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Abstract

There are two distinct regimes commonly used to model traveling waves in
stratified water: continuous stratification, where the density is smooth throughout
the fluid, and layer-wise continuous stratification, where the fluid consists of mul-
tiple immiscible strata. The former is the more physically accurate description, but
the latter is frequently more amenable to analysis and computation. By the con-
servation of mass, the density is constant along the streamlines of the flow; the
stratification can therefore be specified by prescribing the value of the density on
each streamline. We call this the streamline density function.
Our main result states that, for every smoothly stratified periodic traveling wave in
a certain small-amplitude regime, there is an L∞ neighborhood of its streamline
density function such that, for any piecewise smooth streamline density function
in that neighborhood, there is a corresponding traveling wave solution. Moreover,
the mapping from streamline density function to wave is Lipschitz continuous in a
certain function space framework. As this neighborhood includes piecewise smooth
densities with arbitrarily many jump discontinues, this theorem provides a rigorous
justification for the ubiquitous practice of approximating a smoothly stratified wave
by a layered one. We also discuss some applications of this result to the study of
the qualitative features of such waves.

1. Introduction

We are interested in studying two-dimensional traveling periodic water waves
with heterogeneous density. These arewaves of permanent configuration that evolve
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simply by translating with a constant velocity. Shifting to a moving reference elim-
inates time dependence from the system. The wave can then be said to inhabit a
steady fluid region ! ⊂ R2. Throughout this work, we assume that ! lies above a
flat impermeable ocean bed, and below the graph of an a priori unknown surface
profile η:

! =
{
(x, y) ∈ R2 : −d < y < η(x)

}
.

Here the axes are fixed so that the wave propagates in the positive x-direction with
speed c > 0, and the ocean depth is d > 0. The flow is described mathematically
by a velocity field (u, v) : ! → R2, a pressure P : ! → R, and a density
# : ! → R+. Periodicity of the wave means that u, v, P , #, and η are 2L-
periodic in x . For (u, v, #, P, η) to represent a water wave, they must satisfy the
free boundary steady Euler equations (see Section 1.1).

Density stratification is an important feature of waves in the ocean, with many
dynamical implications. It arises from salinity, temperature gradients due to heating
from the sun, or the presence of pollutants, for example. Ocean waves typically
have large regions of nearly constant density separated by thin transition layers,
the pycnoclines, where the density may vary sharply. For this reason, it is a very
common practice to imagine these waves as consisting of two or more immiscible
layers. The density in each layer is assumed to be smooth—often just constant—and
a jump discontinuity is permitted over the interfaces. Doing so effectively collapses
the pycnoclines to material lines.

With that in mind, we identify two distinct regimes. A wave is said to be contin-
uously stratified provided that # is continuous throughout the entire fluid domain
!. On the other hand, we say that # is layer-wise smooth if ! can be partitioned
into finitely many immiscible fluid regions

! =
N⋃

i=1

!i ,

where each !i ⊂ ! is an open set with smooth boundary, and the restriction #|!i

is smooth (the precise regularity of both ∂!i and # will be specified shortly).
The continuously stratified case is arguably more physically accurate, but the

layered model can be an extremely convenient idealization in certain situations.
This is especially true when # is layer-wise constant, as it allows one to assume
that the velocity field is irrotational in each fluid region (this is generally impos-
sible with heterogeneous density). Irrotational waves are considerably simpler to
study, both analytically and computationally. Indeed, our current understanding
of the qualitative properties of steady waves with vorticity is comparatively quite
primitive.

The central objective of this work is to quantify the degree to which a contin-
uously stratified water wave can be approximated by a merely layer-wise smooth
wave. We show that, in a certain small-amplitude regime, the wave depends con-
tinuously on the stratification. That is, if one fixes a continuously stratified wave
of this type, there exists nearby many-layered traveling waves that converge to the
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smooth wave as the number of layers is taken to infinity. In fact, these layer-wise
smooth waves are parameterized by the density in a Lipschitz continuous fashion.

This serves as a rigorous justification for the layered model, albeit in a specific
physical regime. Furthermore, it provides a promising new avenue for studying a
variety of qualitative features of continuously stratified waves. One specific ap-
plication, which we pursue in an accompanying paper, is the problem of surface
reconstruction from pressure data on the ocean bed; see the discussion in Section
1.2.

1.1. Eulerian formulation of the problem

Now that we have established the overarching goal of the paper, let us formu-
late things more carefully. Suppose that we have a layer-wise smooth density (a
continuously stratified density we view as the special case where there is a single
fluid layer). We say that (u, v, #, P, η) represents a steady water wave provided it
satisfies the steady Euler equations that we now detail. For reasons that will become
clear, we work in the weak setting where everything should be interpreted in the
distributional sense.

First, in each layer, we require that the velocity field be divergence free

ux + vy = 0, in !i . (1.1a)

In fluidmechanics, this is referred to as incompressibility; it is typical of flows in the
ocean. We also assume that the density of each fluid particle is invariant under the
flow, and that momentum is conserved. The weak formulation of these statements
amounts to the following:

((u − c)#)x + (v#)y = 0, in !i , (1.1b)

−c(#u)x + (#u2)x + (#uv)y = −Px , in !i , (1.1c)

−c(#v)x + (#uv)x + (#v2)y = −Py − g#, in !i . (1.1d)

We assume that the density is strictly positive,

# > 0, in!, (1.2)

and that the fluid is stably stratified:

y '→ #(·, y) is non-increasing. (1.3)

This simply says that, as one expects, the density increases with depth.
The kinematic and dynamic boundary conditions are

v = (u − c)ηx , on {y = η(x)} , (1.4a)

v = 0, on {y = −d} , (1.4b)

P = Patm, on {y = η(x)} . (1.4c)

Notice that (1.4a) simply states that the air–sea interface is a material line: at each
point (x, η(x)), the normal velocity of the interface matches the normal velocity of
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the water. Patm is the atmospheric pressure, which we take to be a given constant.
Then the dynamic condition (1.4c) enforces the continuity of the pressure across
the air–sea interface.

Analogous conditions are imposed on the interfaces between interior layers.
For simplicity we assume that each layer has graph geometry. Thus,

!i := {(x, y) ∈ ! : ηi−1(x) < y < ηi (x)} , i = 1, . . . , N , (1.4d)

for some functions η0, . . . , ηN , with η0 := −d, ηN := η. Implicit here is the
convention that !i lies beneath !i+1, for i = 1, . . . N − 1. In particular, !1 is the
layer directly above the ocean bed, while !N lies right below the air–sea interface.
As in (1.4a), we require that

v = (u − c)∂xηi , on {y = ηi (x)} . (1.4e)

This is equivalent to the immiscibility of the layers. Similarly, we mandate that

P is continuous in !. (1.5)

Finally, we make the important assumption that there is no horizontal stagnation in
the flow:

u − c < 0 in!. (1.6)

As can be seen above, points where u = c lead to degeneracy in the governing
equations. One consequence of the absence of stagnation points is that the stream-
lines for the flow cannot be closed. We exploit this fact later when we employ the
Dubreil-Jacotin transformation in Section 2.2.

In total, we arrive at the following descriptions for the Euler problem. Fix
α ∈ (0, 1) and put r := 2/(1 − α).

Problem 1.1. (Steady weak Euler problem) Find velocity field (u, v), density #,
pressure P , and interfaces η, η1, . . . , ηN−1 with the following regularity

u, v, # ∈ Lr
per(!) ∩ W 1,r

per (!1) ∩ · · · ∩ W 1,r
per (!N ),

P ∈ W 1,r
per (!), η, ηi ∈ C1,α

per (R),

that satisfy (1.1), (1.2)–(1.3), (1.5), (1.4), and have no horizontal stagnation (1.6).

Here the subscript “per” indicates 2L-periodicity in the x-direction. Note also that,
by Morrey’s inequality, P ∈ W 1,r

per (!) ⊂ C0,α
per (!); hence the continuity of the

pressure across the internal interfaces (1.5) is encoded in the choice of function
spaces.

For classical solutions of Problem 1.1, conservation of mass and incompress-
ibility (1.1a)–(1.1b) ensures that we may define a function ψ = ψ(x, y) by

ψx = −√
#v, ψy =

√
#(u − c), in

⋃

i

!i . (1.7)

The same holds true in the weak setting, but this fact is not immediately obvious;
we prove it in LemmaA.1.ψ is called the pseudo (relative) stream function, though
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we will simply refer to it as the stream function. The factor of
√

ρ is an innovation
due to Yih [35], its utility will become apparent later in Section 2.1.

From the definition (1.7) and (1.6), we see that the no stagnation condition takes
the form

ψy < 0, in
⋃

i

!i . (1.8)

The level sets ofψ , called the streamlines, capture a great deal of information about
the flow. In particular, observe that (1.4a), (1.4b), and (1.4e) state precisely that the
free surface, internal interfaces, and ocean bed are each streamlines. Since (1.7)
only determines ψ up to a constant in each !i , we may take ψ to be continuous
in !, and, without loss of generality, set ψ = 0 on the air–sea interface. Then
ψ = −p0 on the bed {y = −d}, where p0 is the (relative) pseudo-volumetric mass
flux:

p0 :=
∫ η(x)

−d

√
#(x, y) [u(x, y) − c] dy. (1.9)

It is straightforward to show that p0 is a (strictly negative) constant, that is, it
does not depend on x (cf., for example, [29]). Physically, p0 describes the rate of
fluid moving through any vertical line in the fluid domain and with respect to the
transformed vector field

√
#(u − c, v).

The conservation of mass (1.1b) implies that ∇# is orthogonal to the velocity
field in each layer, and hence we may let ρ : [p0, 0] → R+ be given such that

#(x, y) = ρ(−ψ(x, y)) (1.10)

throughout the fluid. The choice to use −ψ as the argument is motivated by the
change of variables introduced in Section 2.2. We shall refer to ρ as the streamline
density function, though one may alternatively view it as the Lagrangian density.
Conversely, # will be called the Eulerian density. From the definition and (1.2), we
see that

ρ > 0, in [p0, 0]. (1.11)

Moreover, taking into account the values of ψ on the boundary of ! and (1.8), the
stable stratification condition (1.3) is equivalent to

p '→ ρ(p) is non-increasing on [p0, 0]. (1.12)

Conservation of energy can be expressed via Bernoulli’s theorem, which states that
the quantity

E := P + #

2
((u − c)2 + v2)+ g#y, (1.13)

is constant along streamlines. This is well-known for classical solutions of the Euler
equations, and remains true in the weak setting (we confirm this in the process of
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proving Lemma A.2). This permits us to define a function β : [0, |p0|] → R such
that

dE
dψ

(x, y) = −β(ψ(x, y)), in
⋃

i

!i . (1.14)

Following the terminology of [29–31], we call β theBernoulli function correspond-
ing to the flow; it describes roughly how the Bernoulli constant varies with respect
to the streamlines.

In this work, we will consider waves with a Bernoulli function of a specific
form: we say that the wave is periodic localized near the crest provided that

β(ψ) = ρ′(−ψ)

[
1
2
c2 + g

∫ −ψ

p0

1
c
√

ρ(s)
ds − gd

]
.

While it may not be immediately apparent, this choice has a physical significance:
one can show that any solitary stratified wave limiting to uniform flow upstream
and downstreammust have a Bernoulli function of the type above (see Section 2.3).
These were the first class of stratified waves for which an exact solution theory was
obtained [25], and it is the only class for which the existence of large-amplitude
solitary waves is currently known. Although this paper considers the periodic case,
the waves we construct will decay exponentially away from the crest, with a rate
that is independent of the period for L sufficiently large. Loosely speaking, they
are periodic approximations of solitary waves. For a more thorough discussion, see
Remark 2.2.

1.2. Informal statement of results

We now give a summary of our results, interspersed with some explanatory
comments. For the time being, several of the hypotheses are left unquantified. The
complete statement is in Section 4.

Fix a Hölder exponent α ∈ (0, 1), and put r := 2/(1 − α). Choose a pseudo
volumetric mass flux p0 < 0, period 2L , and ocean depth d > 0. Let ρ∗ ∈
C1,α([−p0, 0]) be a stably stratified streamline density function, and suppose that
(u∗, v∗, #∗, P∗, η∗) is a solution of Problem1.1.Assume further that (i) it is periodic
localized near the crest with period sufficiently large, (ii) its wave speed c∗ is
supercritical, (iii) it is a wave of strict elevation, and (iv) it is sufficiently small-
amplitude. Then each of the statements (A1), (A2), (B), and (C) below hold true.

(A1) Existence of nearby many-layered solutions There is a neighborhood U of
ρ∗ in L∞([−p0, 0]) such that, for any ρ ∈ U that is non-increasing and
piecewise smooth, there exists a solution (u, v, #, P, η) to the steady Euler
equations with streamline density function ρ, period L , and wave speed c.
Moreover, u and η are even in x , while v is odd in x .

The key point here is that U contains streamline densities functions with arbi-
trarily many jump discontinuities. These many-layered solutions in fact converge
to the continuously stratified wave as ρ → ρ∗ in L∞ in the following sense:
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(A2) Convergence of the height function and wave speed For each (q, p) ∈ R :=
R × [p0, 0], let h∗(q, p) denote the height above the bed {y = −d} of the
point with x-coordinate q that lies on the streamline {ψ∗ = −p} for the wave
with velocity field (u∗, v∗); let h designate the corresponding height for the
wave furnished by statement (A1). Then

h∗ = h +O(‖ρ − ρ∗‖L∞) in W 1,r
per (R) ⊂ C0,α

per (R).

Likewise, the wave speed c satisfies

c∗ = c +O(‖ρ − ρ∗‖L∞).

The reason we do not write (A1) and (A2) directly in terms of (u, v) and
(u∗, v∗) is simple: the velocity fields are defined on different domains—! and !∗,
respectively—and so comparing them in a single function space is unwieldy. The
formulation of the problem in terms of the height function is described in Section
2.2, and the equivalence of this to the original Euler formulation is proved in Lemma
A.2. We also mention that there is an exact expression for c − c∗, see (4.2).

Statements (A1) and (A2) are a form of continuity result. Let D denote the
set of bounded, layer-wise smooth, stable streamline density functions; D can be
viewed as a convex subset of L∞([p0, 0]). Then (A1) proves that there exists a
mapping ρ ∈ D ∩ U '→ h ∈ W 1,r

per (R), and (A2) follows from the fact that this
mapping is Lipschitz continuous.

Away from the internal interfaces, the solutions enjoy improved regularity:

(B) Improved regularity Let I ⊂⊂ [p0, 0]\{p1, . . . , pN−1} be a connected set for
which ρ ∈ C1,α(I ). Then

‖h − h∗‖C1,α
per (R×I ) ! C1

(
‖ρ − ρ∗‖L∞([p0,0]) + ‖ρ − ρ∗‖C1,α(I )

)
,

where C1 > 0 depends on the length of I , ρ∗, and h∗.

In general, C1 will increase as the length of I decreases. One consequence of
(B) is that, if ρ∗ is constant in some region, then the approximation by a layer-wise
constant density stratification converges in a higher regularity norm there.

Lastly, we prove a result on the convergence of the pressure. This is specifically
aimed at the surface reconstruction problem.

(C) Convergenceof the pressureLet a connected set I ⊂⊂ [p0, 0]\{p1, . . . , pN−1}
be given with p0 ∈ I , and assume that ρ ∈ C1,α(I ). Denote by Pb the trace
of the pressure on the ocean bed for the traveling wave with density ρ, and let
Pb∗ be the trace of P∗ on the bed. Then

‖Pb − Pb∗‖C0,α
per (R)

! C2

(
‖ρ − ρ∗‖L∞([p0,0]) + ‖ρ − ρ∗‖C1,α(I )

)
,

where C2 > 0 depends on the length of I , ρ∗, and h∗

Actually, we prove something much stronger than this: convergence occurs in
a region, not merely on the bed.
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Remark 1.1. A large family of waves meeting these hypotheses are known to exist
due to the work of Turner [26,27], Amick [1], and Amick-Turner [2]; see also
Theorem 2.1. For the precise definition of periodic waves localized near the crest,
and strict waves of elevation, see Definition 2.3. Roughly speaking, a wave of
elevation is one where each streamline lies above the corresponding streamline in
a hydrostatic flow. The concept of supercritical speed is discussed in Section 2.4,
and is strongly connected to the idea of conjugate flows (cf., for example, [3]). We
also mention that, in the constant density case,Wheeler [33] has recently proved
that hypothesis (iii) implies hypothesis (ii), which suggests that our assumptions
can be pared down further.

