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Abstract. In this paper, the three-dimensional stochastic nonhomogeneous incompressible
Navier-Stokes equations driven by Lévy processes consisting of the Brownian motion, the

compensated Poisson random measure and the Poisson random measure are considered in

a bounded domain. We obtain the existence of martingale solutions. The construction of
the solution is based on the classical Galerkin approximation method, the stopping times, the

stochastic compactness method and the Jakubowski-Skorokhod theorem.

1. Introduction

Lévy processes were introduced by Lévy in 1937. They are often applied to the term structure
and credit risk areas. They also have many important applications including option pricing and
the Black-Scholes formula. For example, in financial mathematics, the classical model for a stock
price is a geometric Brownian motion. However, wars, decisions of the federal reserve and other
central banks, and other news can cause the stock price to make a sudden shift. To model this,
one would like to represent the stock price by a Lévy process which allows for jumps.

Another interesting application of the Lévy processes can be found in the study of the stochastic
Navier-Stokes equations. The stochastic Navier-Stokes equations have a long history as a model
to understand turbulence in fluid mechanics, structural vibrations in aeronautical applications,
and unknown random external forces such as sun heating and industrial pollution in atmospheric
dynamics. In real physical situations, the random external forces may exhibit jumps and hence a
purely continuous process is not enough to capture the full dynamics. This again motivates the
needs for introducing jump processes in the system.

In this work we are concerned with the study of Navier-Stokes equations driven by Lévy
processes. Let D ⊂ R3 be a bounded domain with smooth boundary ∂D and Ω be a sample
space. We consider the following system of stochastic PDEs:

ρdu+ [ρ(u · ∇)u− ν∆u+∇p]dt = ρf(t, u)dt+ ρg(t, u)dW +
∫
Z
ρLdλ,

dρ+ div(ρu)dt = 0,

divu = 0,

(1.1)

in Ω× [0, T ]×D, with the initial data

ρ|t=0 = ρ0, u|t=0 = u0, (1.2)

and the homogeneous boundary condition

u|∂D = 0. (1.3)

Here ρ ≥ 0, u = (u1, u2, u3) ∈ R3 and p ∈ R denote the density, the velocity and the pressure,
respectively; the viscosity coefficient ν satisfies ν > 0; ρf(t, u) is the deterministic external force;
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Z is a measurable metric space; the random external force is characterized by the Lévy processes
ρg(t, u)dW +

∫
Z
ρLdλ, where W is an Rd-valued standard Brownian motion, and

Ldλ =

{
F (u(x, t−), z) π̃(dt, dz), if |z|Z < 1,
G (u(x, t−), z)π(dt, dz), if |z|Z ≥ 1,

where F andG are two functions, π(dt, dz) is a time homogeneous Poisson measure, π̃(dt, dz) is the
compensated Poisson measure associated to π which is defined as π̃(dt, dz) = π(dt, dz)− dtµ(dz),
where µ(·) = Eπ(1, ·) is the intensity measure. Here EX =

∫
Ω
XdP denotes the expectation of

the random variable X(ω, t), ω ∈ Ω for a fixed t.

1.1. History of the problem. There have been extensive studies on the nonhomogeneous
Navier-Stokes equations. In the deterministic case (g = L = 0), Kazhikhov [43] obtained weak
solutions for initial density bounded away from zero. Simon [67] proved the global existence of
strong solutions in two dimensions. For three-dimensional case, Ladyhzenskaya-Solonnikov [48],
Padula [57, 58] and Salvi [63] established the local existence of strong solutions. The uniqueness
of strong solutions in R3 was later proved by Choe-Kim [17].

When g or L does not vanish, the first and second equations in (1.1) are stochastic. For viscous
compressible flows, Tornatore [70] obtained the existence and uniqueness of global solutions for the
two-dimensional periodic barotropic fluids with an additive noise, i.e., the random external forcing
is independent of the fluid velocity u. Feireisl-Maslowski-Novotný in [29] later considered the
three-dimensional problem in Sobolev spaces where the noise, under suitable weak formulation,
can be regarded as an additive one. They managed to show the existence of strong solutions by
using an abstract measurability theorem [3] and proved that the weak solution generates a random
variable. When the noise is multiplicative, that is, the random external forcing depends on u,
the problem becomes more involved. Some recent development on the existence of martingale
solutions can be found in [8, 68, 71].

