)− 3λ2(1− f4

n)
]
ψ0,

where we see that
4λ2(3f4

n − 3f2
n + 1) ≥ λ2 > 0.

We now follow the idea from [12]. Let

L0 = −∆r +
n2

r2
+ 4λ2(3f4

n − 3f2
n + 1), V = 3λ2(1− f4

n) > 0.

Then V = O(r−2) as r → ∞. Let R0(α) = (L0 − α)−1 with α ≤ λ2 and consider the
Birman-Schwinger-type operator function

K(α) =
√
V R0(α)

√
V .

Then we have
• if (E′′(fn) − α)ψ = 0, then K(α)ϕ = ϕ with ϕ =

√
V ψ. If ψ ∈ L2(R2) then

ϕ ∈ L2(R2).
• if K(α)ϕ = ϕ, then (E′′(fn)− α)ψ = 0 with ψ = R0(α)

√
V ϕ. If ϕ ∈ L2(R2)

then for α < λ2, |ψ| ≤ Ce−r
√

λ2−α.
We also have the following result

Lemma 6.4 (Ovchinnikov-Sigal [12]). K(α) with α ≤ λ2 is positivity improving, i.e.
K(α)ϕ > 0 (modulo a set of zero measure) whenever ϕ ≥ 0, and

(1) α is an eigenvalue of E′′(fn) iff 1 is an eigenvalue of K(α).
(2) α is the lowest eigenvalue of E′′(fn) iff 1 is the largest eigenvalue of K(α).

15



By assumption that E′′(fn) has an eigenvalue 0 and the fact that E′′(fn) ≥ 0 we know
that 0 is its lowest eigenvalue. Hence from the above lemma, 1 is the largest eigenvalue
of K(0). Therefore we have (see [14], Theorem XIII.43) that the eigenfunction of K(0),
ϕ0, is positive and the eigenvalue 1 is non-degenerate. Thus from Lemma 6.4, 0 is a non-
degenerate eigenvalue of E′′(fn) and ψ0 can be taken to be ψ0 = L−1

0

√
V ϕ0 > 0 and ψ0

decays exponentially fast.
On the other hand when k = n, we have

RLn
u(n)R

T = L,

where

R =
1√
2

(
−1 1
1 1

)
,

L =

(
−∆r + n2

r2 + λ2(3f4
n − 4f2

n + 1) 0
0 −∆r + n2

r2 + λ2(15f4
n − 12f2

n + 1)

)
.

Therefore Ln
u(n) ≥ 0 and if 0 is an eigenvalue then it is non-degenerate, which proves (1).

(2) We perform the similar argument as in (1), but instead of the zero mode due to break-
ing the gauge symmetry we use the zero mode due to breaking the translation symmetry.
Such a zero mode is ∇u(n). Due to Lemma 2.3 and since n− 1 = 2n− k for k = n+ 1,
∂̂xju

(n) contains only the k = n+ 1 block, (n+ 1, n− 1):

∂̂x1u
(n) =

⊕
k≥n

g(n)δk,n+1, ∂̂x2u
(n) =

⊕
k≥n

−ig(n)δk,n+1,

where g(n) = 1
2

(
f (n)′ − n

r f
(n)

f (n)′ + n
r f

(n)

)
. Hence

0 = L̂u(n)(∂̂x1u
(n)) =

⊕
k≥n

(
Ln+1

u(n)g
(n)
)
δk,n+1

and therefore
Ln+1

u(n)g
(n) = 0. (6.8)

The zero mode ∂̂x1u
(n) leads to the same equation.

Notice that Rg(n) =
( n

r f
(n)

f (n)′

)
. Since f (n) > 0 and f (n)′ > 0, r > 0, Rg(n) has

positive entries. Hence (6.8) together with Appendix B in [12] shows that 0 is the lowest
eigenvalue of Ln+1

u(n) and is non-degenerate. This and statement (4) imply statement (2).
(3) We have

Lk
u(n) − Ln+1

u(n) =

(
k2−(n+1)2

r2 0
0 (k−2n)2−(n−1)2

r2

)
> 0,

for k ≥ 3n. From (2) we obtain (3).
(4) As |x| → ∞, we have

Lk
u(n) →

(
−∆ + 2λ2 2λ2

2λ2 −∆ + 2λ2

)
=: L0.

We know that
cont specLk

u(n) = specL0. (6.9)
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Using the transformation matrix R to diagonalize L0 as

RL0R
T =

(
−∆ 0
0 −∆ + 4λ2

)
.