The closest analogue to these results in the mathematical literature is due to
James [18], who considered the reverse limit. That is, he showed that in an L2

neighborhood of a steady two-layer solitary wave in a channel with piecewise
constant streamline density, there is a manifold of continuously stratified waves.
While this shares some common features with the present work, they are quite
distinct. For either case, one of the main challenges is finding a formulation that
encapsulates both layer-wise continuous and continuous stratification. Because we
must contendwith arbitrarilymany layers, however, the similaritymore-or-less ends
there. The choice of tools is also quite different. James employs some sophisticated
techniques from spatial dynamics, essentially a center manifold reduction approach
in the spirit of Kirchgässner [19]. On the other hand, our method, at its heart,
amounts to a novel application of the implicit function theorem supplemented by a
penalization scheme and nonlinear elliptic PDE theory.

Applied scientists frequently elect to use simply a two-layer model. Needless
to say, this introduces some baseline error into the modeling. In certain physical
applications—particularly when the pycnoclines are extremely thin—this error is
higher order and two-layer schemes are well-alignedwith experimental data [4,14].
For flows with relatively fat pycnoclines, however, the two-layered model is less
successful, and so a number of alternative procedures have been proposed (cf., for
example, [12,15,24]).Wewill not give a full account of the applied literature on this
topic. Suffice it to say that our results imply that the many-layered approximation
will converge, and hence the baseline error can be made arbitrarily small.

Finally, let us consider some potential applications and extensions. One of our
primary reasons for initiating this program was the desire to further the qualitative
theory of steady stratified waves. As one example, we mention the problem of
recovering the air–water interface of a traveling wave knowing only its wave speed,
its upstream and downstream form, and its pressure on the ocean floor. In the
irrotational and homogeneous density setting, this has recently been studied by
several authors. Constantin [7], and Clamond and Constantin [6] derived an
explicit formula relating the trace of the pressure on the bed to η. Concurrently,
Oliveras et al. [22] obtained an implicit relation via an alternative formulation
of the problem. It turns out that each of these works can be readily adapted to the
case of layer-wise irrotational and constant density waves. Hence, we are able to
reconstruct a continuously stratified wave using an approximation scheme. This
process will be detailed in an accompanying paper [5].
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It would be highly desirable to be able to treat directly the case of solitary
waves. This may indeed be possible, but it would require a nontrivial generaliza-
tion of our approach. Specifically, we rely on the Fredholm properties of several
elliptic differential operators, which in general fail on unbounded domains. On
the other hand, the recent work ofWheeler [32,34] on large-amplitude rotational
(but constant density) solitary waves provides some ideas for resolving these issues.
This is something we hope to address in a forthcoming paper.

Another natural improvementwouldbe tobroaden the class of allowableBernoulli
functions. Over the past several years, a fairly robust existence theory for large-
amplitude periodic steady stratified waves has been developed by the group of
Escher,Henry,Matioc, andMatioc (cf. [11,16,17]), and one of the authors (cf.
[29–31]). In particular, these works allow for either a general β, or at least Bernoulli
functions in a substantially less restrictive class. It seems clear from the analysis
in Section 3 that the continuity result would hold for these solutions, provided that
they were waves of elevation. This, however, does not follow from the approach
pursued by the above authors. Some new ingredient may be necessary.

1.3. Structure of the paper

We begin, in Section 2, by introducing several more amenable formulations of
the Euler system. In particular, we employ the Dubreil-Jacotin transformation to
fix the domain. This leads us to the height function h encountered statements (A2)
and (B) above. A further rescaling—one that is especially well-suited to analyzing
periodic waves localized near the crest—furnishes a new unknown w = w(ξ, ζ ),
and a rescaled streamline density function ρ̊ = ρ̊(ζ ).

The result of these efforts is a quasilinear divergence form PDE satisfied by
w in a periodic strip (see Problem 2.6). In the absence of stagnation, the system
is elliptic and ρ̊ appears as a coefficient. However, in this formulation, stagnation
is prevented precisely when wζ > −1. This is a serious difficultly: the solutions
w we consider can only be expected to be of class W 1,r

per on the whole strip. They
will naturally enjoy improved regularity inside each fluid layer, but because we are
allowing for arbitrarily many layers, we cannot exploit this additional smoothness.

Our approach is to instead introduce a penalized problem in the spirit ofTurner
[26]. That is, we add a cutoff function so that, when ‖∇w‖L∞ is larger than a certain
threshold, the principal part of thePDE is replacedby∇·(ρ̊∇w), andwhen‖∇w‖L∞

is sufficiently small, the problem agrees with the physical one.
This enables us, in Section 3.2, to construct a smooth curve of solutions to

the penalized problem parameterized by ρ̊ lying in an L∞ neighborhood V̊ of ρ̊∗.
However, because ρ̊ is merely in L∞, elliptic regularity theory does not directly
imply that these are physical solutions: in general, one does not have control of w
in W 1,∞, and hence even for ‖ρ̊ − ρ̊∗‖L∞ . 1, ‖∇w‖L∞ may lie above the cutoff
threshold. This is not merely a technical point: V̊ includes densities with infinitely
many jump discontinuities; the physicality of such flows is dubious at best.

To complete the argument, we derive a priori estimates for smooth rescaled
streamline density functions lying inside V̊ . Using a limiting procedure, we show
that layer-wise smooth rescaled streamline densities in V̊ likewise give rise to solu-
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tions of the physical problem, provided that they are sufficiently small-amplitude.
This is carried out in Sections 3.3 and 3.4, culminating in Theorem 3.1.

Finally, in Section 4, we translate this back into the language of statements
(A)–(C) above. This gives our main result, Theorem 4.1.

2. Reformulations

In this section, we introduce a number of equivalent formulations of the steady
stratified water wave system. Each of these will be particularly suited to one of
the problems that we consider in the remainder of the paper. The fact that they
are equivalent is far from obvious, particularly in the weak regularity setting. We
therefore include a proof, but relegate it to Appendix A as it is not our primary
concern.

2.1. Stream function formulation

Recall from the introduction that the (pseudo relative) stream function ψ is
defined by

∇⊥ψ = √
#(u − c, v) in

⋃

i

!i .

A relatively simple computation confirms that it solves Yih’s equation

+ψ − gyρ′(−ψ)+ β(ψ) = 0, in
⋃

i

!i .

Indeed, this relatively elegant expression was the motivation for defining ψ as we
did in (1.7); slightly less pleasant versions of Yih’s equation were found earlier by
Dubreil-Jacotin [10] and Long [21]. We mention that, for weak solutions, the
derivation of Yih’s equation is not quite so simple (cf. Lemma A.2).

By the kinematic boundary conditions, each of the free surfaces is a stream-
line. As we have already discussed, the energy density E (1.13) is constant on
streamlines. Evaluating it on the air–sea interface yields

|∇ψ |2 + 2g#(x, η(x)) (η(x)+ d) = Q, on y = η(x) (2.1)

where

Q := 2(E |η − Patm + g#|ηd). (2.2)

One can repeat this procedure at the interface between any two layers; by the
continuity assumption on the pressure, this yields the identity

[[|∇ψ |2]]i + 2g[[#]]i (y + d) = Qi , on {y = ηi (x)},
where [[·]]i denotes the jump over the interface ∂!i ∩ ∂!i+1 of a quantity defined
on !i ∪ !i+1 from !i+1 to !i . Here Qi is a constant representing the jump in the
energy density across the i-th interface:
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Qi := 2([[E]]i + g[[#]]i d). (2.3)

Collecting these together, we arrive at the following reformulation of the Euler
problem in terms of the stream function.

Problem 2.1. (Weak stream function problem) Let a Bernoulli function β be given
with

β ∈ Lr ([p0, 0]) ∩ W 1,r ([p0, p1]) ∩ · · · ∩ W 1,r ([pN−1, 0]).
We say that a stream function ψ , interfaces η, η1, …, ηN−1, and constants
(Q, Q1, . . . , QN−1) solve the weak stream function problem provided that the
following statements hold: they exhibit the regularity

ψ ∈ W 1,r
per (!) ∩ W 2,r

per (!1) ∩ · · · ∩ W 2,r
per (!N ), η, ηi ∈ C1,α

per (R),

where !i is defined as in (1.4d); ψ solves Yih’s equation (in the distributional
sense)

+ψ − gyρ′(−ψ)+ β(ψ) = 0, in
⋃

i

!i , (2.4a)

along with the boundary conditions

|∇ψ |2 + 2gρ(y + d) = Q, on {y = η(x)}, (2.4b)

ψ = 0, on {y = η(x)}, (2.4c)

ψ = −pi , on {y = ηi (x)}, (2.4d)

ψ = −p0, on {y = −d}; (2.4e)

the corresponding pressure is continuous,
[[
|∇ψ |2

]]

i
+ 2g

[[
#
]]
i (y + d) = Qi , on {y = ηi (x)}; (2.4f)

and there is no horizontal stagnation (1.8).

2.2. Height equation formulation

A natural way to fix the boundary in the absence of stagnation is to use the
streamlines as a vertical coordinate. One strategy in this direction is to employ the
Dubreil-Jacotin transformation

(x, y) '→ (x,−ψ(x, y)) =: (q, p),
which has the effect of mapping a single horizontal period of the fluid domain to
the rectangle

R := {(q, p) ∈ (−L , L) × (p0, 0)}.
Similarly, each fluid layer !i is mapped to a strip

Ri := {(q, p) ∈ (−L , L) × (pi−1, pi )},
where pN := 0, and ∂!i ∩ ∂!i+1 = {ψ = −pi }, for i = 1, . . . N − 1.
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Let h = h(q, p) be the height above the bed of the point with x = q and lying
on the streamline {ψ = −p},

h(q, p) := y + d. (2.5)

Assuming for the time being that h and ρ are smooth, the stream-function problem
(2.4) can be reformulated as follows. Find (h, Q) such that h is 2L-periodic in q,

h p > 0, inR, (2.6)

and the height equation is satisfied,





(1+ h2q)h pp + hqqh2p − 2hqh ph pq

−g(h − d)ρph3p = −h3pβ(−p), in R,

1+ h2q + h2p(2gρh − Q) = 0, on {p = 0},
h = 0, on {p = p0}.

(2.7)

See [29] for the details.
Now let us consider the situation where ρ is layer-wise smooth. We can recast

(2.7) in aweaker formby exploiting the divergence structure of the interior equation:

(

−
1+ h2q
2h2p

+ B − gρ(h − d)

)

p

+
(
hq
h p

)

q
+ gρh p = 0, in

⋃

i

Ri , (2.8a)

−
1+ h2q
2h2p

− gρh + Q
2

= 0, on {p = 0}, (2.8b)

h = 0, on {p = p0}. (2.8c)

Here

B(p) :=
∫ p

0
β(−s) ds, p ∈ [p0, 0]. (2.8d)

The continuity of the pressure (2.4f) becomes a transmission boundary condi-
tion posed on each interfacial streamline:

−
[[

1+ h2q
2h2p

]]

i

− g [[ρ]]i h + Qi

2
= 0 on {p = pi }. (2.8e)

Alternatively, we combine (2.8a) and (2.8e) to obtain a single PDE satisfied in the
distributional sense on the entire stripR:
(

−
1+ h2q
2h2p

+ B +
∑

i

Qi

2
1Ri − gρ(h − d)

)

p

+
(
hq
h p

)

q
+ gρh p = 0 inR,

(2.9)

where 1Ri is the indicator function for Ri . Of course these additional terms are
meant to account for the fact that the energy E will jump across the interfaces.
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Problem 2.2. (Weak height equation problem) Let streamline density function ρ

and Bernoulli function β be given with the regularity

ρ, β ∈ Lr ([p0, 0]) ∩ W 1,r ([p0, p1]) ∩ · · · ∩ W 1,r ([pN−1, 0]).

We say (h, Q, Q1, . . . , QN−1) solves the weak height equation problem provided
that the following statements hold: h exhibits the regularity

h ∈ W 1,r
per (R) ∩ W 2,r

per (R1) ∩ · · · ∩ W 2,r
per (RN );

there is no stagnation (2.6); and the quasilinear elliptic system (2.8) is satisfied.
Equivalently, we may replace (2.8a) and (2.8e) with the requirement that (2.9)
holds in the sense of distributions.

2.3. Periodic waves localized near the crest

Up to this point, we have made no restriction on the form of the Bernoulli
function β; we now turn to the setting of our applications. As motivation, suppose
for the moment that the fluid domain is of infinite extent in the horizontal direction.
Assume also that

(u − c, v) → (−c, 0), η → 0 as x → ±∞,

meaning that the flow is irrotational and laminar upstream and downstream infinity.
In particular, from the definition of E in (1.13), this implies that

E = Patm + 1
2
#c2 on {y = η(x)},

whence, by (2.2),

Q = ρ(0)c2 + 2gρ(0)d.

Consider the form that the corresponding Bernoulli functionmust take. Observe
that the limiting pressure will be hydrostatic

P(x, y) → P̊(y) := Patm + g
∫ 0

y
#̊(s) ds, as x → ±∞,

where #̊ is the limiting value of the Eulerian density:

# → #̊ = #̊(y), as x → ±∞.

Let h(q, p) → h̊(p) as q → ±∞. That is, h̊(p) is the asymptotic height above
the bed of the streamline {ψ = −p}. Recalling the definition of h in (2.5), this
means that ẙ := h̊ − d is the limiting value of the y-coordinate of points on that
streamline. From the change of variables identity

h p = 1√
ρ(c − u)

,
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we see that ρ and c determine h̊ according to

h̊(p) =
∫ p

p0

1
c
√

ρ(s)
ds. (2.10)

Moreover, since η limits to 0 upstream and downstream, we see that

d =
∫ 0

p0

1
c
√

ρ(s)
ds. (2.11)

In this work, we will keep d and p0 fixed, and so (2.11) will determine the wave
speed c.

This allows us to compute the value of E on an internal streamline (away from
the discontinuities of ρ), by evaluating it at upstream or downstream infinity:

E |{ψ=−p} = P̊(ẙ)+ 1
2
ρc2 + gρ ẙ.

Differentiating this with respect to p yields

β(−p) = P̊ ′(ẙ)ẙp +
1
2
ρ′c2 + gρ′ ẙ + gρ ẙp

= ρ′
[
1
2
c2 + gẙ

]
.

Here we have used the fact that P̊ is hydrostatic to infer the second line from
the first. By a similar argument, we see that h̊ is related to the constants Q1, …,
QN−1 according to

Qi = [[ρ]]i c
2 + 2g [[ρ]]i h̊ on {p = pi }.

The above considerations show that a solitary wave that limits to a uniform
irrotational flow upstream and downstream will necessarily have a Bernoulli func-
tion of a specific form. Moreover, the constants Q, Q1, …, QN−1 are determined
by the limiting heights of the corresponding streamlines. We therefore make the
following definition:

Definition 2.3. A periodic traveling wave is said to be localized near the crest
provided that the Bernoulli function β for the flow is of the form

β(−p) = ρ′
[
1
2
c2 + g(h̊ − d)

]
, (2.12)

where h̊ : [p0, 0] → R+ is defined by (2.10), the wave speed c is determined via
(2.11), and the constants Q, Qi are given by

Q = ρ(0)c2 + 2gρ(0)d, Qi = [[ρ]]i [c2 + 2gh̊(pi )]. (2.13)

If, in addition, the height h for the flow satisfies

h − h̊ " 0 inR, (2.14)

then the wave is said to be a wave of elevation, and a strict wave of elevation
provided that

h − h̊ > 0 inR\{p = p0}.
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We now state precisely the formulations of the previous two subsections in the
setting of periodic waves localized near the crest.

Problem 2.4. (Stream function problem for waves localized near the crest) Let
streamline density function ρ be given with the regularity

ρ ∈ L∞([p0, 0]) ∩ W 1,r ([p0, p1]) ∩ · · · ∩ W 1,r ([pN−1, 0]),

define limiting height h̊ by (2.10), and let the wave speed c be given by (2.11). Find
(ψ, η1, . . . , ηN−1, η) with the regularity

ψ ∈ W 1,r
per (!) ∩ W 2,r

per (!1) ∩ · · · ∩ W 2,r
per (!N ), η, ηi ∈ C1+α

per (R).