For incompressible nonhomogeneous fluids, the existence of martingale solutions to the equa-
tions (1.1)-(1.3) driven by an additive noise was established by Yashima [72] with positive
initial density. For general multiplicative noise, Cutland-Enright [20] constructed strong solu-
tions by using the Loeb space techniques in two and three-dimensional bounded domains. For
the well-posedness of the homogeneous stochastic incompressible Navier-Stokes equations, see
[2, 3, 7, 11, 12, 13, 14, 25, 30, 32, 35, 45, 55, 56, 51, 53, 54, 64, 62, 69] and the references therein.
See [5, 15, 18, 19, 22, 23, 26, 27, 31, 33, 34, 36, 37, 38, 39, 44, 50, 53] and the references therein
for the studies and results on the incompressible stochastic Euler equations, ergodicity of stochas-
tic partial differential equations, stochastic equations for turbulent flows, stochastic conservation
laws, and so on.

1.2. Main results. In this paper we consider the existence of martingale solutions to the three-
dimensional stochastic nonhomogeneous incompressible Navier-Stokes equations with Lévy pro-
cesses. Our approach is based on the Galerkin approximation scheme and the stochastic com-
pactness method. We will outline the main idea in the later part of the section.

First, we define the concept of solutions for the problems (1.1)-(1.3) as follows.

Definition 1.1. A martingale solution of (1.1)-(1.3) is a system ((Ω,F,Ft, P ),W, π, ρ, u), which
satisfies

(1) (Ω,F,Ft, P ) is a filtered probability space with a filtration Ft, i.e., a set of sub σ-fields of
F with Fs ⊂ Ft ⊂ F for 0 ≤ s < t <∞,

(2) W is a d-dimensional Ft-standard Brownian motion,
(3) π is a time homogeneous Poisson random measure over (Ω,F,Ft, P ) with the intensity

measure µ,
(4) for almost every t, ρ(t) and u(t) are progressively measurable,
(5) ρ ∈ L∞(Ω;L∞(0, T ;L∞(D))), u ∈ L2(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V )). For all t ∈

[0, T ], any ϕ ∈ H1(D) and ψ ∈ V (see (2.1), (2.2) for definition of H and V ), the following holds
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P -a.s. ∫
D

ρ(t)ϕdx−
∫
D

ρ0ϕdx =

∫ t

0

∫
D

ρu · ∇ϕdxds, (1.4)

and ∫
D

(ρu)(t)ψdx−
∫ t

0

∫
D

(ρuu∇ψ − ν∇u · ∇ψ) dxds−
∫
D

ρ0u0ψdx

=

∫ t

0

∫
D

ρf(s, u)ψdxds+

∫ t

0

∫
D

ρg(s, u)ψdxdW

+

∫ t

0

∫
|z|Z<1

∫
D

ρF (u(x, s−), z)ψdxπ̃(ds, dz)

+

∫ t

0

∫
|z|Z≥1

∫
D

ρG(u(x, s−), z)ψdxπ(ds, dz),

(1.5)

and

ρ|t=0 = ρ0,

∫
D

ρ(0)u(0)ϕdx =

∫
D

ρ0u0ϕdx. (1.6)

In the above, all stochastic integrals are defined in the sense of Itô, see [1, 21, 28, 46, 42, 60, 61].

Throughout this paper, we assume that the Brownian motion W is independent of the compen-
sated Poisson measure π̃(dt, dz). The intensity measure µ on Z satisfies the conditions µ({0}) = 0,∫
Z

(1 ∧ |z|2)µ(dz) < ∞ and
∫
|z|Z≥1

|z|pµ(dz) < ∞,∀p ≥ 1. We also assume that {Ft} is a right

continuous filtration over the probability space (Ω,F, P ) such that F0 contains all P -negligible
subsets of Ω.