Thus specL = [0,∞)
⋃

[4λ2,∞), which together with (6.9) yields (4). �

Proof of Theorem 6.1. When n = 1, due to Lemma 6.2 and Lemma 6.3, L̂u(1) ≥ 0, i.e.
HessEren

csh (u(1)) ≥ 0 with zero modes determined either completely by the symmetry
breaking or by symmetry breaking and an extra mode ψ0e

iθ. In the first case we obviously
know that u(1) is a local minimum.

If (ψ0e
iθ, ψ0e

−iθ)T ∈ Null HessEren
csh (u(1)). Then we know that except for the direc-

tion generated by ψ0e
iθ, u(1) minimizes Eren

csh locally. Along this direction we compute
the second variation of the renormalized energy to be

lim
ε→∞

∂2
εE

ren
csh (u(1) + εψ) = Re

∫
R2

ψ̄Lu(1)(ψ) dx, (6.10)

where ψ = cψ0e
iθ for some c ∈ C and Lu is given in (2.3). If c = a+ ib where a, b ∈ R,

further computation gives

Re
∫

R2
ψ̄Lu(1)(ψ) dx

= Re
∫

R2
|c|2ψ0 ·

[
−∆r +

n2

r2
+ λ2(9f4

1 − 8f2
1 + 1)

]
ψ0 + c̄2λ2(6f2

1 − 4)f2
1ψ

2
0 dx

= a2〈E′′(f1)ψ0, ψ0〉L2 + b2
〈[
−∆r +

n2

r2
+ λ2(3f4

1 − 4f2
1 + 1)

]
ψ0, ψ0

〉
L2

= b2
〈[
−∆r +

n2

r2
+ λ2(3f4

1 − 4f2
1 + 1)

]
ψ0, ψ0

〉
L2
> 0

if b 6= 0 (from Lemma 6.3). Hence

Eren
csh (u(1) + cψ0e

iθ) > Eren
csh (u(1))

for |c| sufficiently small. Therefore we only need to check the case when c ∈ R. In this
case, from (5.1) we know that

Eren
csh (u(1) + ψ) = Eren

csh ((f1 + cψ0)eiθ) = E(f1 + cψ0).

Hence we can apply Theorem 5.1 to obtain that u(1) is also a local minimizer along this
direction ψ0e

iθ. Thus we conclude to obtain Theorem 6.1.
�

7. EXISTENCE OF RADIALLY SYMMETRIC VORTICES WHEN A 6≡ 0

When the magnetic field A 6≡ 0, the CSH energy functional and the Euler-Lagrange
functions become more complicated. We look for minimizers of the CSH energy (1.10)
among all symmetric vortices of the form (1.13), (1.14), with f (n), an → 1 as r → ∞
(This means we are looking for topological symmetric vortices).

Let

u = f(r)einθ, A = n
a(r)
r
~x⊥. (7.1)

Then the CSH energy functional takes the following radial form

Gr
csh(f, a) =

1
2

∫
R2

|f ′|2 +
n2

r2
(1− a)2f2 +

µ2

4
n2

r2

(a′
f

)2

+ λ2f2
(
1− f2

)2
dx. (7.2)
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Our argument is also based on the results for Ginzburg-Landau vortices. Following [1],
we define the spaces
Cf = the set of real-valued radially symmetric functions f(|x|) defined on R2 such that

f ≥ 0 a.e. and 1− f ∈ H1(R2).
Ca = the set of real-valued radially symmetric functions a(|x|) defined on R2 such that

a/r ∈ L2
loc(R2) and a′/r ∈ L2(R2) where the derivative a′ is in the distributional sense.

Recall the following results for Ginzburg-Landau equations.

Lemma 7.1 (Berger-Chen [1]). The Ca and Cf spaces satisfy the following:

(1) Ca with the inner product which induces the norm ‖a‖Ca = ‖a′/r‖L2(R2) is a
Hilbert space.

(2) For f ∈ Cf , f(r) ∈ C(0,∞).
(3) For a ∈ Ca, a(r) ∈ C[0,∞), a(0) = 0, a(r) =

∫ r

0
a′(s)ds, and

sup
r∈(0,∞)

|a/r| ≤ ‖a‖Ca
.