We require that ψ is constant on ∂!i , there is no horizontal stagnation (1.8), and
ψ solves the elliptic PDE (2.4), where β, Q, Q1, . . . , QN−1 are defined according
to (2.12), and (2.13), respectively.

Problem 2.5. (Height equation problem for waves localized near the crest) Let
streamline density function ρ be given with the regularity

ρ ∈ L∞([p0, 0]) ∩ W 1,r ([p0, p1]) ∩ · · · ∩ W 1,r ([pN−1, 0]),

define the limiting height h̊ by (2.10), and wave speed c by (2.11). Find

h ∈ W 1,r
per (R) ∩ W 2,r

per (R1) ∩ · · · ∩ W 2,r
per (RN ),

with no stagnation (2.6), and satisfying (2.8), where β, Q, Q1, . . . , QN−1 are
defined according to (2.12), and (2.13), respectively.

Remark 2.1. The interior equation (2.8a) and transmission boundary condition
(2.8e) can be captured by a single equation posed inR and satisfied in the sense of
distributions:
(

−
1+ h2q
2h2p

−
[
1
2
c2 + g(h − h̊)

]
ρ

)

p

+
(
hq
h p

)

q
+ gρ(h − h̊)p = 0, inR.

(2.15)

In Lemma A.2, we prove that the stream function and height equation formu-
lations are equivalent in the more general settings of Problems 2.1 and 2.2. The
equivalence of Problems 2.4 and 2.5 is then an immediate corollary. Moreover, in
Lemma A.2, it is shown that the existence of solutions to the stream function prob-
lem (for any given β) implies the existence of a solution to Problem 1.1. Thus, in
particular, the existence of a solution to either Problem 2.4 or Problem 2.5 implies
the existence of a solution to Problem 1.1. The converse will not be true unless
further restrictions are made to enforce the localization.
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Remark 2.2. (i) Periodic waves localized near the crest are particularly well-suited
to approximation by many-layered constant density irrotational flows. To see this,
note that β will vanish in any region where ρ is constant. Recalling Yih’s equation
(2.4), this implies that the flow is irrotational in any region of constant density. On
the other hand, in continuously stratified regions, it is easy to see that the vorticity
will not vanish.

(ii) From (2.15), it is immediately apparent that waves of elevation are espe-
cially important, since for these solutions the term ρp(h − h̊) is non-positive. This
implies that the height function is a supersolution of a certain quasilinear elliptic
operator, a fact we strongly exploit in Section 3.3. In particular, it is used to deduce
monotonicity properties that lead to the key a priori estimates.

2.4. Ter-Krikorov formulation for localized waves

With Remark 2.2 in mind, it is useful to consider a further reformulation of the
problem specifically aimed at waves of elevation localized near the crest. This idea,
to the best of our knowledge, originates with Ter-Krikorov [25]. It is also used in
the works of Turner [26,27], Amick [1], and Amick-Turner [2] that we draw on
in Section 3.

We begin by performing a change of variables

(q, p) '→ 1
d
(q, ẙ(p)) =: (ξ, ζ ).

Unravelling definitions, we see that ζ is a streamline coordinate which has been
rescaled and non-dimensionalized so that the y-coordinates of points sitting on the
streamline with label ζ limit to ζd. It can be related directly to p via the formula

ζ = 1
cd

∫ p

0

1√
ρ(s)

ds.

Note that the positivity of ρ guarantees that ζ(p) has an inverse, call it p(ζ ). The
rectangle R is mapped by the transformation (q, p) '→ (ξ, ζ ) to the strip

S :=
{
(ξ, ζ ) : ξ ∈

(
− L
d
,
L
d

)
, ζ ∈ (−1, 0)

}
.

Analogously, the layers Ri are mapped to strips

Si :=
{
(ξ, ζ ) : ξ ∈

(
− L
d
,
L
d

)
, ζ ∈ (ζi−1, ζi )

}
,

where ζi is the image of pi .
Finally, we introduce a new unknown

w(ξ, ζ ) := y(ξ, p(ζ ))
d

− ζ. (2.16)

Recalling the definition of ζ , it is clear that w is a dimensionless quantity
measuring the deviation of the height of a point on a streamline from its asymptotic
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height. In fact, it is nothing but a rescaled version of h − h̊. As we have mentioned,
w is an extremely natural choice of unknown for waves of elevation. Indeed, w is
a wave of elevation precisely when

w " 0, inS, (2.17)

and a strict wave of elevation provided that

w > 0, in S\{ζ = −1}. (2.18)

Let ρ̊ denote the rescaled streamline density function,

ρ̊(ζ ) := ρ(p(ζ )). (2.19)

This is slightly inconsistent with our notation in Section 2.3, but we justify it on
the grounds that the rescaling of ρ is being done with a view towards some form of
limiting behavior upstream and downstream. More importantly, this choice allows
us to avoid introducing another symbol or variety of accent mark.

From the definitions above, it is elementary to show that

∂ξ = d∂q , ∂ζ = cd
√

ρ∂p

∂2ξ = d2∂2q , ∂ξ ∂ζ = cd2
√

ρ∂p∂q , ∂2ζ = c2d2ρ∂2p +
1
2
c2d2ρp∂p,

and hence the height equation (2.15) translates to the following divergence form
quasilinear system for w:
(

ρ̊
wξ

1+ wζ

)

ξ

+
(

ρ̊
wζ

1+ wζ
− ρ̊

w2
ξ + w2

ζ

2(1+ wζ )2

)

ζ

− λ∂ζ (ρ̊w)+ λρ̊w = 0, in S

(2.20a)

w = 0, on {ζ = −1} (2.20b)

ρ̊

(
wζ

1+ wζ
−

w2
ξ + w2

ζ

2(1+ wζ )2

)

− λρ̊w = 0, on {ζ = 0}. (2.20c)

Here

λ := gd
c2

, (2.20d)

which is the Richardson number for the flow. Note that the no stagnation condition,
stated in terms of w, is simply

wζ > −1. (2.20e)

Problem 2.6. (Ter-Krikorov problem) For a given scaled streamline density func-
tion

ρ̊ ∈ Lr ((−1, 0)) ∩ W 1,r ((−1, ζ1)) ∩ · · · ∩ W 1,r ((ζN−1, 0)), (2.21)

find (w, λ) with

w ∈ W 1,r
per (S) ∩ W 2,r

per (S1) ∩ · · · ∩ W 2,r
per (SN ),

satisfying (2.20).
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Remark 2.3. We are abusing notation here, since w will be 2L/d-periodic, rather
than 2L-periodic. In the sequel, whenever we refer to a space of periodic functions
in the (ξ, ζ )-coordinates, this is how it should be interpreted.

We prove in Lemma A.3 that Problem 2.6 is equivalent to Problem 2.5. By
the remarks in the previous section, this implies that solutions of Ter-Krikorov
formulation lead to solutions of the other problem formulations as well.

Problem2.6 has been studied bymany authors.Weparaphrase here the existence
theorem most relevant to the focus of the present work. Before that, we must
introduce one additional concept: for a stable rescaled streamline density function
ρ̊, the corresponding critical wave speed is given by

ccrit = ccrit(ρ̊) :=
√
gd



 inf
v∈H1

per(S),
v 1≡0

∫
S ρ̊|∇v|2 dξ dζ

−
∫
S ρ̊′v2 dξ dζ +

∫
{ζ=0} ρ̊v

2 dξ





−1/2

.(2.22)

Physically, this corresponds to the speed at which infinitesimal long waves propa-
gate (cf., for example, [3]). The relevance becomes clearer when it is expressed in
terms of λcrit := gd/c2crit, the critical Richardson number, which will satisfy

λcrit = λcrit(ρ̊) = inf
v∈H1

per(S),
v 1≡0

∫
S ρ̊|∇v|2 dξ dζ

−
∫
S ρ̊′v2 dξ dζ +

∫
{ζ=0} ρ̊v

2 dξ
. (2.23)

The right-hand side above is easily recognizable as the Rayleigh quotient corre-
sponding to the linearization of (2.20) about w ≡ 0. We say that c is supercritical
provided that c > ccrit, or, equivalently, λ < λcrit.

Theorem 2.1. (Turner [27]) There exists a constant Rmax > 0, and a minimal
period Lmin, depending on Rmax, such that the following holds. Fix a rescaled
streamline density function ρ̊ as in (2.21). If the period L ∈ [Lmin,∞], then for
each 0 < R ! Rmax, there exists a solution w to Problem 2.6 for some choice of
λ. (Here L = ∞ corresponds to a solitary wave). This solution will satisfy

∫

S
ρ̊

|∇w|2
1+ ∂ζw

dξ dζ = R2,

will be a strict wave of elevation, and even in the ξ -variable. Moreover, the wave
speed will be supercritical, with the explicit bound:

λ ! λcrit(1 − CR4/3) < λcrit, (2.24)

for some constant C > 0. Lastly, ξ '→ w(ξ, ·) is monotonically decreasing from
the crest at {ξ = 0} to the trough {ξ = L/d}. In fact, w and |∇w| are localized
exponentially near the crest, with a rate of decay depending on ρ̊ and R, but
independent of L.



Continuous Dependence on the Density for Stratified Steady Water Waves

3. Continuous Dependence on the Density in the Ter-Krikorov Formulation

3.1. Overview

In this section, we prove that small-amplitude periodic traveling waves of eleva-
tion localized near the crest depend continuously on the streamline density function.
Stated in terms of the Ter-Krikorov formulation, the main result is the following.

Theorem 3.1. Let ρ̊∗ ∈ C1,α([−1, 0]) be a stable rescaled streamline density func-
tion with ρ̊∗(0) = 1. There exists Smax > 0 such that, for any non-laminar solution
(w∗, ρ̊∗, λ∗) of Problem 2.6 that is a strict wave of elevation (2.18), and satis-
fies ‖∇w∗‖L∞ < Smax, the following is true. There is a constant ρ̊max > 0, and a
neighborhood Ů of ρ̊∗ in L∞([−1, 0]) such that, for any stable rescaled streamlined
density function

ρ̊ ∈ Ů ∩ W 1,∞([−1, ζ1]) ∩ · · · ∩ W 1,∞([ζN−1, 0]) (3.1)

with ρ̊(0) = 1, and ρ̊(−1) ! ρ̊max, there exists

w ∈ W 1,r
per (S) ∩ W 2,r

per (S1) ∩ · · · ∩ W 2,r
per (SN )

with (w, ρ̊, λ) solving Problem 2.6. Moreover,

‖w − w∗‖C0,α(S) ! C‖ρ̊ − ρ̊∗‖L∞ ,

for a constant C > 0 independent of ρ̊.

Remark 3.1. In light of Theorem 2.1, we know that solutions (w∗, ρ̊, λ∗)meeting
the hypotheses exist. Moreover, for Turner’s solutions, one may replace the bound
on ‖∇w∗‖L∞ with one on the energy. There exists R0 > 0 such that, for any
non-laminar solution (w∗, ρ̊∗, λ∗) of Problem 2.6 furnished by Theorem 2.1 with
R < R0, the conclusion of the above theorem holds. This follows from the a
priori estimates of Section 3.3, and the analogous ones in [27]). We have taken
ρ̊∗(0) = ρ̊(0) = 1 in order to simplify slightly some of the arguments, though this
is not essential.

Notice that the neighborhood of ρ̊∗ includes densities with an arbitrary number
of jump discontinuities. To appreciate the implications of this, it is most convenient
to re-express the Ter-Krikorov equation (2.20) in a more compact form:

∇ · (ρ̊F(∇w)) − λ∂ζ (ρ̊w)+ λρ̊∂ζw = 0 inS
w = 0 on {ζ = −1}

ρ̊F2(∇w) − λρ̊w = 0 on {ζ = 0}.
(3.2)

Here the divergence and gradient are with respect to the (ξ, ζ ) variable, and

F = (F1, F2) = (∂1 f, ∂2 f ),

with f : R2 → R defined by

f (p1, p2) :=
p21 + p22
2(1+ p2)

. (3.3)
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Note that we are using (p1, p2) as dummy variables; they have no connection to
p0, . . . , pN−1 introduced in Section 2.1.

Written this way, it is clear that (3.2) is a quasilinear elliptic problem, with the
ellipticity constant related to the lower bound of 1 + wζ , and that the boundary
condition on the air–sea interface {η = 0} is of co-normal derivative type. Suppose
that we have a solution (w∗, ρ̊∗, λ∗). To establish the continuous dependence, we
employ an implicit function theorem, attempting to find a curve of nearby solutions
{(w, ρ̊)}parameterizedby ρ̊.However, becausewecannot knowapriori the location
of the layers, we may only assume that ‖ρ̊ − ρ̊∗‖L∞ . 1. Heuristically, elliptic
regularitywould then provide control ofw in the spaceW 1,r

per (S). This is not enough;
we must have that w lies in a W 1,∞

per (S) neighborhood of w∗ in order to guarantee
1+ wζ > 0.

To circumvent this issue, we replace the physical problem (3.2) with a penalized
problem that is elliptic for any w ∈ W 1,r and agrees with (3.2) for w with energy
below a certain bound. In Section 3.2, we carry out the implicit function theorem
scheme to get continuous dependence on the density for the penalized problem.We
then derive a priori estimates in Section 3.3 for solutions of the penalized problem
in terms of their energy and ‖ρ̊‖L∞ . Finally, in Section 3.4, these estimates enable
us to return to the physical problem, proving Theorem 3.1.

3.2. Continuity for a penalized problem

Following Turner [26,27], consider the following penalization scheme. Let
- ∈ C∞

c (R) be a cutoff function such that

0 ! - ! 1, supp- ⊂ (−3/2, 3/2), - ≡ 1 on [−1, 1],
and for each s > 0, define -s := -(·/s). We replace f defined in (3.3) with

a(p1, p2; s) := -s(p21 + p22) f (p1, p2)+ [1 − -s(p21 + p22)]
p21 + p22

2
. (3.4)

To keep notation manageable, the dependence of a on s will be suppressed. Note
that for w ∈ W 1,r

per (S),

-s(|∇w|2) 1
1+ ∂ζw

, -′
s(|∇w|2) 1

1+ ∂ζw
∈ Lq(S), for all q ∈ [1,∞].

We are therefore justified in looking for weak solutions w ∈ W 1,r
per (S) of the penal-

ized problem





∇ · (ρ̊(∇a)(∇w)) − λ∂ζ (ρ̊w)+ λρ̊∂ζw = 0 inS
w = 0 on {ζ = −1}
ρ̊(∂2a)(∇w) − λρ̊w = 0 on {ζ = 0},

(3.5)

where ρ̊ ∈ L∞([−1, 0]) ⊂ Lr ([−1, 0]).
Observe that, if ‖∇w‖2L∞ < 2s, then a(∇w) = f (∇w), and hence a solution

of (3.5) solves (3.2). However, for ‖∇w‖L∞ large, a(∇w) = |∇w|2/2. One can
therefore prove the following lemma characterizing the ellipticity of the penalized
problem.
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Lemma 3.1. (Turner [26]) There exists a constant s0 ∈ (0, 1/
√
2) such that, for

all s ∈ (0, s0), there are constants σ1, . . . , σ5, ν > 0 such that the following hold.

(i) 1
2σ1(p

2
1 + p22) ! a(p1, p2) ! 1

2σ2(p
2
1 + p22).

(ii) σ3(p21 + p22) ! (∇a)(p1, p2) · (p1, p2) ! σ4(p21 + p22).
(iii) |∇a(p1, p2)|2 ! σ5(∇a)(p1, p2) · (p1, p2).
(iv)

∑
i j ai j (p1, p2)ξiξ j " ν(ξ21 + ξ22 ), for all (p1, p2), (ξ1, ξ2) ∈ R2.

(v) ∇∂2a = (0, 1)+O(s).
(vi) (∂i∂ j∂ka)(p1, p2) = (∂i∂ j∂ka)(0, 0) + O(s). Moreover, at (0, 0), a111 = 0,

a112 = 2, a122 = 0, a222 = 6, and the rest are determined by symmetry.
(vii) σ1, . . . , σ5, ν = 1+O(s).

Here we are using the shorthand ai = ∂i a, where ∂1 := ∂ξ , ∂2 := ∂ξ , and similarly
for ai j , ai jk .