Before we state our main theorem, we make the following assumptions on the external forces.
Assumption (A). Assume that f : (0, T ) ×H → H and g : (0, T ) ×H → H×d are continuous
and nonlinear mappings, which satisfy the following condition: there exists a positive constant C
such that

‖f(t, u)− f(t, v)‖L2(D) ≤ C ‖u− v‖L2(D) , ‖g(t, u)− g(t, v)‖L2(D) ≤ C ‖u− v‖L2(D) ,

‖f(t, u)‖L2(D) ≤ C
(

1 + ‖u‖L2(D)

)
, ‖g(t, u)‖L2(D) ≤ C

(
1 + ‖u‖L2(D)

)
,

where H×d is the product of d copies of the space H which is defined in (2.1).
Assumption (B). For all t ∈ [0, T ], there exists a positive constant C such that∫

|z|Z<1

‖F (u, z)− F (v, z)‖2L2(D) µ(dz) +

∫
|z|Z≥1

‖G(u, z)−G(v, z)‖2L2(D) µ(dz)

≤ C ‖u− v‖2L2(D) .

(1.7)

For each p ≥ 2 and all t ∈ [0, T ], there exists a positive constant C such that∫
|z|Z<1

‖F (u, z)‖pL2(D) µ(dz) +

∫
|z|Z≥1

‖G(u, z)‖pL2(D) µ(dz) ≤ C
(

1 + ‖u‖pL2(D)

)
. (1.8)

Our main results are the following.

Theorem 1.1. Let the assumptions (A) and (B) be satisfied and assume that u0 ∈ H, ρ0 ∈
L∞(D) satisfying 0 < m ≤ ρ0 ≤ M . Then there exists a martingale solution of problems (1.1)-
(1.3) in the sense of Definition 1.1.
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1.3. Outline of ideas. Theorem 1.1 will be proved through the following steps. First we use
the Faedo-Galerkin method to construct the approximate solutions to the problem (1.1)-(1.3).
More precisely, on the probability space (Ω,F, P ) with a given d-dimensional Brownian motion
W and Poisson random measure π, for the finite-dimensional approximate system we use the
Picard iteration to obtain a local solution (Wn, πn, ρ

n, un) in a short time interval [0, Tn]. Here,
different from the deterministic situation, the velocity u in general exhibits jump discontinuity (in
time), and hence one cannot apply the standard method of characteristics to solve the transport
equation for ρ. To overcome this difficulty, we adapt the result of DiPerna-Lions [24] on transport
theory for less regular vector fields u to obtain a solution ρ ∈ L∞. To obtain a uniform time
interval [0, T ] of existence for all n, we need to derive the energy estimates. This can be done by
applying the stopping times and the Burkholder-Davis-Gundy inequality.

The second step is to take a limit as n → ∞ and prove the existence of martingale solu-
tions. From energy estimates, the approximate solutions (Wn, πn, ρ

n, un) may converge on [0, T ].
However the convergence is too weak to guarantee that the limit is a solution on [0, T ]. In the
two-dimensional case, it can be shown by using certain monotonicity principle that the nonlin-
ear terms converge to the right limit and hence a global strong solution can be obtained [51].
But when the space dimension is three the monotonicity does not hold and to the best of our
knowledge there is no result on the global strong solutions. This is why we pursue instead the
martingale solutions. As is explained, the main issue is the convergence of the nonlinear terms.

To this end, we relax the restriction on the probability space and aim to prove a tightness result
of the random variables (Wn, πn, ρ

n, un). This can be obtained by applying the Arzsela-Ascoli’s
Theorem combined with the Aubin-Simon Lemma [66]. Moreover in order to analyze the nonlin-
ear terms, we prove the tightness of ρnun as well. Then from the Jakubowski-Skorokhod Theorem

[40] there exist a probability space (Ω̊, F̊, P̊ ) and random variables (W̊nj , π̊nj , ρ̊
nj , ůnj , ρ̊nj ůnj )→