(4) If f ∈ Cf , a ∈ Ca, and Gr
gl(f, a) < ∞, where Gr

gl(f, a) is the radial Ginzburg-
Landau energy given by

Gr
gl(f, a) =

1
2

∫
R2

|f ′|2 +
n2

r2
(1− a)2f2 +

n2(a′)2

r2
+ λ2

(
1− f2

)2
dx, (7.3)

then f ∈ C[0,∞) and f(0) = 0.

Theorem 7.2 (Berger-Chen [1]). For any integer n and λ, there is a solution (u(n), A(n))
to the Ginzburg-Landau equation which is of the form (1.13), (1.14). In particular, (f (n), an) ∈
Cf

⊕
Ca minimizes the radial Ginzburg-Landau energy Gr

gl(f, a) defined in (7.3).

First we note that Gr
csh(f, a) ≥ 0 and Gr

csh(1, 1) = 0.Therefore u ≡ 1 and A ≡ 1
give a trivial solution to the CSH equations and minimize Gr

csh(f, a) without restricting
Gr

csh(f, a) by any vortex number n 6= 0. On the other hand if we take (u,A) of the form
(7.1) with f, a → 1 at ∞ and if m = infCf

L
Ca
Gr

csh(f, a) is attained at (f0, a0), then
m > 0. Otherwise

∫
R2 f2

0 (1 − f2
0 )2 dx =

∫
R2 (1 − a0)2f2

0 /r
2 dx = 0. From Lemma

7.1we obtain the continuity of f0 and a0. Therefore we know from the integral identies
that f0 ≡ 1 and a0 ≡ 1, which contradicts that a0/r ∈ L2

loc(R2). Similarly we know that
infCf

L
Ca
Gr

gl(f, a) > 0.
Let m0 = infCf

L
Ca
Gr

gl(f, a) > 0. From Theorem 7.2 we know that m0 is attained
in Cf

⊕
Ca. For any M > 0, let

BM = {(f, a) ∈ Cf

⊕
Ca : Gr

gl(f, a) < m0 +M}. (7.4)

The main result of this section is the following

Theorem 7.3. There is an M such that the infimum of Gr
csh over BM is attained and is

positive.

Proof. Since Gr
csh ≥ 0, we can take a minimizing sequence (fm, am) ∈ BM . Therefore

we have
(i) Gr

csh(fm, am) < K for some K <∞, and
(ii) Gr

gl(fm, am) < m0 +M .
18



From (ii) we know that

K >

∫
R2

|f ′m|2 + λ2(1− f2
m)2 dx =

∫
R2

|f ′m|2 + λ2(1− fm)2(1 + fm)2 dx

≥ min{1, λ2}
∫

R2
|f ′m|2 + (1− fm)2 dx = min{1, λ2}‖1− fm‖2H1(R2),

K >

∫
R2

n2(a′m)2

r2
dx = ‖am‖2Ca

.

Therefore 1− fm is bounded in H1(R2) and am is bounded in Ca. Hence we may extract
a subsequence, still denoted (fm, am), such that

1− fm ⇀ 1− f0 weakly in H1(R2), am ⇀ a0 weakly in Ca,

with (f0, a0) ∈ Cf

⊕
Ca. Thus the Rellich-Kondrachov embedding theorem implies

strong convergence in Lp
loc(R2). From [19] we know that radial H1 functions in R2 have

good decay properties, like r−1/2. Hence it is easy to see that

fm(r) → f0(r), am(r) → a0(r) a.e.

Using Fatou’s Lemma and the weak lower semicontinuity of L2-norm of f ′m we obtain that∫
R2

|f ′0|2 +
n2

r2
(1− a0)2f2

0 + λ2f2
0

(
1− f2

0

)2
dx

≤ lim inf
m→∞

∫
R2

|f ′m|2 +
n2

r2
(1− am)2f2

m + λ2f2
m

(
1− f2

m

)2
dx. (7.5)

It’s also easy to see from the Ginzburg-Landau energy form (7.3) that

Gr
gl(f0, a0) ≤ lim inf

m→∞
Gr

gl(fm, am) ≤ m0 +M.

Hence (f0, a0) ∈ BM .
From (i) we know that

(a′m/fm)
r

∈ L2(R2).

Let g′m = a′m/fm. Then since g′m/r ∈ L2(R2),∫ r

0

|g′m|ds ≤
(∫ r

0

sds
)1/2(∫ r

0

1
r
|g′m|2ds

)1/2

≤ r√
2

(∫
R2

1
r2
|g′m|2dx

)1/2

<
2
√

2K
µ2n2

<∞.