The penalized problem (3.5) can be stated abstractly as

G(w, ρ̊, λ) = 0, (3.6)

where G : X1 × X2 × R → Y ,

X1 := {w ∈ W 1,r
per (S) : w = 0 on {ζ = −1}}

X2 := L∞([−1, 0])
Y := {u ∈ (W 1,r ′

per (S))∗ : u = A+ ∂ξB1 + ∂ζB2, for A,B1,B2 ∈ Lr (S)},

and, for each test function 0 ∈ W 1,r ′
per (S),

〈G(w, ρ̊, λ), 0〉 := −
∫

S
[ρ̊∇0 · (∇a)(∇w) − λρ̊w∂ζ 0] dξ dζ

−
∫

S
λρ̊(∂ζw)0 dξ dζ. (3.7)

Here r ′ is the Hölder conjugate exponent of r , and 〈·, ·〉 denotes the pairing of
(W 1,r ′

per (S))∗ with W 1,r ′
per (S). We topologize Y by endowing it with the norm

‖u‖Y := inf
{
‖A‖Lrper+‖B1‖Lrper+‖B2‖Lrper : u=A+∂ξB1+∂ζB2, A,Bi ∈ Lr

per(S)
}
.

It is elementary to see that this is a Banach space. Moreover, the following
simple technical lemma holds:

Lemma 3.2. The space X1 is compactly embedded in Y in the sense that the iden-
tification mapping I : X1 → Y , defined by

〈I (v),0〉 :=
∫

S
v0 dξ dζ, for all v ∈ X1, 0 ∈ W 1,r ′

per (S),

is compact.



Robin Ming Chen & Samuel Walsh

Proof. Since r > 2, we may choose r̃ < r satisfying 2r̃/(2 − r̃) > r . Then,
by the Rellich–Kondrachov theorem, W 1,r

per (S) ⊂ W 1,r̃
per (S) ⊂⊂ Lr

per(S). The first
inclusion is simply due to the fact that we are on a compact domain.

Now, if {vn} ⊂ X1 is a bounded sequence, it follows that,modulo a subsequence,
vn → v in Lr

per(S) for some v. Likewise,

‖I (vn) − I (v)‖Y ! ‖vn − v‖Lrper(S) → 0.

Hence {I (vn)} has a convergent subsequence, and the proof is complete. 56

Fix a rescaled streamline density function ρ̊∗ ∈ C1,α([−1, 0]). By Theorem
2.1, we know that for any R ∈ (0, Rmax) and L sufficiently large, there exists
(w∗, ρ̊∗, λ∗) such that w∗ solves Problem 2.6 with λ = λ∗, and streamline density
function ρ̊∗. Moreover, λ∗ is supercritical in the sense of (2.23): λ∗ > µ∗ :=
λcrit(ρ̊∗). Thus, in particular,

G(w∗, ρ̊∗, λ∗) = 0.

Wewill apply the implicit function theorem in order to infer the existence of nearby
solutions where the density is merely L∞. With that in mind, we compute that the
Fréchet derivative Gw(w, ρ̊, λ) : X1 → Y applied to u ∈ X1 and acting on a test
function 0 is given by

〈Gw(w∗, ρ̊∗, λ∗)u,0〉 = −
∫

S
ρ̊∗∇0 · [(D2 f )(∇w∗)∇u] dξ dζ

+
∫

S
[λ∗ρ̊∗u∂ζ 0 + λ∗ρ∗(∂ζu)0] dξ dζ.

(3.8)

Here D2 f denotes the Hessian matrix of f . Note that because ‖∇w∗‖L∞ lies
below thepenalization cutoff, the penalized andphysical problems coincide—hence
we may use f in place of a above. Observe also that, owing to the regularity ofw∗,
D2 f (∇w∗) is of class C

0,α
per (S).

The main lemma is the following:

Lemma 3.3. (Null space). Let ρ̊∗ ∈ C1,α([−1, 0]) be a stable streamline den-
sity function. There exists an R0 > 0 such that, for any non-laminar solution
(w∗, ρ̊∗, λ∗) to Problem 2.6 with

∫

S
ρ̊∗∇ f (∇w∗) dx dζ < 2R0, (3.9a)

and

‖∇w∗‖L∞ < s, (3.9b)

we have that ker Gw(w∗, ρ̊∗, λ∗) is trivial.
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Proof. Notice that the matrix D2 f (∇w∗) is a perturbation of the 2 × 2 identity
matrix. With that in mind, consider the following model problem:






∇ ·
(
ρ̊∗∇u

)
= σ ρ̊′

∗u in S
u = 0 on {ζ = −1}
ρ̊∗∂ζu = σu on {ζ = 0}.

(3.10)

In fact, (3.10) is nothing but the linearization of (3.2) about the trivial solution
w ≡ 0. Letµ∗ := λcrit(ρ̊∗) be given as in (2.23). By Theorem 2.1, for L sufficiently
large, R sufficiently small,

λ∗ ! µ∗(1 − CR4/3) < µ∗, (3.11)

for some constant C depending on ρ̊∗. In particular, λ∗ is not a generalized eigen-
value of the model problem (3.10), and the gap between λ∗ and µ∗ can be widened
by taking R → 0.

Now, for each t ∈ [0, 1], put At := D2 f (t∇w) and define Lt : X1 → Y by

〈Ltu, 0〉 := −
∫

S
ρ̊∇0 · (At∇u) dξ dζ +

∫

S
[λ∗ρ̊∗u∂ζ 0 + λ∗ρ∗(∂ζu)0] dξ dζ,

for each test function 0 ∈ W 1,r ′
per (S). It follows that L1 = Gw(w∗, ρ̊∗, λ∗). On

the other hand, a simple computation confirms that L0 corresponds to the operator
associated to the model problem (3.10).

Seeking a contradiction, suppose thatu0 1≡ 0 is an element of ker Gw(w∗, ρ̊∗, λ∗).
Since r > 2, the Hölder conjugate r ′ < 2, and hence W 1,r

per (S) ⊂ W 1,r ′
per (S). We

may therefore use u0 as a test function to deduce that

0 = 〈L1u0, u0〉 = −
∫

S
ρ̊∗∇u0 · A1∇u0 dξ dζ

+λ∗
∫

{ζ=0}
ρ̊∗u20 dξ − λ∗

∫

S
ρ̊′

∗u
2
0 dξ dζ.

Without loss of generality we may take

−
∫

S
ρ̊′

∗u
2
0 dξ dζ +

∫

{ζ=0}
ρ̊∗u20 dx = 1,

and thus

λ∗ =
∫

S
ρ̊∗∇u0 · A1∇u0 dξ dζ. (3.12)

Observe that by Lemma 3.1, A1 is positive definite, and hence ‖∇u0‖L2
per(S) #

λ∗.
Consider now the Rayleigh quotient

R(t) :=
∫

S
ρ̊∗∇u0 · At∇u0 dξ dζ, t ∈ [0, 1].
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By the definition of u0 and identity (3.12), we have that

R(1) = λ∗. (3.13)

Clearly R is C1([0, 1]) and ‖R ′‖L∞ # ‖∇w∗‖L∞(S). Thus, in light of (3.13)
and (3.11), for ‖∇w∗‖L∞ sufficiently small,

µ∗ > R(0) =
∫

S
ρ̊∗|∇u0|2 dξ dζ,

which violates the criticality of µ∗. We conclude, therefore, that for R sufficiently
small, the null space ofGw(w∗, ρ̊∗, λ∗) is trivial for any strong solution (w∗, ρ̊∗, λ∗)
satisfying (3.9a). 56

Remark 3.2. While Turner uses a variational method, a good way to understand
the above statement is through bifurcation theory. If we imagine a curve of non-
laminar solutions bifurcating from the trivial solution (0, λcrit), then Theorem 2.1
implies that this curve arcs in the direction λ < λcrit. Effectively, we are arguing
that, in a sufficiently small neighborhood of the point of bifurcation, there is no
secondary bifurcation, and hence the linearized operator has a trivial kernel.

We are now prepared to prove a continuity result for the penalized problem.

Theorem 3.2. (Continuity for penalized problem) Let ρ̊∗ ∈ C1,α([−1, 0]) be a
stable streamline density function with ρ̊∗(0) = 1, and let a non-laminar solution
(w∗, ρ̊∗, λ∗) of Problem 2.6 satisfying (3.9) be given. There is a neighborhood
V̊ × 1 of (ρ̊∗, λ∗) in X2 × R, and a map W ∈ C1(V̊ × 1; X1) with

G(W(ρ̊, λ), ρ̊, λ) = 0, for all (ρ̊, λ) ∈ V̊ × 1.

Moreover, the set {(W(ρ̊, λ), ρ̊, λ) : (ρ̊, λ) ∈ V̊ × 1} gives the complete zero-sets
of G in a neighborhood of (w∗, ρ̊∗, λ∗) in X × R.

Proof. We claim that for any (w∗, ρ̊∗, λ∗) as above, L := Gw(w∗, ρ̊∗, λ∗) is an
isomorphism from X1 to Y . We show first that L is a Fredholm operator of index
0. Let σ " 0 and u ∈ X1 be given, and suppose that

(L − σ )u = A+ ∂ξB1 + ∂ζB2 ∈ Y.

From (3.8), we see that u is a weak solution of the divergence form elliptic problem

∇ · (ρ̊∗(D2 f )(∇w∗)∇u) − λ∗∂ζ (ρ̊∗u)+ λ∗ρ̊∗∂ζu − σu = A+ ∇ · B inS,

with a co-normal boundary condition on the upper boundary

ρ̊∗(∇∂2 f )(∇w∗) · ∇u − λ∗ρ∗u = B2 on {ζ = 0},

and a homogeneous Dirichlet condition on the lower boundary {ζ = −1}. Due to
the smoothness of w∗, D2 f (∇w∗) ∈ C0,α

per (S). On the other hand, to emphasize
the generality of this result, let us treat ρ̊∗ simply as an element of L∞. Then,
the problem above represents a divergence form elliptic equation with coefficients



Continuous Dependence on the Density for Stratified Steady Water Waves

that are bounded and measurable in the ζ -direction, and Hölder continuous in the
ξ -direction.

There exists an elliptic regularity theory for such equations due to Dong and
Kim [9]. In part, they prove that there exists a σ0 " 0 such that, for any σ " σ0,
one has a priori estimate

√
σ‖∇u‖Lrper(S) + σ‖u‖Lrper(S)
! C

(
‖A‖Lrper(S) +

√
σ‖B1‖Lrper(S) +

√
σ‖B2‖Lrper(S)

)
,

where C > 0 is independent of σ and u (cf. [9, Theorem 4 and Theorem 5]). From
this it follows that

‖u‖X1 = ‖u‖W 1,r
per (S) ! max

{
1,

1
σ

}
C‖(L − σ )u‖Y .

Because X1 is compactly embedded in Y according to Lemma 3.2, the inequality
above implies that L − σ is semi-Fredholm for any σ " 0. In fact, it is an iso-
morphism for σ " σ0. As the Fredholm index is continuous, we infer that L has
Fredholm index 0.

Now, by Lemma 3.3, it is already known thatL is injective. The argument above
then shows that it must be an isomorphism. The conclusion of the theorem follows
from an application of the implicit function theorem. 56

Finally, we observe that the solutions furnished by Theorem 3.2 inherit several
key qualitative features of w∗. Firstly, they are necessarily even about the ζ -axis.

Lemma 3.4. (Symmetry) Let (ρ̊∗, w∗, λ∗) be given satisfying the hypotheses of
Theorem 3.2, and let w = W(ρ̊, λ), for some (ρ̊, λ) ∈ V̊ × 1. Then ξ '→ w(ξ, ·)
is even.

Proof. Let T : X1 → X1 be the transformation defined by

Tw(ξ, ζ ) := w(−ξ, ζ ).

It is easy to see that the system (3.5) is invariant under T , thus w is in the zero-set
of G(·, ρ̊, λ) if and only if Tw is in the zero-set. However, Theorem 3.2 ensures the
local uniqueness of solutions. We may conclude, therefore, that Tw = w. 56

Even more importantly, each of these solutions is a wave of elevation. This will
be critical to some of the arguments in the next subsection.

Lemma 3.5. (Wave of elevation) Let (w∗, ρ̊∗, λ∗) be given as in Theorem 3.2, and
suppose additionally that w∗ is a strict wave of elevation. There exists a neighbor-
hood Z̊ ⊂ V̊ of ρ̊∗ in L∞ such that, for any ρ̊ ∈ Z̊ with ρ̊(0) = 1 and ‖ρ̊ − ρ̊∗‖L∞

sufficiently small, the corresponding solution w = W(ρ̊, λ∗) ∈ W 1,r
per (S) of (3.5)

is a wave of elevation:

w " 0 inS.
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Proof. We will argue using a maximum principle for quasilinear elliptic equations
on thin sets. Observe that w solves

∇ · (ρ̊∇a)(∇w) − λρ̊′w = 0,

if and only if v := −w solves

∇ · (ρ̊∇b)(∇v) − λρ̊′v = 0,

where

(∂1b)(p1, p2) := p1 +
p1 p2
1 − p2

-s +
(p21 + p22)p1 p2

1 − p2

-′
s

s2

(∂2b)(p1, p2) := p2 +
p22

1 − p2
-s +

1
2

p21 + p22
(1 − p2)2

-s +
(p21 + p22)p

2
2

1 − p2

-′
s

s2
.

It is easy to see, in light of Lemma 3.1, that for s sufficiently small, this defines
an elliptic problem; denote its lower ellipticity coefficient 2θ = 1+O(s). We can
also write this in the form

∇ · [ρ̊B(v,∇v)] + λρ̊wζ = 0,

with

B(ξ, ζ, z, p1, p2) := (∇b)(p1, p2) − (0, λρ̊(ζ )z).

Notice that for all (ξ, ζ, z, p1, p2) ∈ S × R+ × R2,

(p1, p2) · ρ̊(ζ )B(x, ζ, z, p1, p2) = (p1, p2) · [ρ̊(ζ )(∇b)(p1, p2)] − λρ̊(ζ )zp2

" 2θ(p21 + p22) − θp22 − 1
4θ

λ2‖ρ̊‖2L∞ z2

" θ(p21 + p22) − 1
4θ

λ2‖ρ̊‖2L∞ z2. (3.14)

Moreover,

λρ̊wζ ! λ‖ρ̊‖L∞ |wζ | ! λ‖ρ̊‖L∞ |∇w|. (3.15)

Now, choose ζ0 ∈ (−1, 0) so that

ζ0 + 1 <
1
3
π

θ2d

Lλ2‖ρ̊‖2L∞
,

and define

S+ := {(ξ, ζ ) ∈ S : ζ ∈ [ζ0, 0]}, S− := {(ξ, ζ ) ∈ S : ζ ∈ [−1, ζ0]}.

Observe that this implies the measure of S− satisfies the bound

|S−| = 2
L
d
(ζ0 + 1) <

2
3
π

θ2

λ2‖ρ̊‖2L∞
. (3.16)
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Consider first the situation in S+. Denote

m := inf
S+

w∗ > 0.

By our continuity result, we know that for ‖ρ̊ − ρ̊∗‖L∞ sufficiently small,

‖w − w∗‖C0,α(S) <
m
2
,

and hence

w " m
2

> 0, inS+. (3.17)

On the other hand, this means that v = −w satisfies

v ! 0 on ∂S−.

Finally, we observe that (3.14) and (3.15) imply that v solves a divergence formqua-
silinear elliptic problem satisfying the structural hypotheses of [23, Theorem 3.3.1];
the choice of S− made in (3.16) ensures that the thinness hypothesis of that same
theorem holds. We may therefore conclude that v ! 0 in S−, or, equivalently,

w " 0 inS−.

Taken together with (3.17), this fact completes the proof. 56
Remark 3.3. In the argument above, we have ignored the right and left boundaries
of!− when applying the maximum principle. This can be justified in several ways.
First, we may view the domain S as TL/d × [−1, 0], where TL/d = R/(L/d)Z,
so that there will indeed be no horizontal boundaries. The proof of [23, Theo-
rem 3.3.1] relies only on the Hölder and Poincaré inequalities, both of which
are valid on periodic domains. Alternatively, we can periodically extend w to
S2L := (−4L/d, 4L/d)×(−1, 0), and then reconsider the problemusing u := 0w

in place of w, where 0 = 0(ξ) is a cutoff function with

0 = 1 on [−L/d, L/d], 0 ! 0 ! 1, supp0 ⊂ [−3L/(2d), 3L/(2d)].
It is easy to then see that u will solve a quasilinear elliptic problem with the same
structure, but will vanish on the horizontal boundaries of S2L−.