(W,π, ρ, u, h), P̊−a.s., with the property that the probability distribution of (W̊nj , π̊nj , ρ̊
nj , ůnj , ρ̊nj ůnj )

is the same as that of (Wn, πn, ρ
n, un, ρnun). By using a cut-off function we can also show that

the random variables (W̊nj , π̊nj , ρ̊
nj , ůnj ) satisfy the approximate equations in (Ω̊, F̊, P̊ ). When

passing to a limit as n→∞, the usual method is to show that the limit process of the stochastic
integral is a martingale, and to identify its quadratic variation. Then apply the representation
theorem for martingales or the revised representation theorem (see [40]) to prove that it solves
the equations. But here instead, we can prove that W is a Brownian motion and π is a time ho-
mogeneous Poisson random measure. Then in view of the uniform integrability criterion, Vitali’s
convergence theorem and mollification techniques, together with the almost sure convergence on

(Ω̊, F̊, P̊ ), we can obtain that (W,π, ρ, u) satisfies the equations (1.1)-(1.3) by passing to the limit
directly. Therefore it is a martingale solution of (1.1)-(1.3) in the sense of Definition 1.1.

The rest of the paper is organized as follows. We recall some analytic tools in Sobolev spaces
and some basic theory of stochastic analysis in Section 2. In Section 3, we construct the solutions
to an approximate scheme by the Faedo-Galerkin method. In Section 4, we prove the tightness
property of the approximate solutions (Wn, πn, ρ

n, un) and then pass to the limit as n→∞.

Notation. Throughout the paper we drop the parameter ω ∈ Ω. Moreover, we use C to denote
a generic constant which may vary in different estimates.

2. Preliminaries

Let H1(D) denote the Sobolev space of all u ∈ L2(D) for which there exist weak derivatives
∂u
∂xi
∈ L2(D), i = 1, 2, 3. Let C∞c (D) denote the space of all R3-valued functions of class C∞ with

compact supports contained in D and define

V := {u ∈ C∞c (D) : divu = 0},

H := the closure of V in L2(D), (2.1)
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V := the closure of V in H1(D). (2.2)

In the space H, we consider the scalar product and the norm inherited from L2(D) and denote
them by 〈·, ·〉H and | · |H respectively, i.e.

〈u, v〉H = 〈u, v〉L2(D), |u|H = ‖u‖L2(D) , u, v ∈ H.

In the space V we consider the scalar product inherited from H1(D), that is

〈u, v〉V = 〈u, v〉H + 〈∇u,∇v〉L2(D).

Let p∗ denote the Sobolev conjugate in R3 which is defined as

p∗ :=


3p

3− p
, if 1 ≤ p < 3,

any finite non-negative real number, if p = 3,
∞, if p > 3.

We first recall some properties of products in Sobolev spaces W 1,p(D) with p ≥ 1.

Lemma 2.1 ([67]). For 1 ≤ p ≤ q ≤ ∞, f ∈W 1,p(D) and g ∈W 1,q(D), if r ≥ 1 and 1
r = 1

p + 1
q∗

,

then fg ∈W 1,r(D) and

‖fg‖W 1,r(D) ≤ ‖f‖W 1,p(D) ‖g‖W 1,q(D) .

For h ∈W−1,q(D), if 1
p + 1

q ≤ 1 and 1
r = 1

p∗
+ 1

q , then fh ∈W−1,r(D) and

‖fh‖W−1,r(D) ≤ ‖f‖W 1,p(D) ‖h‖W−1,q(D) .

Lemma 2.2 ([49]). Let (gk)k=1,2,... and g be functions in Lq(0, T ;Lq(D)) for q ∈ (1,∞) such that
‖gk‖Lq(0,T ;Lq(D)) ≤ C for any k and gk → g almost everywhere in QT := D × [0, T ] as k → ∞.

Then gk converges weakly to g in Lq(0, T ;Lq(D)).

For a probability space (Ω,F, P ) and a Banach space X, denote by Lp(Ω;Lq(0, T ;X)) (1 ≤ p <
∞, 1 ≤ q ≤ ∞) the space of random functions defined on Ω with value in Lq(0, T ;X), endowed
with the norm:

‖u‖Lp(Ω;Lq(0,T ;X)) =
(
E ‖u‖pLq(0,T ;X)

) 1
p

.

If p =∞, we write

‖u‖L∞(Ω;Lq(0,T ;X)) := inf
{
C;P [‖u‖Lq(0,T ;X) > C] = 0

}
.