Therefore g′m ∈ L1
loc(R+), hence

gm(r)− gm(0) =
∫ r

0

g′m(s)ds.

It’s also easy to see that 1
r (gm(r) − gm(0)) ∈ L2

loc(R2). Let hm = gm(r) − gm(0),
then hm ∈ Ca and ‖hm‖Ca < K. So there is a subsequence, still denoted hm, such that
hm ⇀ h0 weakly in Ca and hm(r) → h0(r) a.e.

For any r > 0, since am ∈ Ca, we know that a′m ∈ L1
loc(R+). Thus

am(r) = am(l) +
∫ r

l

a′m(s)ds,
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for 0 < l < r. Plugging in a′m = fmh
′
m and perfoming integration by parts we obtain

am(r) = am(l) + fmhm

∣∣∣r
l
−
∫ r

l

f ′mhm ds.

Letting m→∞ we get

am(r)− am(l) → a0(r)− a0(l), fmhm

∣∣∣r
l
→ f0h0

∣∣∣r
l
.

∣∣∣ ∫ r

l

f ′mhm ds−
∫ r

l

f ′0h0 ds
∣∣∣ = ∣∣∣ ∫ r

l

f ′m(hm − h0) ds+
∫ r

l

(f ′m − f ′0)h0 ds
∣∣∣

≤ ‖hm − h0‖L∞[l,r]

(∫ r

l

1
s
ds
)1/2(∫

R2
|f ′m|2 dx

)1/2

+
∫ r

l

(f ′m − f ′0)h0 ds

→ 0 as m→∞.

Therefore

a0(r) = a0(l) + f0h0

∣∣∣r
l
−
∫ r

l

f ′0h0 ds,

which in turn gives that a′0 = f0h
′
0. Thus

a′m/fm

r
⇀

a′0/f0
r

, weakly in L2(R2).

Hence the weak lower semicontinuity of the L2-norm implies that∫
R2

µ2

4
n2

r2

(a′0
f0

)2

dx ≤ lim inf
m→∞

∫
R2

µ2

4
n2

r2

(a′m
fm

)2

dx. (7.6)

Combining (7.5) and (7.6) we obtain that

Gr
csh(f0, a0) ≤ lim inf

m→∞
Gr

csh(fm, am). (7.7)

Thus we have Gr
csh(f0, a0) = infBM

Gr
csh(f, a).

Next we show that there is some M such that (f0, a0) is an interior minimizer. The
argument is similar to the one in Theorem 5.1. Let (fk

0 , a
k
0) be minimizers of Gr

csh over
BM+1/k for k = 1, 2, . . . . If they are not interior minimizers, then

Gr
csh(fk

0 , a
k
0) = inf

BM+1/k

Gr
csh ≤ Gr

csh(fk−1
0 , ak−1

0 ), Gr
gl(f

k
0 , a

k
0) = m0 +M + 1/k.

(7.8)

Hence Gr
gl(f

k
0 , a

k
0) is uniformly bounded and then as is discussed before, we have

1− fk
0 (r) ⇀ 1− f0(r) in H1, ak

0(r) ⇀ a0(r) in Ca.

fk
0 (r) → f0(r), ak

0(r) → a0(r) a.e.,
(ak

0)′/fk
0

r
⇀

a′0/f0
r

in L2.

Therefore applying lower-semicontinuity of norms, Fatou’s lemma and (7.8) we obtain

Gr
csh(f0, a0) ≤ lim inf

k→∞
Gr

csh(fk
0 , a

k
0) = Gr

csh(f1
0 , a

1
0),

Gr
gl(f0, a0) ≤ lim inf

k→∞
Gr

gl(f
k
0 , a

k
0) = m0 +M.

Thus (f0, a0) is an interior minimizer of BM+1/k for any k.
The positivity of the infimum is given in the argument before the theorem. �
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It is easy to check that the minimizing solution (f0, a0) obtained in Theorem 7.3 solves
the following equations on R2\{0}

∆rf =
n2

r2
(1− a)2f − µ2

4
n2

r2
(a′)2

f3
+ λ2(1− f2)(1− 3f2)f, (7.9)

− µ2

4

( a′

rf2

)′
=
f2(1− a)

r
, (7.10)

where ∆r = 1
r∂r(r∂r) is the radial Laplacian.