3.3. A priori estimates for the penalized problem

In this section, we lay the groundwork needed to show that the solutions con-
structed in Theorem 3.2 are physical solutions, provided that ρ̊ is layer-wise smooth
and sufficiently close to ρ̊∗ in L∞.

The next several lemmas seek to control w and its derivatives in various norms
via the energy ‖∇w‖L2 . We will do this for smooth (w, ρ̊), but obtain bounds that
are independent of ρ̊′; a limiting argument will then allow us to conclude that the
same estimates hold for the densities of interest. The arguments we employ are all
quite similar to those in Turner [26,27], but we have simplified them in certain
places, and, crucially, we have shown that they are uniform in the number of layers.
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Lemma 3.6. (L2 control of ∇∂ξw) There exists s1 > 0 such that, if

(w, ρ̊, λ) ∈ H1(S) ∩ C2(S) × C1([−1, 0]) × R

is a solution of the penalized problem (3.5) for s ∈ (0, s1), then
∫

S
|∇∂ξw|2 dξ dζ ! C1

∫

S
|∂ξw|2 dξ dζ, (3.18)

for some constant C1 = C1(λ, ρ̊(0), ρ̊(−1)) > 0.

Proof. Taking ∂ξ of (3.5), we see that v := wξ satisfies





∇ · (ρ̊A(∇w)∇v) − λ∂ζ (ρ̊v)+ λρ̊∂ζ v = 0 inS
v = 0 on {ζ = −1}
ρ̊A2(∇w) · ∇v − λv = 0 on {ζ = 0},

(3.19)

where we are denoting A(∇w) := (D2a)(∇w). Taking the inner product with v

and integrating by parts further reveals that
∫

S
ρ̊∇v · [A(∇w)∇v] dξ dζ = −λ

∫

S
ρ̊′v2 dξ dζ + λ

∫

{ζ=0}
ρ̊v2 dξ .

From Lemma 3.1, we know that there exists ν = ν(s) > 0 such that

∇v · [A(∇w)∇v] " ν|∇v|2 inS.

We note that in fact, ν = ν(s) = 1 + O(s), and so for s sufficiently small, ν ∈
(1/2, 3/2).

Continuing from above, we see that

ν

∫

S
ρ̊|∇v|2 dξ dζ ! −λ

∫

S
ρ̊′v2 dξ dζ + λ

∫

{ζ=0}
ρ̊v2 dξ

= 2λ
∫

S
ρ̊v∂ζ v dξ dζ

! ν

2

∫

S
ρ̊|∂ζ v|2 dξ dζ + 2λ2

ν

∫

S
ρ̊v2 dξ dζ.

Recalling that v = ∂ξw, and that ρ̊ is nondecreasing, this immediately gives the
estimate in (3.18) with

C1 :=
4λ2ρ̊(−1)
ν2ρ̊(0)

! 16λ2ρ̊(−1)
ρ̊(0)

, for all s sufficiently small. (3.20)

This completes the proof. 56
Lemma 3.7. (Hölder continuity of ∂ξw). Let (w, ρ̊, λ) be given as in the previous
lemma. Then there exists β ∈ (0, 1) such that

‖∂ξw‖C0,β (S) ! C2 max
{
‖∇w‖2L2(S), ‖∇w‖L2(S)

}
, (3.21)

for a constant C2 = C2(λ, ρ̊(−1)) > 0.
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Proof. Denote v := ∂ξw. By the argument of the previous lemma, treating w as
known,we see that v solves a divergence form linear elliptic problem inS, with a co-
normal boundary condition on the upper boundary and a homogeneous Dirichlet
condition on the lower boundary. We may therefore appeal to elliptic regularity
theory (for example, [13, Theorem 8.29]) to conclude that for some β ∈ (0, 1),

‖v‖C0,β (S) ! C
(
‖v‖L2(S) + ‖λρ̊v‖L4(S) + ‖λρ̊∂ζ v‖L2(S)

)
,

where C = C(s, ‖ρ̊‖L2), but is independent of s for s < s1. Now clearly,

‖λρ̊v‖L4(S) ! λ‖ρ̊‖L∞(S)‖v‖L4(S) ! λ‖ρ̊‖L∞‖v‖2L2(S).

Since v = 0 on the bottom boundary, we may apply Poincaré’s inequality in the
form

‖v‖L2 ! 1
π

‖∇v‖L2 ,

and (3.18) to obtain

‖v‖C0,β (S) ! C
(
‖∇v‖L2(S) + λ‖ρ̊‖L∞‖∇v‖2L2(S) + λ‖ρ̊‖L∞‖∇v‖L2(S)

)

! C2 max

{∫

S
|∂ξw|2 dξ dζ,

[∫

S
|∂ξw|2 dξ dζ

]1/2}

.

Here C2 = C2(λ, ‖ρ̊‖L∞). This implies inequality (3.21), and hence the lemma is
complete. 56

Lemma 3.8. (L∞ control of ∂ζw) Let (w, ρ̊, λ) be given as in the previous lemma.
Then

‖wζ ‖L∞(S) !
√
2s + C3 max{‖∇w‖L2(S), ‖∇w‖2L2(S)} (3.22)

where C3 = C3(λ, ρ̊(0), ρ̊(−1)) > 0.

Proof. Let σ ∈ (0, 1) be given, and consider (x0, ζ0) ∈ S with ζ0 < −σ . Our
argument will closely follow that given in [26, Lemma 3.3] and [27, Lemma 3.4].
We work in the periodic strip

S0 := {(ξ, ζ ) ∈ S : ζ ∈ [ζ0, 0]} .
For notational simplicity, let us change coordinates to

(ξ, ζ ) '→ (ξ̂ , ζ̂ ) := (ξ − ξ0, ζ − ζ0),

which has the effect of translating (ξ0, ζ0) to the origin in the (ξ̂ , ζ̂ )-variables.
Likewise S0 becomes

Ŝ0 := {(ξ̂ , ζ̂ ) ∈ TL/d × [0, |ζ0|]} ⊃ Tk × TL/d × [0, σ ].
Putting

ρ̂(ζ̂ ) = ρ̊(ζ ), ŵ(ξ̂ , ζ̂ ) := w(ξ, ζ ),
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we find that ŵ solves the quasilinear equation

Q(∇ŵ) := ∇ · [ρ̂(∇a)(∇ŵ)] = λρ̂′ŵ, in Ŝ0.

In light of Lemma 3.5, moreover, we see that

Q(∇ŵ) ! 0, in Ŝ0.

This is the most critical usage of the fact thatw is a wave of elevation. The strategy
is now to use a comparison argument: we will construct a function u withQ(u) "
Q(w) in Ŝ0, and u ! w on ∂Ŝ0. With that in mind, consider a function u = u(ξ̂ , ζ̂ )
of the form

u(ξ̂ , ζ̂ ) = ŵ(0, 0)+U1ξ̂ +U2ζ̂ + 1
2
U3

ζ̂ 2

|ζ0|
+UβH(ξ̂ , ζ̂ ),

where U1 := (∂ξw)(ξ0, ζ0), β is given as in the previous lemma, the constants
U2,U3,Uβ ∈ R are to be determined, and H is a harmonic function of the form

H(ξ̂ , ζ̂ ) := Re ẑ1+β , ẑ := ζ̂ + i ξ̂ .

We compute that

∂ξ̂ H = (1+ β)|z|β−1[ξ̂ cos ((1+ β)θ) − ζ̂ sin ((1+ β)θ)]
∂ζ̂ H = (1+ β)|z|β−1[ζ̂ cos ((1+ β)θ) − ξ̂ sin ((1+ β)θ)],

where θ := arg ẑ. A simple estimate is thus

|∂ζ̂ H | ! (1+ β) sup
Ŝ0

[ξ̂2 + ζ̂ 2]β/2 ! (1+ β)(ζ 2
0 + (L/d)2)β/2.

We see then that, if

|U2| − |U3| − (1+ β)|Uβ |(ζ 2
0 + (L/d)2)β/2 >

√
2s, (3.23)

then
1
2
|∇u|2 " 1

2
|∂ζ̂u|2 > s2, in Ŝ0,

and thus it falls into the penalized region. Consequently,

Q(∇u) = ∇ · (ρ̂∇u) = ρ̂+u + ρ̂′∂ζ̂u = ρ̂′
(

U2 +U3
ζ̂

|ζ0|
+Uβ∂ζ̂ H

)

.

Here we have used the fact that +u = 0. From the line above, we see that u − ŵ

satisfies

Q(u) − Q(ŵ) = ρ̂′
(

U2 +U3
ζ̂

|ζ0|
+Uβ∂ζ̂ H − λw

)

" ρ̂′
(
U2 +max{0,U3} + |Uβ |(1+ β)(ζ 2

0 + (L/d)2)β/2

+ λ‖w‖L∞(S)
)
.

Since ρ̂′ ! 0, in order for this to give the desired inequality, we must have that the
parenthetical quantity is nonpositive:
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U2 +max{U3, 0} + |Uβ |(1+ β)(ζ 2
0 + (L/d)2)β/2 + λ‖w‖L∞(S) ! 0. (3.24)

The above arguments show that for any selection of U2,U3,Uβ satisfying (3.23)–
(3.24), Q(ŵ) ! Q(u) in Ŝ0. To complete the comparison principle argument, we
must ensure that u ! ŵ on the boundary of this region. First consider the lower
boundary portion {ζ̂ = 0}. From (3.21), we know that ∂ξ̂ ŵ ∈ C0,β(Ŝ0), and thus

|∂ξ̂ ŵ(ξ̂ , 0) − ∂ξ̂ ŵ(0, 0)| ! [∂ξ̂ ŵ]0,β |ξ̂ |.
On the other hand, by construction

∂ξ̂u(ξ̂ , 0) = U1 +Uβ∂ξ̂ H(ξ̂ , 0)

= ∂ξ̂ ŵ(0, 0)+Uβ(1+ β)ξ̂ |ξ̂ |β−1 cos
(
(1+ β)

π

2

)
.

Here we have used the fact that θ = arg [i ξ̂ ] = (π/2) sgn ξ̂ . Combining these
observations, we see that for ξ̂ " 0,

∂ξ̂u(ξ̂ , 0) − ∂ξ̂w(ξ̂ , 0) ! ∂ξ̂u(ξ̂ , 0) − ∂ξ̂w(0, 0)+ [∂ξ̂ ŵ]0,β |ξ̂ |β

=
[
Uβ(1+ β) cos

(
(1+ β)

π

2

)
+ [∂ξ̂ ŵ]0,β

]
|ξ̂ |β ,

whereas, for ξ̂ ! 0,

∂ξ̂u(ξ̂ , 0) − ∂ξ̂w(ξ̂ , 0) "
[
−Uβ(1+ β) cos

(
(1+ β)

π

2

)
− [∂ξ̂ ŵ]0,β

]
|ξ̂ |β .

Thus, if Uβ is selected with

Uβ "
[∂ξ̂ ŵ]0,β

(1+ β)| cos ((1+ β)π
2 )|

, (3.25)

then

∂ξ̂u " ∂ξ̂ ŵ for ξ̂ ! 0, and ∂ξ̂u ! ∂ξ̂ ŵ for ξ̂ " 0.

As u(0, 0) = w(0, 0), these imply that u ! ŵ on {ζ̂ = 0}.
Next consider the sides of Ŝ0 where ξ̂ = ±L/d. There we note,

|H(±L/d, ζ̂ )| = ((L/d)2 + ζ̂ 2)(1+β)/2
∣∣∣∣ cos

(
(1+ β) arctan

(
L2

ζ̂d2

))∣∣∣∣.

Therefore, ζ̂ '→ H(±L/d, ζ̂ ) is an increasing function, for ζ sufficiently small,
and

H(±L/d, 0) = (L/d)1+β cos
(
(1+ β)

π

2

)
< 0.

We may choose ε = ε(β, L/d) ∈ (0, σ ) such that

H(±L , ζ̂ ) ! 1
2
(L/d)1+β cos

(
(1+ β)

π

2

)
< 0, for all ζ̂ ∈ [0, ε].

Let Ŝ0ε := {(ξ̂ , ζ̂ ) ∈ Ŝ0 : ζ ∈ (0, ε)} denote the corresponding subdomain. Note
that this is precisely the reason we consider separately the cases where ζ0 < −σ
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and ζ0 " −σ : in general, ε will vanish as we approach the top of the fluid domain
{ζ = 0}.

Now, on the sides of Ŝ0ε we have

ŵ − u " ŵ − ŵ(0, 0) ∓U1
L
d

−U2ζ̂ − 1
2
U3

ζ̂ 2

|ζ0|
−UβH, on {ξ̂ = ±L/d}.

(3.26)

Since ŵ " 0 by Lemma 3.5, if we require that

U2,U3 ! 0 (3.27)

then this becomes

ŵ − u " −|U1|(L/d) −Uβh − ‖w‖L∞ , on {ξ̂ = ±L/d}.

We infer that, for

Uβ " 2k|U1| + 2‖w‖L∞

(L/d)1+β cos ((1+ β)π
2 )

, (3.28)

one has w " u on the horizontal boundary portion of Ŝ0ε.
Finally, consider the top of Ŝ0ε.

ŵ − u " ŵ − ŵ(0, 0) −U1ξ̂ −U2ε − 1
2
U3

ε2

|ζ0|
−Uβ((L/d)2 + ε2)(β+1)/2

" −2‖w‖L∞ −U2ε −Uβ((L/d)2 + ε2)(β+1)/2, on {ζ̂ = ε}.

Taking

|U2| = −U2 " 2‖w‖L∞ +Uβ((L/d)2 + ε2)(β+1)/2

ε
(3.29)

ensures that w " u on the upper boundary portion of Ŝ0ε.
Collecting these statements together, we have proved the following: letU3 := 0,

and define Uβ = Uβ(β, ‖∂ξw‖C0,β , ‖w‖L∞ , L/d) by

Uβ := max

{ [∂ξ̂ ŵ]0,β
(1+ β)| cos ((1+ β)π

2 )|
,

2(1+ L/d)‖w‖L∞

(L/d)1+β cos ((1+ β)π
2 )

}

.

This guarantees that (3.25) and (3.28) are satisfied. Set U2 = U2(β, ‖w‖L∞‖∂ξ

w‖C0,β , λ, L/d, s) to be

|U2| = −U2 := max
{√

2s + (1+ β)|Uβ |(1+ (L/d)2)β/2,

×(1+ β)|Uβ |(1+ (L/d)2)β/2 + λ‖w‖L∞ ,

×2‖w‖L∞ +Uβ((L/d)2 + ε2)(β+1)/2

ε

}
,
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ensuring that (3.23)–(3.24), (3.27), and (3.29) hold. Then u ! ŵ on ∂Ŝ0ε, while
Q(ŵ) ! 0 ! Q(u) in Ŝ0ε. Applying the quasilinear comparison principle [13,
Theorem 10.7], we conclude that u ! ŵ in !̂0ε. But then, since u(0, 0) = ŵ(0, 0),
we must have that

∂ζ̂ ŵ(0, 0) " ∂ζ̂u(0, 0) = U2.

Repeating the above argument with −ŵ in place of ŵ, we find likewise that

∂ζ̂ ŵ(0, 0) ! |U2|.