Remark 2.1. Note that the result of Lemma 2.2 also holds for the space Lq(Ω;Lq(0, T ;D)) in
Ω×QT .

We now list a few preliminary results of stochastic analysis and useful tools for the sake of
convenience and completeness. For details, we refer the readers to [1, 21, 28, 46, 42, 60, 61] and
the references therein. In particular, we will introduce the definitions of time homogenous Poisson
random measure, Lévy process, stopping time, Itô’s formula and the BDG inequality and so on.

Definition 2.1. A filtration on the parameter set T is an increasing family {Ft : t ∈ T} of
σ-algebra. A stochastic process Xt, t ∈ T is said to be adapted to {Ft : t ∈ T} if for each t, the
random variable Xt is Ft-measurable.

Denote N̄ := N ∪ {∞}, R+ := [0,∞). Let (Z,Z) be a measurable space. Then by M(Z)
we denote the set of all real valued measures on (Z,Z), and M(Z) denotes the σ-field on M(Z)
generated by functions iB : µ 7→ µ(B) ∈ R for µ ∈ M(Z), B ∈ Z. Next, we denote the set of all
non-negative measures on Z by M+(Z), and M+(Z) denotes the σ-field on M+(Z) generated by
functions iB : M+(Z) 3 µ 7→ µ(B) ∈ R+, B ∈ Z. Finally, by MN̄(Z) we denote the family of all
N̄-valued measures on (Z,Z), and MN̄(Z) denotes the σ-field on MN̄(Z) generated by functions
iB : MN̄ 3 µ 7→ µ(B) ∈ N̄, B ∈ Z.
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Definition 2.2. Let (Z,Z) be a measurable space and µ ∈ M+(Z). A measurable function
π : (Ω,F)→ (MN̄(Z × R+),MN̄(Z × R+)) is called a time homogenous Poisson random measure
on (Z,Z) over (Ω,F,Ft, P ) if and only if the following conditions are satisfied

(1) for each B ∈ Z ⊗ B(R+), π(B) := iB ◦ π : Ω → N̄ is a Poisson random variable with
parameter Eπ(B) (If Eπ(B) =∞, then π(B) =∞ );

(2) π is independently scattered, that is, if the sets Bj ∈ Z⊗B(R+), j = 1, 2, . . . , n are pair-wise
disjoint, then the random variables π(Bj), j = 1, 2, . . . , n are pair-wise independent;

(3) for all B ∈ Z and I ∈ B(R+), E[π(B × I)] = λ(I)µ(B), where λ is Lebesgue measure;
(4) for each U ∈ Z, the N̄-valued process (N(t, U))t≥0 defined by N(t, U) := π(U× (0, t]), t ≥ 0

is Ft-adapted and its increments are independent of the past, i.e. if t > s ≥ 0, then N(t, U) −
N(s, U) = π(U × (s, t]) is independent of Fs.

Now we turn to the definition of a Lévy process.

Definition 2.3. Let B be a Banach space. A stochastic process L = {L(t) : t ≥ 0} over
(Ω,F,Ft, P ) is called an B-valued Lévy process if the following conditions are satisfied.

(1) L(t) is Ft-measurable for any t ≥ 0;
(2) the random variable L(t)− L(s) is independent of Fs for any 0 ≤ s < t;
(3) L(0) = 0 a.s.;
(4) For all 0 ≤ s < t, the law of L(t+ s)− L(s) does not depend on s;
(5) L is stochastically continuous;
(6) the trajectories of L are càdlàg in B P -a.s., i.e. which are right-continuous with left limits.

Note that we can construct a corresponding Poisson random measure from a Lévy process. For
example, given a B-valued Lévy process over (Ω,F,Ft, P ), one can construct an integer-valued
random measure in the following way: for each (B, I) ∈ B(R)×B(R+), define

πL(B, I) := ]{t ∈ I | ∆tL ∈ B} ∈ N̄.

where ∆tL(t) := L(t) − L(t−) = L(t) − lims↑t L(s), t > 0 and ∆0L := 0. If B = Rd, then πL
is a time homogeneous Poisson random measure, for details see [65, Chapter 4, Theorem 19.2].
Conversely, given a Poisson random measure, we can also construct a corresponding Lévy process.