8. BASIC PROPERTIES OF SYMMETRIC VORTICES

In Section 5 we showed the existence of symmetric vortices in absence of the magnetic
field, and discovered some properties of the vortices. In this section we will develop some
basic properties of the symmetric vortices when A 6≡ 0.

1. Regularity.

Theorem 8.1. Suppose (u(n), A(n)) is of the form (1.13), (1.14), where (f (n)(r), an(r)) is
obtained from Theorem 7.3. Then f (n)(r), an(r) ∈ C∞(0,∞), hence (u(n), A(n)) is C2

on R2\{0}.

Proof. For simplicity, we omit the superscript and subscript n in (f (n), an) in the proof of
Theorem 8.1. We know from the previous section that (f, a) satisfy equations (7.9) and
(7.10) on R2\{0}.

From Lemma 7.1 we know that f, a ∈ C[0,∞), f(0) = a(0) = 0. Moreover, since
f, a→ 1 as r →∞, we have f, a ∈ L∞.

From (7.10) we have for any l > 0,∫ l

1/l

∣∣∣( a′

rf2

)′∣∣∣dr =
4
µ2

∫ l

1/l

f2|1− a|
r

dr

≤ 4
µ2

(∫ l

1/l

f2

r
dr
)1/2(∫ l

0

f2(1− a)2

r2
rdr
)1/2

≤ 4
µ2
‖f‖L∞

(∫ l

1/l

1
r
dr
)1/2(

2Gr
csh(f, a)

)1/2

<∞.

Thus
(

a′

rf2

)′
∈ L1[1/l, l] for any l > 0, which implies that a′

rf2 ∈ C(0,∞). Hence

a ∈ C1(0,∞). Using standard elliptic theory on equation (7.9) we obtain f ∈ C2(0,∞).
A standard iterative bootstrap argument shows that f, a ∈ C∞(0,∞). Hence f, a ∈
C2(R2\{0}), which implies that u(n), A(n) ∈ C2(R2\{0}). �

2. Maximum Principle.

Theorem 8.2. For any M > 0, if (f, a) minimizes Gr
csh over BM , then

(i) 0 < a(r) ≤ 1, for r ∈ (0,∞);
(ii) a′(r) ≥ 0;

(iii) f ′(r) > 0;
(iv) 0 < f(r) < 1, for r ∈ (0,∞).

Proof. Since (f, a) minimizes Gr
csh over BM , we know that (f, a) also solves equations

(7.9) and (7.10) on R2\{0}.
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(i) First we use a truncation argument to show that 0 ≤ a(r) ≤ 1. Suppose not. Then
the set Da = {r ∈ (0,∞) : a(r) < 0 or a(r) > 1} is not empty. We define a truncated
function ā(r) by

ā(r) =

 0 if a(r) < 0,
n if a(r) > 1,
a(r) otherwise.

(8.1)

Since a(r) ∈ C2(0,∞) and Da is not empty, we know∫
R2

n2

r2
(1− ā)2f2 +

µ2

4
n2

r2

( ā′
f

)2

dx <

∫
R2

n2

r2
(1− a)2f2 +

µ2

4
n2

r2

(a′
f

)2

dx,∫
R2

n2

r2
(1− ā)2f2 +

n2

r2
(ā′)2 dx <

∫
R2

n2

r2
(1− a)2f2 +

n2

r2
(a′)2 dx.

So (f, ā) ∈ BM and Gr
csh(f, ā) < Gr

csh(f, a) = infBM
Gr

csh, a contradiction. Therefore
0 ≤ a(r) ≤ 1.

We then make use of the second Euler-Lagrange equation (7.10), which can also be
written as

a′′

rf2
+ a′

( 1
rf2

)′
= − 4

µ2

f2(1− a)
r

≤ 0. (8.2)

Hence maximum principle implies that either a(r) > 0 on (0,∞) or a(r) ≡ 0.
If a(r) ≡ 0 then from the energy we know∫

R2

n2

r2
f2 dx <∞.

From the fact that (f, a) ∈ BM we also have∫
R2

(1− f2)2 dx ≤ 1
λ2
Gr

gl(f, a) <∞.