From Lemma 3.7, we see that ‖w‖C0,β is controlled by ‖∇w‖L2(S) and λ, ρ̊(0),
ρ̊(−1). Therefore,

|wζ | !
√
2s + C3 max{‖∇w‖L2(S), ‖∇w‖2L2(S)}, for ζ ∈ [−1,−σ ]

where C3 = C3(σ, λ, L/d, ρ̊(0), ρ̊(−1)).
Next consider the remainder of the domain where ζ ∈ [−σ, 0]. Let (ξ0, ζ0)

be a point in this subdomain, and change coordinates as before. We use the same
form of comparison function u, and in fact take U2 and Uβ exactly as above. Then
‖∇u‖ "

√
2s, and Q(u) " Q(ŵ) in Ŝ0. We must show that u ! w on the entire

boundary, ∂Ŝ0. For the bottom boundary portion, this works exactly as before.
Moreover, using the crude estimate

|H(±L/d, ζ̂ )| ! ((L/d)2 + ζ̂ 2)(β+1)/2, on {ξ̂ = ±L/d},
we see from (3.26) that, if

|U3| = −U3 " 2‖w‖L∞ + (L/d)|U1| + |Uβ |((L/d)2 + 1)(β+1)/2,

then

ŵ − u " 0, on {(±L/d, ζ̂ ) : ζ̂ ∈ [0, |ζ0|]}.
Lastly, on the free surface {ζ̂ = |ζ0|}, we have

ŵ − u = ŵ − ŵ(0, 0) −U1 x̂ −U2|ζ0| −
1
2
U3|ζ0| −UβH

" −2‖w‖L∞ − (L/d)|U1| + |U2|σ + 1
2
|U3|σ

−Uβ((L/d)2 + σ 2)(β+1)/2 on {ζ̂ = |ζ0|}.
We have proved, therefore, that for U2,Uβ defined as above, and with

|U3| = −U3 :=
4‖w‖L∞ + 2(L/d)‖∂ξw‖L∞ + 2|Uβ |((L/d)2 + σ 2)(β+1)/2

σ
,

it holds that u ! w on ∂!̂0. This implies, along the same lines as above, that we
have

‖∂ζw‖L∞ <
√
2s + C3 max

{
‖∇w‖L2(S), ‖∇w‖2L2(S)

}
,

where C3 = C3(λ, L/d, ρ̊(0), ρ̊(−1)). 56
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Lemma 3.9. (Control of ∇∂2ξ w). There exist s2 > 0 and γ ∈ (0, 1) such that, if

(w, ρ̊, λ) ∈ C3
per(S) × C1([−1, 0]) × R

is a solution to the penalized problem (3.5) with s ∈ (0, s2), then

‖∇∂2ξ w‖2L2(S) ! C4‖∇w‖2L2(S), (3.30)

and

‖∂2ξ w‖C0,γ (S) ! C4 max
{
‖∇w‖2L2(S), ‖∇w‖L2(S)

}
, (3.31)

where C4 = C4(λ, ρ̊(0), ρ̊(−1)).

Proof. The first statement (3.30) follows exactly as in [26, Lemma 3.4], as the
argument there does not involve any reference to the width of the layers of the
limiting rescaled streamline density. The second statement (3.31) is then proved
by repeating the arguments leading to Lemma 3.7. Notice that wξξ also solves a
linear divergence form elliptic PDE. By appealing to the same a priori estimates,
we see that it can be controlled in terms of ∇wξξ , which can then be estimated by
∇w according to the first statement. 56

In the next lemma, we improve the L∞ bound of wζ found in Lemma 3.8 by
removing its dependence on the penalization parameter s.

Lemma 3.10. (Improved L∞ control of wζ ). There exists an s3 > 0 such that, if
(w, ρ̊, λ) has the regularity dictated in Lemma 3.9 and solves the penalized problem
(3.5) for s ! s3, then,

‖wζ ‖L∞(S) ! C5

(
‖∇w‖L2(S) + ‖∇w‖2L2(S) + ‖∇w‖4L2(S)

)
(3.32)

where C5 = C5(λ, ρ̊(0), ρ̊(−d)) > 0.

Proof. First, we prove an anisotropic Sobolev-type inequality. Let w̃ be an exten-
sion of w to R2. By a proper choice of cut-off function, and using the Sobolev
extension theorem, we can arrange it so that

‖w̃‖L∞(R2) = ‖w‖L∞(S), ‖∇w̃‖L2(R2) ! C‖∇w‖L2(S), ‖∇w̃x‖L2(R2) ! C‖∇wx‖L2(S).

On the other hand we have that for any f = f (x, y)∈H1(R2)with∇ fx ∈ L2(R2),

‖ f̂ ‖L1(R2) !
(∫

R2
[1+ (ξ21 + ξ22 )(1+ ξ21 )]| f̂ |2 dξ1dξ2

)1/2

×
(∫

R2

1

1+ (ξ21 + ξ22 )(1+ ξ21 )
dξ1dξ2

)1/2

! C
(
‖ f ‖L2(R2) + ‖∇ f ‖L2(R2) + ‖∇ fx‖L2(R2)

)
.
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Applying this reasoning to w̃ and restricting the domain to S we obtain

‖w‖L∞(S) ! C
(
‖w‖L2(S) + ‖∇w‖L2(S) + ‖∇wξ‖L2(S)

)

which, by a simple use of Poincaré inequality, is reduced to

‖w‖L∞(S) ! C
(
‖∇w‖L2(S) + ‖∇wξ‖L2(S)

)
.

Then using (3.18) we conclude that

‖w‖L∞(S) ! C0‖∇w‖L2(S) (3.33)

where C0 = C0(λ, ρ̊(0), ρ̊(−d)).
Now consider w on some vertical line {ξ = t} in S. Choose two points

(t, ζ̃ ), (t, ζ̃ + d/2) ∈ S. Then from the mean value theorem, there exists some
point ζ0 ∈ (ζ̃ , ζ̃ + d/2) such that

w

(
t, ζ̃ + 1

2

)
− w(t, ζ̃ ) = 1

2
wζ (t, ζ0).

Therefore from (3.33) we know that

|wζ (t, ζ0)| ! 4C0‖∇w‖L2(S). (3.34)

Fix δ > 0 such that (t, ζ0 + δ) in S. We integrate Eq. (3.5) from (t, ζ0) to
(t, ζ0 + δ) to obtain

∫ ζ0+δ

ζ0

ρ̊(ζ )∂ξ (a1(∇w(t, ζ ))) dζ + ρ̊(ζ )a2(∇w(t, ζ ))|ζ0+δ
ζ0

= λρ̊(ζ )w(t, ζ )|ζ0+δ
ζ0

− λ

∫ ζ0+δ

ζ0

ρ̊(ζ )wζ (t, ζ ) dζ. (3.35)

Note the we are working in a periodic setting, w, and hence a(∇w), is periodic in
ξ . Therefore, for each ζ ∈ [−1, 0], there exists an ξ0 ∈ [−L/d, L/d] such that
∂ξ (a1(∇w(ξ0, ζ ))) = 0. Thus the first term on the left-hand side can be estimated
as follows:
∫ ζ0+δ

ζ0

ρ̊(ζ )∂ξ (a1(∇w(t, ζ ))) dζ =
∫ ζ0+δ

ζ0

∫ t

ξ0

ρ̊(ζ )∂2ξ (a1(∇w(ξ, ζ ))) dξ dζ

=
∫ ζ0+δ

ζ0

∫ t

ξ0

ρ̊(ζ )
[
∇a1 · ∇wξξ + (∇wξ )

T∇2a1∇wξ

]
dξ dζ.

Recall that Lemma 3.1 states that

|∇a1|, |∇2a1| ! C +O(s).
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With that in mind, we denote v = wξ , and continue the estimate to find
∣∣∣∣

∫ ζ0+δ

ζ0

ρ̊(ζ )∂ξ (a1(∇w(t, ζ ))) dζ
∣∣∣∣

! (C +O(s))‖ρ̊‖L∞

∫ ζ0+δ

ζ0

∫ t

− L
d

|∇vξ | + |∇v|2 dξdζ

! (C +O(s))‖ρ̊‖L∞
(
δ1/2‖∇vξ‖L2(S) + ‖∇v‖2L2(S)

)
. (3.36)

Then Lemma 3.9 and (3.18) furnish the bound
∣∣∣∣

∫ ζ0+δ

ζ0

ρ̊(ζ )∂ξ (a1(∇w(t, ζ ))) dζ
∣∣∣∣

! C(1+O(s))‖ρ̊‖L∞
(
δ1/2‖∇w‖L2(S) + ‖∇w‖2L2(S)

)
, (3.37)

where C = C(λ, ρ̊(0), ρ̊(−1)).
The second term on the right-hand side of (3.35) can be estimated a similar

way:
∣∣∣∣λ
∫ ζ0+δ

ζ0

ρ̊(ζ )wζ (t, ζ ) dζ
∣∣∣∣ ! C1λ‖ρ̊‖L∞δ1/2‖∇w‖L2(S). (3.38)

The first term on the right-hand side of (3.35) is controlled via (3.33):
∣∣∣λρ̊(ζ )w(t, ζ )|ζ0+δ

ζ0

∣∣∣ ! 2C0λ‖ρ̊‖L∞‖∇w‖L2(S). (3.39)

Combining (3.37)–(3.39), we infer that
∣∣∣a2(∇w(s, ζ ))|ζ0+δ

ζ0

∣∣∣ ! C(1+O(s))
[
(1+ δ1/2)‖∇w‖L2(S) + ‖∇w‖2L2(S)

]
,

(3.40)

where C = C(λ, ρ̊(0), ρ̊(−1)).
From Lemma 3.1 we see that

a2(p1, p2; s) = p2(1+O(s))+O(p21),

and hence wemay choose s0 small enough so that for s ! s0, one has |O(s)| < 1/2.
In (3.40) we are evaluating a2 at p1 = wξ (t, ζ0 + δ), and p1 = wξ (t, ζ0). But,
from (3.21) we know that

‖wξ‖L∞(S) ! C2 max{‖∇w‖2L2(S), ‖∇w‖L2(S)}.
Therefore,
∣∣wζ (t, ζ0 + δ) − wζ (t, ζ0)

∣∣ ! C
(
‖∇w‖L2(S) + ‖∇w‖2L2(S) + ‖∇w‖4L2(S)

)
,

(3.41)

where C = C(λ, ρ̊(0), ρ̊(−d)). This, together with (3.34), implies that

‖wζ ‖L∞(S) ! C
(
‖∇w‖L2(S) + ‖∇w‖2L2(S) + ‖∇w‖4L2(S)

)
.

The proof of the lemma is complete. 56
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3.4. Proof of continuous dependence for the Ter-Krikorov problem

With the a priori estimates established in Section 3.3, we are now in a position
to prove our main result of this section.

Proof of Theorem 3.1. Put Smax := min{s0, s1, s2, s3}, where si is given as in
Lemma 3.1, Lemma 3.6, Lemma 3.9, and Lemma 3.10. Let (ρ̊∗, w∗, λ∗) given as
in the statement of the theorem. Then, w∗ satisfies (3.9), and hence Theorem 3.2
may be applied.

ByLemma 3.5, there exists a neighborhood Z̊×1 of (ρ̊∗, λ∗) in L∞([−1, 0])×
R such that, for any (ρ̊, λ) ∈ Z̊ × 1 with ρ̊(−1) ! ρ̊max, W(ρ̊, λ) is a wave of
elevation. Let ρ̊ be any such density, and assume that it has the additional regularity

ρ̊ ∈ W 1,∞([−1, ζ1]) ∩ · · · ∩ W 1,∞([ζN−1, 0]).
Denote w := W(ρ̊, λ).

We may let {ρ̊n} be a sequence of C2,α([−1, 0]) rescaled streamline density
functions with

ρ̊n → ρ̊ in L∞([−1, 0]) ∩ W 1,∞([−1, ζ1]) ∩ · · · ∩ W 1,∞([ζN−1, 0]).
Without loss of generality, assume that each ρ̊n ∈ Z̊ and ρ̊n(−d) ! ρ̊max. By
elliptic regularity,

wn := W(ρ̊n, λ) ∈ C3,α
per (S), n " 1.

Furthermore, according to Lemma 3.5, wn is a wave of elevation. In other words,
each (wn, ρ̊n) satisfies the hypotheses of the lemmas in Section 3.3. In light of
Lemmas 3.7 and 3.10, and the continuity ofW , we can find a smaller neighborhood
Ů ⊂ Z̊ so that

sup
n

‖∇wn‖L∞(S) ! Smax < 1. (3.42)

Now, observe that by Lemmas 3.6 and 3.9, {∂ξwn} and {∂2ξ wn} are uniformly

bounded sequences in W 1,2
per (S). Also, since wn|{ζ=−d} = 0, we have that

∂ξwn, ∂2ξ wn = 0 on {ζ = −1}.
Aswe have seen, vn := ∂ξwn is a generalized solution of the divergence form linear
elliptic problem (3.19) with coefficients that are uniformly bounded in L∞(S).
Moreover, ∂ξwn is bounded uniformly in L∞(S) by Lemma 3.7. We can therefore
apply [20, Theorem 13.1] to conclude that, in fact, {∂ξwn} is uniformly bounded in
W 1,∞

per (S).
A similar argument can bemade for {∂2ξ wn}. Notice that ∂2ξ wn is also aW

1,2
per (S)

solution of a divergence form linear elliptic problem with coefficients bounded in
L∞(S). Likewise, {∂2ξ wn} is uniformly bounded in L∞(S) by Lemma 3.9. Again

citing [20, Theorem 13.1], we infer that {∂2ξ wn} is uniformly bounded inW 1,∞
per (S).

The most sensitive estimate is for ∂2ζwn ; in the limit, it will not be smooth over
the interfaces. Anticipating this, we restrict our attention to a single layer Si . Let
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α̃ ∈ (α, 1) be given, and put r̃ := 2/(1 − α̃). We can express ∂2ζwn in terms of the
other derivatives using the equation:

a22(∇wn)∂
2
ζwn = −a11(∇wn)∂

2
ξ wn − (a12(∇wn)+ a21(∇wn))∂ξ ∂ζwn

− ρ̊′
n

ρ̊n
a2(∇wn)+ λ

ρ̊′
n

ρ̊n
wn .

(3.43)

In light of Lemma 3.1 and (3.42),

1
a22(∇wn)

, a12(∇wn), a21(∇wn), a2(∇wn) ∈ L∞(Si ), (3.44)

and hence
∫

Si

|∂2ζwn|r̃ dξ dζ =
∫

Si

1
|a22(∇wn)|r̃

∣∣∣∣− a11(∇wn)∂
2
ξ wn

−(a12(∇wn)+ a21(∇wn))∂ξ ∂ζwn

− ρ̊′
n

ρ̊n
a2(∇wn)+ λ

ρ̊′
n

ρ̊n
wn

∣∣∣∣
r̃

dξ dζ

! C
(
‖∂ξwn‖W 1,r̃

per (Si )
+ ‖ρ̊′

n‖L∞(Si )‖wn‖W 1,r̃
per (Si )

)
.

Thus, {∂2ζwn} is bounded uniformly in Lr̃
per(Si ).

Taking another ξ -derivative of (3.43) we obtain an equation for ∂ξ ∂
2
ζwn :

a22(∇wn)∂
2
ζ ∂ξwn = − a221(∇wn)∂

2
ξ wn∂

2
ζwn − a222(∇wn)∂ξ ∂ζwn∂

2
ζwn

− a111(∇wn)(∂
2
ξ wn)

2 − a112(∇wn)∂ξ ∂ζwn∂
2
ξ wn

− a11(∇wn)∂
3
ξwn − [a12(∇wn)+ a21(∇wn)]∂2ξ ∂ζwn

− [a112(∇wn)∂
2
ξ wn + a122(∇wn)∂ξ ∂ζwn

+ a211(∇wn)∂
2
ξ wn + a212(∇wn)∂ξ ∂ζwn]∂2ξ ∂ζwn

− ρ̊′
n

ρ̊n
[a21(∇wn)∂

2
ξ wn + a22(∇wn)∂ξ ∂ζwn] + λ

ρ̊′
n

ρ̊n
∂ξwn .

(3.45)

From Lemma 3.1, (3.42), and (3.44), we see that

ai jk(∇wn) ∈ L∞(S). (3.46)

Moreover, our analysis up to now confirms that

{∂ζwn}, {∂2ξ wn}, {∂ξ ∂ζwn}, {∂2ζ wn}, {∂3ξ wn}, {∂2ξ ∂ζwn} uniformly bounded in L∞(Si ).

This, along with (3.46), allows us to conclude from (3.45) that {∂ξ ∂
2
ζwn} is likewise

bounded uniformly in L∞(Si ), for each strip Si .
Now, from Morrey’s inequality, we have the following chain of inclusions

Wk,∞
per (Si ) ⊂ Wk,r̃

per (Si ) ⊂ Ck−1,α̃
per (S i ) ⊂⊂ Ck−1,α

per (Si ), k " 1.
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Together with the arguments in the previous several paragraphs, this implies that
{wn} and {∂ξwn} are uniformly bounded inC1,α̃

per (S1)∩· · ·∩C1,α̃
per (SN ). Immediately,

then, we have

w, wξ ∈ C1,α
per (S1) ∩ · · · ∩ C1,α

per (SN ). (3.47)

Furthermore, (3.42) allows us to conclude that ‖∇w‖L∞(S) ! Smax. Thus w is a
solution of the physical problem, Problem 2.6.

Only one minor task remains: confirming thatw ∈ W 2,r
per (Si ), for i = 1, . . . , N .