Definition 2.4. A random variable τ(ω) with values in the parameter set T is a stopping time
of the filtration Ft if {ω : τ(ω) ≤ t} ∈ Ft for each t ∈ T.

Let us now recall the Itô formula for general Lévy-type stochastic integrals, see [1, 60, 61]. We
define P2(T,B) to be the set of all equivalence classes of mappings f : [0, T ]× B× Ω→ R which
coincide almost everywhere with respect to %× P and satisfy the following conditions:

(1) f is predictable;

(2) P
(∫ T

0

∫
B |f(t, x)|2%(dt, dx) <∞

)
= 1.

Here %(t, A) = m((0, t]× A), where m is standard Lebesgue measure. With this we are ready to
give the Itô formula [1, Page 251, Theorem 4.4.7] for general Lévy-type stochastic integrals. Let
X be the following process

dX(t) = G(t)dt+ F (t)dW (t) +

∫
|x|<1

H(t, x)π̃(dt, dx) +

∫
|x|≥1

K(t, x)π(dt, dx), (2.3)

where for each t ≥ 0, |G| 12 , F ∈ P2(T ) := P2(T, {0}) and H ∈ P2(T,B). Furthermore, we take
B = {x ∈ Rd : 0 < |x| < 1} and K to be predictable (see [61, Page 7]). Denote

dXc(t) = G(t)dt+ F (t)dW (t),

and

dXd(t) =

∫
|x|<1

H(t, x)π̃(dt, dx) +

∫
|x|≥1

K(t, x)π(dt, dx),
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so that for each t ≥ 0, we have

X(t) = X(0) +Xc(t) +Xd(t).

Assume that for all t > 0, sup0≤s≤t, 0<|x|<1H(s, x) <∞ a.s., then one has

Lemma 2.3 (Itô’s formula,[1]). If X is a Lévy-type stochastic integral of the form (2.3), then
for each Φ ∈ C2(Rn), t ≥ 0, with probability 1 we have

Φ(X(t))− Φ(X(0)) =

∫ t

0

∂iΦ(X(s−))dXi
c(s) +

1

2

∫ t

0

∂i∂jΦ(X(s−))d[Xi
c, X

j
c ](s)

+

∫ t

0

∫
|x|≥1

[Φ(X(s−) +K(s, x))− Φ(X(s−))]π(ds, dx)

+

∫ t

0

∫
|x|<1

[Φ(X(s−) +H(s, x))− Φ(X(s−))] π̃(ds, dx)

+

∫ t

0

∫
|x|<1

[
Φ(X(s−) +H(s, x))− Φ(X(s−))−Hi(s, x)∂iΦ(X(s−))

]
µ(dx)ds

(2.4)

We now recall the following so-called BDG inequality in stochastic analysis, see [60, Page 37,
Theorem 3.50].

Lemma 2.4 (Burkholder-Davis-Gundy inequality). Let T > 0, for every fixed p ≥ 1, there is
a constant Cp ∈ (0,∞) such that for every real-valued square integrable càadlàg martingale Mt

with M0 = 0, and for every T ≥ 0,

C−1
p E

(
〈M〉

p
2

T

)
≤ E

(
max

0≤t≤T
|Mt|p

)
≤ CpE

(
〈M〉

p
2

T

)
,

where 〈M〉t is the quadratic variation of Mt and the constant Cp does not depend on the choice
of Mt.

Definition 2.5. Let B be a separable Banach space and let B(B) be its Borel sets. A family of
probability measures P on (B,B(B)) is tight if for any ε > 0, there exists a compact set Kε ⊂ B
such that Π(Kε) ≥ 1 − ε for all Π ∈ P. A sequence of measures {Πn} on (B,B(B)) is weakly
convergent to a measure Π if for all continuous and bounded functions h on B

lim
n→∞

∫
B
h(x)Πn(dx) =

∫
B
h(x)Π(dx).