Therefore∫
r≥1

n2(1− f2)
r2

dx ≤
(∫

r≥1

n4

r4
dx
)1/2(∫

R2
(1− f2)2

)1/2

<∞,

which implies that ∫
r≥1

n2

r2
dx <∞,

a contradiction. Hence a(r) > 0 on (0,∞).
(ii) Suppose a(r) is not nondecreasing. Then there are r1 < r2 ∈ [0,∞] such that

a(r1) > a(r2). Now let

ā(r) =
{
a(r) for r ∈ [ 0, r1],
max{a(r), a(r1)} for r ∈ [ r1,∞]. (8.3)

Then the distributional derivative of ā is equal to the classical derivative a.e. and ā ∈ Ca.
Since f = 0 forces a′ to be zero and hence a equals a constant, we know that f 6≡ 0 in
[ r1, r2]. Therefore ∫

R2

f2(1− ā)2

r2
dx <

∫
R2

f2(1− a)2

r2
dx.

By the continuity of f, a and the fact that |ā′| ≤ |a′| we know that (f, ā) ∈ BM and

Gr
csh(f, ā) < Gr

csh(f, a),

which contradicts the minimality of Gr
csh(f, a). Hence a′(r) ≥ 0.
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Moreover, when a(r) is between 0 and 1, from (iv) 0 < f(r) < 1 for r > 0, we know
that the right-hand-side of (8.2) is negative. Therefore by a maximum principle we get that
a′(r) > 0 when 0 < a(r) < 1.

(iii) Since (f, a) minimizes Gr
csh over BM , we have that

(Gr
csh)′(f, a) = 0, and (Gr

csh)′′(f, a) ≥ 0.

An explicit computation gives

(Gr
csh)′(f, a) =

 −∆rf + n2

r2 (1− a)2f − µ2n2

4r2
(a′)2

f3 + λ2f(1− f2)(1− 3f2)

−µ2n2

4r

(
a′

rf2

)′
− n2

r2 (1− a)f2

 =
(

0
0

)
,

(8.4)

(Gr
csh)′′(f, a) =

(
G11 G12

G21 G22

)
≥ 0, (8.5)

where

G11 = −∆r +
n2

r2
(1− a)2 +

3µ2n2

4r2
(a′)2

f4
+ λ2(15f4 − 12f2 + 1),

G12 = G21 = −2n2

r2
(1− a)f +

µ2n2

2r

( a′

rf3

)′
G22 = −µ

2n2

4r2
[ 1
f2
∂2

r − (
1
rf2

+
2
f3

)∂r

]
+
n2

r2
f2.

Differentiating equation (8.4) with respect to r and using (8.5) we obtain(
0
0

)
=

d

dr
(Gr

csh)′(f, a) =
[
(Gr

csh)′′(f, a) +Q
](

f ′

a′

)
+R, (8.6)

where

Q =

 1
r2 −µ2n2

r

(
a′

rf3

)′
0 µ2n2

2r3f ∂r − 3µ2n2

4r4f2 − µ2n2

r3f3

 ,

R =

(
− 2n2

r3 (1− a)2f − 3µ2n2

2r2
(a′)2

f4

2n2

r3 (1− a)f2

)
.

The first-row equation in (8.6) is(
G11 +

1
r2

)
f ′ +

[
G12 −

µ2n2

r

( a′

rf3

)′]
a′ =

2n2

r3
(1− a)2f +

3µ2n2

2r2
(a′)2

f4
. (8.7)

On the other hand we have[
G12 −

µ2n2

r

( a′

rf3

)′]
a′ =

[
− 2n2

r2
(1− a)f − µ2n2

2r

( a′

rf3

)′]
a′.

From the second-row equation in (8.4) we know that

−2n2

r2
(1− a)f =

µ2n2

2rf

( a′

rf2

)′
.

Hence the previous expression becomes[
G12 −

µ2n2

r

( a′

rf3

)′]
a′ =

[µ2n2

2rf

( a′

rf2

)′
− µ2n2

2r

( a′

rf3

)′]
a′ =

µ2n2

2r2
a′

f4
f ′.
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Therefore (8.7) becomes(
G11 +

1
r2

+
µ2n2

2r2
a′

f4

)
f ′ =

2n2

r3
(1− a)2f +

3µ2n2

2r2
(a′)2

f4
. (8.8)

Since (Gr
csh)′′(f, a) ≥ 0, we know G11 ≥ 0. From part (i), (ii) and the fact that f ≥ 0,

f 6≡ 0, the right hand side of (8.8) is nonnegative and µ2n2

2r2
a′

f4 ≥ 0. Therefore using the
maximum principle (see [16], Theorem B.4) we know that f ′ > 0.

(iv) Combining the regularity result and (iii) we conclude that 0 < f < 1. �
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