Because wξ ∈ C1,α
per (S), the only potential problem lies in wζ ζ . However, as ∇w ∈

C0,α
per (Si ), (3.43) shows that the distributional derivative wζ ζ ∈ D′

per(Si ) can be

identified with an L∞(Si ) function. Thusw ∈ W 2,r
per (Si ), and the proof is complete.

56

Remark 3.4. From the proof above, we see that, in fact w ∈ W 2,∞(Si ), for each
layer Si .

4. Proof of the Main Result

In this section, we state and prove our main theorem—the rigorous version of
the statements in Section 1.2. We have already accomplished the lion’s share of
the work in the previous section: Theorem 3.1 essentially proves statement (A).
What remains is to transition back to the original formulation, and also to prove
statements (B) and (C).

To state things concisely, we define the set of stable streamline density functions

D :=
{
ρ ∈ L∞([p0, 0]) : ρ > 0, ρ(0) = 1, ρ is non-increasing, and

ρ ∈ W 1,∞([p0, p1]) ∩ · · · ∩ W 1,∞([pN−1, 0]), for some p1, . . . , pN−1

}
.

It is easy to see that this is a convex subset of L∞([p0, 0]).
At last, the result is the following.

Theorem 4.1. (Main theorem). Fix a Hölder exponent α ∈ (0, 1), and put r :=
2/(1 − α). Choose a pseudo volumetric mass flux p0 < 0 and ocean depth d > 0.
Let ρ∗ ∈ C1,α([−p0, 0]) be a stably stratified streamline density function. Choose a
wave speed c∗ > ccrit(ρ∗). There exists aminimal period Lmin and amplitude bound
Smax such that, for any (u∗, v∗, #∗, P∗, η∗) solving Problem 1.1 with streamline
density ρ∗ that is (i) periodic localized near the crest, with period L > Lmin; (ii) a
wave of strict elevation; and (iii) sufficiently small-amplitude,

∣∣∣∣
v∗

c∗ − u∗

∣∣∣∣ ,
∣∣∣∣

u∗
c − u∗

∣∣∣∣ < Smax in!∗, (4.1)

there exists a neighborhood U of ρ∗ in L∞([p0, 0]) such that the following state-
ments hold.



Robin Ming Chen & Samuel Walsh

(a) There exists a Lipschitz continuous mapping

H : D ∩ U → W 1,r
per (R) ⊂ C0,α

per (R)

such that H(ρ̊∗) = h∗, the height function corresponding to the fixed flow
(u∗, v∗, #∗, P∗, η∗), and, for each ρ ∈ D ∩U ,H(ρ) solves the height equation
Problem 2.5 with streamline density ρ. Also, H(ρ) is even in q and a wave of
elevation. Lastly, the corresponding wave speed c obeys the identity

c − c∗ = 1
d

∫ 0

p0

ρ∗ − ρ

ρ
√

ρ∗ + ρ∗
√

ρ
ds = O(‖ρ − ρ∗‖L∞). (4.2)

(b) Fix ρ ∈ D ∩ U , and let I ⊂⊂ [p0, 0]\{p1, . . . , pN−1} be a connected with
ρ ∈ C1,α(I ). Then

‖H(ρ) − h∗‖C1,α
per (R×I ) ! C1

(
‖ρ − ρ∗‖L∞([p0,0]) + ‖ρ − ρ∗‖C1,α(I )

)
,

where C1 > 0 depends on |I |, ρ∗, and h∗.
(c) Let I and ρ ∈ D ∩ U be given as in (b), and let P denote the pressure for the

wave with height function H(ρ). Then,

‖P − P∗‖C0,α
per (R×I ) ! C2

(
‖ρ − ρ∗‖L∞([p0,0]) + ‖ρ − ρ∗‖C1,α(I )

)
,

where C2 > 0 depends on |I |, ρ∗, and h∗.

Proof. Let (u∗, v∗, #∗, P∗, η∗), c∗, andρ∗ satisfying the abovehypotheses begiven;
let (w∗, ρ̊∗, λ∗) be the corresponding objects in the Ter-Krikorov formulation. Note
that hypothesis (iii) says that ‖∇w∗‖L∞ < Smax, taking into account the change of
variables identities. We may then apply Theorem 3.1, and also let a neighborhood
Ů × 1 of (ρ̊∗, λ∗) in L∞([−1, 0]) × R, and a mapping W ∈ C1(Ů × 1; X1) be
given as in Theorem 3.2.

This gives solutions to the Ter-Krikorov problem. To translate them back to the
height equation formulation, we consider the mappings c : D → R, l : D → R,
and z : D → W 1,∞([p0, 0]) defined by

c(ρ) := 1
d

∫ 0

p0

ds√
ρ(s)

, l(ρ) := gd
c(ρ)2

,

and

z(ρ)(p) := 1
c(ρ)d

∫ p

p0

ds√
ρ(s)

− 1.

Notice that z(ρ)(·) is monotonic and surjective, and is thus a homeomorphism
from [p0, 0] to [−1, 0]. It is likewise easy to confirm that z, l, and c are Lipschitz
continuous in ρ.

With these facts in mind, we observe that for any ρ ∈ D , the corresponding
rescaled streamline density function ρ̊ satisfies the identity ρ = ρ̊ ◦z(ρ). Similarly,
the Richardson number is found by setting λ = l(ρ). We may thus recover the
neighborhood U of ρ∗ by taking it to be the pre-image of Ů under z. Likewise, H
is defined by pulling back W:
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[H(ρ)](q, p) :=
[
W
(
ρ̊, λ

)] (q
d
, z(p)

)
, for all (q, p) ∈ R.

The regularity statements follow from Theorem 3.1 and the equivalence of the
formulations. Notice that, because we are restricting the domain to D which is
merely convex, H is merely Lipschitz, not differentiable. The fact that H(ρ) is
even and a wave of elevation is a consequence of Lemmas 3.4 and 3.5. Lastly, (4.2)
simply comes from evaluating c(ρ) − c(ρ∗). The proof of (a) is complete.

For (b), it is easier to work first in the Ter-Krikorov formulation. Let I be given
as above and put J := z(ρ)(I ), and T := [−L/d, L/d]× J . By definition, T ⊂ Si ,
for some layer Si .

Denote w := W(ρ, λ), and u := w∗ − w. Then u satisfies the following PDE

∇ · (M∇u) − λρ̊′u = ∇ · ([ρ̊ − ρ̊∗]F(∇w∗)) (4.3)

+[λ∗ − λ]ρ̊∗w∗ − λ[ρ̊′ − ρ̊′
∗]w∗ in T, (4.4)

where F is defined as in (2.20), and M = (Mi j ) is the self-adjoint matrix:

M11 =
ρ̊

1+ ∂ζw∗

M12 = M21=−1
2

ρ̊

(1+∂ζw∗)2(1+∂ζw)2

[
(1+ ∂ζ (w + w∗)+ (∂ζw)(∂ζw∗))∂ξw

+ 1
2
(1+ ∂ζw)2∂ξ (w + w∗)

]

M22 =
ρ̊

(1+∂ζw)2(1+∂ζw∗)2

[
1+(∂ξw)2+ 1

2
(1 − 2∂ζw+(∂ξw)2)∂ζ (w+w∗)

]
.

An elementary but tedious calculation confirms that M is positive definite. By the
regularity of w and w∗, the entries of M are of class C0,α in T. Next consider the
terms occurring on the right-hand side of (4.4). By the equation satisfied by w∗,
we have that

∇ · F(∇w∗) =
1
ρ̊

[
−ρ̊′

∗F2(∇w∗)+ λ∗ρ̊′
∗w
]

∈ C0,α
per (T).

The other terms are likewise of class C0,α , taking into account the regularity of ρ,
ρ∗, w, and w∗ in Si . A similar computation shows that on {ζ = 0}, a co-normal
boundary condition is satisfied. Moreover, since u = 0 on the lower boundary
{ζ = −1}, we may pose a homogeneous Dirichlet condition there. Applying a
standard Schauder-type estimate (cf., for example, [8, Theorem 3]) yields

‖w − w∗‖C1,α(T) ! C
(
‖w − w∗‖C0(T) + ‖(ρ̊ − ρ̊∗)∇ · F(∇w∗)‖C0,α

per (T)

+ |λ − λ∗|‖ρ∗w∗‖C1,α(T) + ‖(ρ̊′ − ρ̊′
∗)

×
(
λw∗ − F2(∇w∗)‖C0,α

per (T)

))

! C
(
‖ρ̊ − ρ̊∗‖L∞([p0,0]) + ‖ρ̊ − ρ̊∗‖C1,α(J )

)
.

Part (b) follows now by simply re-expressing this in terms of h∗ and H(ρ, λ).
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Finally, to prove the pressure convergence in part (c), we recall that from
Bernoulli’s theorem and the change of variable identities,

P(q, p) =
∑

i

Qi

2
1Ri + Patm −

1+ h2q
2h2p

− gρh + B(p). (4.5)

For p ∈ [p j , 0),

B(p) − B∗(p) =
(
1
2
c2 − gd

)
(ρ(p) − ρ∗(p))+

1
2
(c2 − c2∗)ρ∗(p)

+ g
∫ p

0
(ρ′ − ρ′

∗)h̊ + ρ′
∗(h̊ − h̊∗) ds

=
(
1
2
c2 − gd

)
(ρ(p) − ρ∗(p))+

1
2
(c2 − c2∗)ρ∗(p)

+ g
∑

i! j

[
([[ρ]]i − [[ρ∗]]i )h̊(pi )+ [[ρ∗]]i (h̊(pi ) − h̊∗(pi ))

]

− g
∫ p

0

[
(ρ − ρ∗)

1
c
√

ρ
+ ρ∗

(
1

c
√

ρ
− 1

c∗
√

ρ∗

)]
ds.

Hence

‖B − B∗‖C0,α(I ) ! C
(
‖ρ − ρ∗‖L∞([p0,0]) + ‖ρ − ρ∗‖C0,α(I )

)
.

Now, applying part (b) to (4.5), we get the desired estimate for P − P∗. 56

Appendix A: Proof of formulation equivalence

We provide, in this appendix, the proof that the various formulations of the
steady wave problem are indeed equivalent. The arguments here closely follow
those of Constantin and Strauss [8]. The main task it to generalize their work
to allow for multiple layers, as well as heterogeneous density.

We mention that the regularity statements in these results are sub-optimal. We
are ultimately interested in dealing with Hölder continuous functions—we work in
Sobolev spaces in order to draw on certain key results in the literature of elliptic
equations, but this compels us to assume more regularity than should be necessary.
For example, to ensure that ψ is of class C0,α(!), we are assuming the stronger
statement that it is in W 1,r , and then appealing to Sobolev embedding.

In the constant density regime, this problem was resolved by Varvaruca and
Zarnescu [28]. They show that, for α ∈ (1/3, 1], an equivalence between the
Eulerian formulation, stream function formulation, and height equation holdswork-
ing exclusively in Hölder continuous spaces with exponent α. This is a rather deep
result: the appearance of 1/3 is connected to the famous Onsager conjecture. It is
our suspicion that a generalization of Varvaruca and Zarnescu’s argument would
apply to the stratified regime, but that is beyond the scope of our present ambitions.



Continuous Dependence on the Density for Stratified Steady Water Waves

We begin with a technical lemma which essentially states that, starting from the
weak Euler formulation, the pseudo relative stream function and Bernoulli function
are each well-defined and have the stated regularity.

Lemma A.1. (Chain rule and composition in Sobolev spaces) Let α ∈ (0, 1) be
given and put r := 2/(1 − α).

(i) Suppose that there exists a solution (u, v, P, #, η, η1, . . . , ηN−1) to the weak
Euler problem as detailed in the statement of Problem 1.1. Then there exists
a

ψ ∈ W 1,r
per (!) ∩ W 2,r

per (!1) ∩ · · · ∩ W 2,r
per (!N ) (A.1)

satisfying (1.7), (1.8), (2.4c), and (2.4e). Moreover, if F : [p0, 0] → R has
the regularity

F ∈ Lr ([p0, 0]) ∩ W 1,r ([p0, p1]) ∩ · · · ∩ W 1,r ([pN−1, p0]), (A.2)

then F ◦ (−ψ) ∈ Lr
per(!), F ◦ (−ψ) ∈ W 1,r

per (!i ), and the chain rule holds in
the interior of each !i :

∂x F(−ψ) = −F ′(−ψ)ψx , ∂y F(−ψ) = −F ′(−ψ)ψy . (A.3)

(ii) Suppose thatψ has the regularity given in (A.1), and solves the Stream-function
problem (2.4), for some (Q,β, ρ, η, η1, . . . , ηN−1) with the regularity speci-
fied in Problem 2.4. Then for every F as in (A.2), the same conclusion holds
as in part (i): F ◦ (−ψ) ∈ Lr

per(!), F ◦ (−ψ) ∈ W 1,r
per (!i ), and the chain rule

(A.3) applies in the interior of each !i .

Proof. (i) Suppose thatwe have a solution to theweakEuler problem. The choice of
r wasmade so that wemay exploit the embeddingW 1,r

per (R2) ⊂ Cα
per(R2). Consider

the restriction of the velocity field and density to a single layer: ui := u|!i , vi :=
v|!i , #|i := #|!i . As η, ηi ∈ C1,α , the boundary of !i is better than Lipschitz,
allowing us to extend ui , vi , and #i to functions in W 1,r

per (R2). Indeed, we may do
this in such a way that the extensions are compactly supported in the y-variable. It
follows by Morrey’s inequality that the extensions are all of class Cα , hence their
restrictions to!i are inCα

per(!i ). In particular this implies that they are all L∞(!i ).
By Hölder’s inequality,

√
#(u − c, v) ∈ W 1,r (!i ), thus in each layer (1.7)

defines a function ψi ∈ W 2,r
per (!i ) up to a constant. Since the interfaces η, ηi

are Lipschitz, the traces of the ψi are well-defined. Moreover, (1.4a), (1.4b), and
(1.4e) ensure that the traces are constants. It follows that we may take ψN = 0
on {y = η(x)}, and that there is a unique choice of the remaining constants such
that ψi = ψ |!i , for a function ψ ∈ C0

per(!); in fact, ψ is globally defined by the
formula:

ψ(x, y) = −
∫ η(x)

y

√
#(x, z)[u(x, z) − c] dz, in !.
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Consequently, the trace of ψ on {y = −d} is −p0, where p0 is defined as in (1.9).
It is simple to show that the formula above implies that ψ ∈ C0,1

per (!), and so in
particular ψ ∈ W 1,r

per (!).
For the second statement in part (i), it is most convenient to transition to the

height equation formulation. Recalling the change of variables in [29], we have that
h defined by (2.5) satisfies

hq = v

u − c
, h p = 1√

#(c − u)
, v = − hq

h p
, u = c − 1√

#h p
,

and

∂x = ∂q − hq
h p

∂p, ∂y =
1
h p

∂p.

From these statements it is obvious that h ∈ W 1,r
per (R)∩W 2,r

per (R1)∩· · ·∩W 2,r
per (RN ).

Let F be given as in (A.2). First note that F ◦ (−ψ) ∈ Lr
per(!), since ψ ∈

C0,α(!). Letting ϕ ∈ Dper(!i ) be a (periodic) test function, we calculate that
∫∫

!i

ϕ∂x F(−ψ) dy dx =
∫ L

−L

∫ ηi (x)

ηi−1(x)
ϕ∂x F(−ψ) dy dx

= −
∫ L

−L

∫ ηi (x)

ηi−1(x)
F(−ψ)∂xϕ dy dx

= −
∫ L

−L

∫ pi

pi−1

h pF(p)∂xϕ dp dq

= −
∫∫

Ri

h p F(∂q − hqh−1
p ∂p)ϕ dp dq

= −
∫∫

Ri

h p Fϕq dp dq +
∫∫

R
Fhqϕp dp dq

= −
∫∫

Ri

Fphqϕ dp dq

=
∫∫

!i

F ′(−ψ)hqh−1
p ϕ dy dx =

∫∫

!i

F ′(−ψ)ψxϕ dy dx .

We have therefore shown that

∂x F(−ψ) = −F ′(−ψ)ψx ∈ Lr
per(!i ).