Lemma 2.5 (Jakubowski-Skorokhod Theorem [40]). Let X be a topological space such that there
exists a sequence {hm} of continuous functions hm : X→ R that separate points of X. Denote by
S the σ-algebra generated by the maps {hm}. Then

(1) every compact subset of X is metrizable.
(2) every Borel subset of a σ-compact set in X belongs to S.
(3) every probability measure supported by a σ-compact set in X has a unique Radon extension

to the Borel σ-algebra on X.
(4) if {Πm} is a tight sequence of probability measures on (X, S), there exist a subsequence

{mk}, and a probability space (Ω,F, P ) with X-valued Borel measurable random variables Xk and
X such that, Πmk is the distribution of Xk, and Xk → X a.s. on Ω. Moreover, the law of X is
a Radon measure.

3. The Galerkin approximation and a priori estimates

3.1. The Galerkin approximation.
We will obtain the weak solution of the equations (1.1)-(1.3) via the Galerkin approximation:

first we construct solutions of certain finite-dimensional approximations to (1.1)-(1.3) and then
pass to the limits.
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On the probability space (Ω,F, P ) with a given d-dimensional Brownian motion W and Poisson
random measure π. In order to solve (1.1)-(1.3), we first consider a suitable orthogonal system
formed by a family of smooth functions {wn} vanishing on ∂D. One can take the eigenfunctions
of the Dirichlet problem for the Laplacian operator:

−∆wn = λnwn on D, wn|∂D = 0.

Now, we consider a sequence of finite-dimensional spaces

Xn = span{wj}nj=1, n = 1, 2, . . . .

For each n ∈ N, we will look for the sequences (ρn, un) satisfying the integral equation:∫
D

ρnun(t)ψdx−
∫
D

ρn0u
n
0ψdx−

∫ t

0

∫
D

[ν∆un − ρnun∇un)]ψdxds

=

∫ t

0

∫
D

ρnf(s, un)ψdxds+

∫ t

0

∫
D

ρng(s, un)ψdxdW

+

∫ t

0

∫
|z|Z<1

∫
D

ρnF (un(x, s−), z)ψdxπ̃(ds, dz) (3.1)

+

∫ t

0

∫
|z|Z≥1

∫
D

ρnG (un(x, s−), z)ψdxπ(ds, dz),

for all t ∈ [0, T ] and any function ψ ∈ Xn, together with

(ρn)t + (un · ∇)ρn = 0 in QT = D × [0, T ], (3.2)

un|t=0 = un0 , ρ
n|t=0 = ρn0 in D. (3.3)

Here we assume that

un0 ∈ Xn, un0 → u0 in L2(D), (3.4)

0 < m ≤ ρ0 ≤M, ρn0 → ρ0 in L∞(D) weakly star. (3.5)

We look for a function un in the following form

un =

n∑
k=1

ϕnk (t)wk(x). (3.6)

It follows from [24, Proposition II.1] and the regularity of un that equation (3.2) with (3.3) admits
a solution ρn ∈ L∞(0, T ;L∞(D)) for any given un of the form (3.6). Specifically, there exists a
solution map S such that ρn = S(un). Similarly, from

(1/ρn)t + un · ∇ (1/ρn) = 0,

we know that 1/ρn ∈ L∞(0, T ;L∞(D)). Then ρn has lower and upper bound, that is

0 <
1

C
≤ ρn ≤ C. (3.7)

Here C is independent of n (only depends on ρ0).
Next, we show the existence of a solution un ∈ D([0, T ];Xn) to (3.1). Here D([0, T ];Xn) is

the space of all càdlàg functions f : [0, T ] → Xn. We equip D([0, T ];Xn) with the Skorokhod
topology (see [52]).
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Note that here ρn = S(un). Choosing ψ = w1, w2, . . . , wn in (3.1), the coefficients ϕnk satisfy
the following stochastic ordinary differential equations:

n∑
k=1

(∫
D

ρnwkw`

)
dϕnk (t) +

n∑
j,k=1

∫
D

ρn(wjϕ
n
j · ∇)wkϕ

n
kw`dxdt

−
∫
D

ρnf(t,

n∑
j=1

wjϕ
n
j )w`dxdt+ ν

∫
D

n∑
j=1

ϕnj (t)∇wj∇w`dxdt

=

∫
D

ρng(t,

n∑
j=1

wjϕ
n
j (t))w`dxdW +

∫
D

∫
|z|Z<1

ρnF

 n∑
j=1

wjϕ
n
j (t), z

w`π̃(dt, dz)dx

+

∫
D

∫
|z|Z≥1

ρnG

 n∑
j=1

wjϕ
n
j (t), z

w`π(dt, dz)dx.