Again, letting ϕ ∈ Dper(!i ) be given, we compute

∫∫

!i

ϕ∂y F(−ψ) dy dx =
∫ L

−L

∫ ηi (x)

ηi−1(x)
ϕ∂y F(−ψ) dy dx

= −
∫ L

−L

∫ ηi (x)

ηi−1(x)
∂yϕF(−ψ) dy dx

= −
∫∫

Ri

h pF(p)∂yϕ dp dq = −
∫∫

Ri

Fϕp dp dq
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=
∫∫

Ri

Fpϕ dp dq =
∫∫

!i

F ′(−ψ)ψyϕ dy dx .

This identity means that

∂y F(−ψ) = −F ′(−ψ)ψy ∈ Lr
per(!i ).

Together with our last computation, this shows that F ◦(−ψ) ∈ W 1,r
per (!i ), for each

i , and the chain rule (A.3) indeed holds for F ◦ (−ψ).
(ii) Now assume that we are given the stream function ψ directly. We may

again consider the Dubriel-Jacotin variables, and define h(q, p) = y + d. The
corresponding change of variable rules are now

hq = ψx

ψy
, h p = − 1

ψy
, ∂x = ∂q − hq

h p
∂p, ∂y =

1
h p

∂p.

It follows directly that h ∈ W 2,r
per (Ri ). In fact, all of the relevant computations done

in part (i) hold verbatim. So an identical proof shows that, for all F as in (A.2),
F ◦ (−ψ) ∈ Lr

per(!), moreover, in each layer F ◦ (−ψ) ∈ W 1,r
per (!i ), and the chain

rule (A.3) holds. 56

Lemma A.2. (Equivalence) Let α ∈ (0, 1) be given and put r := 2/(1 − α). The
following statements are equivalent.

(i) There exists a solution (u, v, P, #, η, η1, . . . , ηN−1) to the weak Euler prob-
lem, as stated in Problem 1.1.

(ii) There exists a solution (ψ, η, η1, . . . , ηN−1, Q) to the weak stream function
problem, as stated in Problem 2.1, for some β, and ρ satisfying (1.11)–(1.12).

(iii) There exists a solution (h, Q) to the height equation problem, as stated in
Problem 2.2, for some B, and ρ satisfying (1.11)–(1.12).

Proof. Suppose that (i) holds, meaning that we have a solution with the stated
regularity to the Weak Euler problem. In Lemma A.1 we argued that this allows us
to take u|!i , v|!i , #|!i ∈ Cα

per(!i ). We also know that the pseudo stream function
is well-defined, as is the Dubreil-Jacotin transformation.

First we confirm the existence of the streamline density function. Fix a layer
!i . Observe that

(u − c)∂q# = (u − c)
(

∂x +
hq
h p

∂p

)
# = (u − c)(∂x + hq∂y)#

= ((u − c)∂x + v∂y)# = 0,

by (1.1b). From (1.6), and the fact that (c − u)−1 ∈ W 1,r
per (!i ), it follows that

∂q# = 0, that is,#|!i depends only on p. Since the boundary of ∂!i are streamlines,
we may therefore define ρ(p) := #(x, y) for p ∈ [p0, 0]\{p1, . . . , pN−1}. As
# ∈ L∞(!), we have ρ ∈ L∞([p0, 0]). Moreover, the change of variables gives

∂qρ = 0, ∂pρ = 1√
#(c − u)

∂x#.
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The no stagnation condition (1.6) and positivity of ρ (1.11), together with the fact
that u and ρ are in Cα(!i ), imply that [√#(c − u)]−1 ∈ L∞(!i ). This proves
ρ ∈ W 1,r ([pi−1, pi ]).

Next, letting E be the quantity in (1.13), we deduce that E does not depend on
q. Let g := (0, g). Given the regularity of u, v, #, P , it follows that E ∈ W 1,r

per (!i ),
for each layer !i . Denoting ∇ := ∇(x,y), and working in !i , we compute

∇E = ∇P + 1
2
((u − c)2 + v2)∇# + #(−cux + uux + vvx ,−cuy + uuy + vvy)

+#g + gy∇#

= ((
√

#(u − c))y − (
√

#v)x )(−
√

#v,
√

#(u − c))+ gy∇#, (A.4)

in light of (1.1c)–(1.1d). Combining this with the change of variable formulas, we
see that

(u − c)∂q E = (u − c, v) · ∇E

= ((
√

#(u − c))y − (
√

#v)x ){−
√

#(u − c)v + √
#v(u − c)}

+ gy(u − c, v) · ∇#

= gy(u − c)∂q# = 0.

Hence E is independent ofq in each layer.As the layers themselves have streamlines
for boundaries, we may therefore introduce a function

B ∈ Lr ([p0, 0]) ∩ W 1,r ([p0, p1]) ∩ · · · ∩ W 1,r ([pN−1, 0])
such that E(x, y) = B(p) = B(−ψ(x, y)), and define β ∈ Lr ([0, |p0|]) ∩
W 1,r ((pi−1, pi )) by

β(−p)+
N−1∑

i=1

[[B]]i δpi = B ′(p).

Here δpi is theDirac δmeasure centered on pi = −ψ |{y=ηi (x)}. The last preliminary
step is to show that the functions ρ ◦ (−ψ) and B ◦ (−ψ) are inW 1,r

per (!i ) and obey
the chain rule. This follows directly from Lemma A.1, taking F = B and F = ρ.

With these facts established, we can begin proving the equivalences of the three
formulations, beginning with (i) implies (ii). From Lemma A.1, we may introduce
ψ ∈ W 2,r

per (!) such that (1.7), (1.8), (2.4c), and (2.4e) hold.Wemust now show that
ψ satisfies Yih’s equation (2.4a) and the Bernoulli condition (2.4b), where ρ and
β are the streamline density function and Bernoulli function whose existence we
proved earlier, and Q, Qi are defined as in (2.2) and (2.3). The Bernoulli condition
follows directly from the definitions. To obtain Yih’s equation, let us return to the
computation of ∇E in (A.4). Written in terms of ψ , this identity becomes

∇E = (+ψ)∇ψ + gy∇#, in
⋃

i

!i .

Taking the inner product with ∇ψ , this simplifies to the scalar equation

∇E · ∇ψ = |∇ψ |2+ψ + gy∇# · ∇ψ. (A.5)
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Fix a layer !i . Using the fact that E(x, y) = B(−ψ(x, y)) in !i , we compute

∇E = −B ′(−ψ)∇ψ, ∇# = −ρ′(−ψ)∇ψ.

Herewe havemade use of the chain rule, whose validity in this settingwe confirmed
earlier. Inserting this into (A.5) reveals

−|∇ψ |2B ′(−ψ) = |∇ψ |2(+ψ − gyρ′(−ψ)).

By the no stagnation condition, |∇ψ |2 > 0, and hence the line above reduces to
Yih’s equation (2.4a) upon dividing by |∇ψ |2 and recalling the definition of β in
(1.14). This completes the proof of (i) implies (ii).

W next show (ii) implies (i). Let β ∈ Lr ([0, |p0|]), ρ ∈ L1,r ([p0, 0]) with
ρ ∈ W 1,r ([pi−1, pi ]) for each i = 1, . . . , N , and satisfying (1.11)–(1.12). Suppose
that (ψ, η, η1, . . . , ηN−1, Q, Q1, . . . , QN−1) solves Problem 2.1 for this choice of
Bernoulli function and streamline density function. We can recover the Eulerian
density # by taking # = ρ ◦ (−ψ), which has the correct regularity by Lemma A.1.
The velocity field in each layer is found by taking

(u − c, v) = ∇⊥ψ√
ρ(−ψ)

∈ W 1,r
per (!i ).

Finally, to obtain the pressure we use Bernoulli’s theorem. Let

P :=
∑

i

Qi

2
1!i + Patm − 1

2
|∇ψ |2 − gρ(−ψ)(y + d)+ B(−ψ).

It is easy to verify that (u, v, #, P) thus defined satisfy the weak Euler equation
in each layer !i ; it remains only to check that the pressure is continuous in the
entire fluid domain. This is simply a consequence of the transmission boundary
conditions (2.4f).

Next we prove that (ii) implies (iii). This is easy: since (i) and (ii) are equivalent,
we may introduce h as before, and the height equation follows from rewriting Yih’s
equation in the new variables (q, p) (cf. [29]).

The last step is to show that (iii) implies (ii). Let (h, Q, Q1, . . . , QN−1) solve
Problem 2.2 for some choice of ρ and B. We seek to reconstruct the stream function
and the fluid domain. The latter is simple. For x ∈ R, define

η(x) := h(x, 0) − d. (A.6)

Because h ∈ W 2,r (RN ) ⊂ C1,α(RN ), the trace is well-defined, and η is of class
C1,α
per (R). The fluid domain is thus ! := {(x, y) ∈ R2 : −d < y < η(x)}.
Now consider the stream function. We will work from the top layer down.

Define F ∈ Cα(RN ) by F = h−1
p (note that the regularity of F here is once

again a consequence of the embedding Cα(R) ⊂ W 1,r (R), and the positivity of h p
condition (2.6)). By Peano’s theorem, for each x0 ∈ R, we may let ψ(x0, ·) be the
solution of the ODE

ψy(x0, y) = −F(x0,−ψ(x0, y)), ψy(x0, η(x0)) = 0, (A.7)
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which is guaranteed to exist for y in some interval I (x0) := [ymin(x0), η(x0)]. In
fact, if y(x0) is finite for some x0, then |ψ(x0, y)| → ∞ as y ↘ ymin(x0). By (2.6),
we know that F is bounded strictly away from zero, and hence ψy(x0, ·) is strictly
positive on I (x0). From the boundary conditions, this implies that there exists some
yN−1(x0) ∈ I (x0) such that

ψ(x0, yN−1(x0)) = −pN−1.

Fix y ∈ I0(x0), and differentiate the quantity y+ d − h(x,−ψ(x0, y)) in y to find

∂y [y + d − h(x0,−ψ(x0, y))] = 1+ h p(x0,−ψ(x0, y))ψy

= 1 − ψy

F(x0,−ψ(x0, y))
= 0.

Evaluated on the free surface

(y + d − h(x0,−ψ(x0, y))) |y=η(x0) = η(x0)+ d − h(x0, 0) = 0,

by the definition of η and ψ . Hence

y = h(x,−ψ(x, y)) − d, in {(x, y) ∈ R2 : y ∈ I (x)}, (A.8)

and, in particular,

yN−1(x) = h(x,−ψ(x, yN−1(x))) − d = h(x, p1) − d =: ηN−1(x). (A.9)

Thus we have reconstructed ψ and the entire upper layer !N . Notice that the
periodicity of h ensures that ψ and ηN−1 are 2L-periodic in x .

Peano’s theorem does not imply uniqueness of the solution ψ(x0, ·), so an
additional argument is required to guarantee that ψ depends smoothly on x . Fix
y0 so that y0 ∈ I (x) for x in a sufficiently small neighborhood U of x0 (which
is permissible since η is continuous). Since h p > 0, we may apply the Implicit
Function Theorem to the equation

y0 = h(x, p) − d, x ∈ U ,

to obtain a unique C1,α-parameterization (x, p(x)) of all solutions near the point
(x0, y0). In light of (A.8), we see that p(x) = −ψ(x, y0). Patching these solutions
together using uniqueness gives a solution ψ ∈ C1,α(!N ) to

ψy(x, y) = −F(x,−ψ(x, y)) = 1
h p(x,−ψ(x, y))

. (A.10)

Moreover, since h p is 2L-periodic in x , the uniqueness of solutions implies that
ψ is 2L-periodic in x , that is it is in C1,α

per (!N ). Also, we see from (A.9) that
ηN−1 ∈ C1,α

per (R).
It remains to prove that ψ solves Yih’s equation (2.4a), (2.4b) in !N . Note

that Lemma A.1 guarantees that (2.4c) and (2.4e) are satisfied. In (A.8), the basic
relationship betweenψ and h was reestablished. We will use this to find the change
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of variables formulas that allow us to transform from (2.8a) back to (2.4a). For
instance, differentiating (A.8) in x yields

0 = hq(x,−ψ(x, y)) − h p(x,−ψ(x, y))ψx (x, y).

Since h p > 0, we can rearrange terms to see

ψx (x, y) =
hq(x,−ψ(x, y))
h p(x,−ψ(x, y))

. (A.11)

Byconstruction,ψ ∈ C1,α
per (!N ), and thus the right-hand side above is inW

1,r
per (!N ).

On the other hand, in (A.10), the composition on the right-hand side is clearly in
W 1,r

per (!N ), and hence ψ ∈ W 2,r
per (!N ).

Differentiating identities (A.10), (A.11), we find

ψyy(x, y) = −h pp(x,−ψ(x, y))ψy(x, y)
h p(x,−ψ(x, y))2

= h pp(x,−ψ(x, y))
h p(x,−ψ(x, y))3

=
[

∂p

(

− 1
2h2p

)] ∣∣∣∣
(x,−ψ(x,y))

ψxx (x, y) =
hqq (x,−ψ(x, y)) − hqp(x,−ψ(x, y))ψx (x, y)

h p(x,−ψ(x, y))

− hq (x,−ψ(x, y))
[
hqp(x,−ψ(x, y)) − h pp(x,−ψ(x, y))ψx (x, y)

]

h p(x,−ψ(x, y))2

= −hqq (x,−ψ(x, y))hq (x,−ψ(x, y))
h p(x,−ψ(x, y))2

+ hq (x,−ψ(x, y))2h p p(x,−ψ(x, y))
h p(x,−ψ(x, y))3

× hqq (x,−ψ(x, y))h p(x,−ψ(x, y))2 − hq (x,−ψ(x, y))hqp(x,−ψ(x, y))
h p(x,−ψ(x, y))2

=
[

∂p

(

−
h2q
2h2p

)

+ ∂q

(
hq
h p

)] ∣∣∣∣
(x,−ψ(x,y))

.

Since h solves (2.8a), the computations above can be combined to obtain

+ψ(x, y) = [g(h − d)ρp − Bp]|(x,−ψ(x,y)) = gyρ′(−ψ(x, y)) − β(ψ(x, y)).

Here we are defining β ∈ Lr [0, |p0|] by (2.8d) and using (A.8) to equate y and
h − d evaluated at (x,−ψ(x, y)). Thus ψ satisfies (2.4a).

Finally, to show (2.4b), we note that by(A.10) and (A.11),

1+ hq(x,−ψ(x, y))2

h p(x,−ψ(x, y))2
= |∇ψ(x, y)|2.

Thus (2.4b) is an immediate consequence of (2.8b).
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Up to this point we have proved that ψ has the correct regularity and solves
Yih’s equation in the upper layer!N . Repeating this procedure, we can reconstruct
the lower layers !1, . . . ,!N−1, and extend ψ so that ψ ∈ C0

per(!) and ψ |!i ∈
W 2,r

per (!i ), for each i = 1, . . . , N . The pressure condition (2.4b) will, as above, be
a consequence of (2.8e). Lastly, observe that since ψ ∈ Cper(!), ∇ψ ∈ Lr

per(!).
Thus ψ exhibits the required smoothness over the interior interfaces.

Lemma A.3. (Equivalence of height equation and Ter-Krikorov) Let ρ be given
with the regularity

ρ ∈ L∞([p0, 0]) ∩ W 1,r ([p0, p1]) ∩ · · · ∩ W 1,r ([pN−1, 0])

and such that (1.11)–(1.12) hold. Define h̊ according to (2.10). Then

h̊ ∈ W 1,r
per ([p0, 0]) ∩ W 2,r

per ([p0, p1]) ∩ · · · ∩ W 2,r
per ([pN−1, 0]).

Moreover, the following statements are equivalent:

(i) There exists a solution (ψ, η, η1, . . . , ηN−1) to the localized stream function
problem, as stated in Problem 2.4, for this choice of ρ.

(ii) There exists a solution h to the localized height equation problem, as stated
in Problem 2.5, for this choice of ρ.

(iii) There exists a solution w to the Ter-Krikorov problem, as stated in Problem
2.6, for the rescaled streamline density ρ̊ given by

ρ̊(ζ ) := ρ(p(ζ )),

where ζ '→ p(ζ ) is the inverse of p '→ h̊(p) − d.

Proof. Given the regularity of ρ, the stated regularity of h̊ is obvious. The equiva-
lence of (i) and (ii) is implied byLemmaA.2. To show that (ii) and (iii) are equivalent
is relatively straightforward, particularly compared to the previous lemma. More-
over, this fact is implicit in the works of, for example, Turner [26,27], so we omit
the details. 56
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