(3.8)

From (3.7) we know that the matrix
(∫
D
ρnwkw`dx

)
is nondegenerate, and hence (3.8) can be

reformulated as

dϕn` + F̃`(t, ϕ
n
1 , . . . , ϕ

n
n)dt = G̃n` (t, ϕn1 , . . . , ϕ

n
n)dW +

∫
|z|Z≥1

Ψ̃`(ϕ
n
1 , . . . , ϕ

n
n, z)π(dt, dz)

+

∫
|z|Z<1

Φ̃`(ϕ
n
1 , . . . , ϕ

n
n, z)π̃(dt, dz),

(3.9)

with the initial data ϕn` (0) = ϕn`,0, where ϕn`,0 are the coefficients of un0 =
∑n
k=1 ϕ

n
k,0wk. In

view of the assumptions (A) and (B), F̃ , G̃,
∫
|z|Z≥1

Ψ̃π(dt, dz) and
∫
|z|Z<1

Φ̃π̃(dt, dz) satisfy the

Lipschitz and growth conditions. According to the existence theory [1, pp.367, Theorem 6.2.3]
for the stochastic ordinary differential equations with jumps, we can apply a standard fixed point
argument to show that there exist a time Tn > 0 and a function ϕn = (ϕn1 , . . . , ϕ

n
n) satisfying

equation (3.9) and the initial data for a.e. t ∈ [0, Tn]. This way un defined in (3.6) solves (3.8)
for a.e. t ∈ [0, Tn]. Therefore we obtain a local solution (ρn, un) of the system (3.1)-(3.3).

Next we want to show that we can find a uniform time interval of existence for all n. This will
follow from the a priori estimates established in the next subsection.

3.2. A priori estimates.
Now, we want to get the needed a priori estimates. To this end, taking ψ = wk in (3.1),

multiplying the result by ϕnk (t) and then summing over k = 1, 2, . . . , n, we have∫
D

(unρndun(t))dx+

∫
D

ρnun(un · ∇)undxdt+ ν

∫
D

∇un · ∇undxdt

=

∫
D

ρnf(t, un)undxdt+

∫
D

ρng(t, un)undxdW (3.10)

+

∫
D

∫
|z|Z<1

ρnF (un(x, t−), z)unπ̃(dt, dz)dx

+

∫
D

∫
|z|Z>1

ρnG (un(x, t−), z)unπ(dt, dz)dx.

First, we introduce the following stopping times:

τN =

{
inf{t > 0 : ‖

√
ρnun(t)‖L2(D) ≥ N}, if {ω ∈ Ω : ‖

√
ρnun(t)‖L2(D) ≥ N} 6= ∅,

T, if {ω ∈ Ω : ‖
√
ρnun(t)‖L2(D) ≥ N} = ∅.

(3.11)
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Define the function Φ(ρ, q) =
∫
D
|q|2
ρ dx. Note that

∇qΦ(ρ, q) =

∫
D

2q

ρ
dx, ∇2

qΦ(ρ, q) =

∫
D

2

ρ
I dx, ∂ρΦ(ρ, q) = −

∫
D

|q|2

ρ2
dx,

where I is the identity matrix. Applying Itô’s formula in Lemma 2.3 to the above function Φ
with (ρ, q) = (ρn, ρnun), from the first equation in (1.1), one deduces that

d

∫
D

|
√
ρnun|2dx =

∫
D

unun
∂ρn(s)

∂s
dxds+ 2ν

∫
D

un∆undxds− 2

∫
D

ρnun(un · ∇)undxds

+ 2

∫
D

ρnun [f(s, un)ds+ g(s, un)dW ] dx+

∫
D

|
√
ρng(s, un)|2dxds

+

∫
D

∫
|z|Z<1

[
2ρnunF (un(x, s−), z) + ρnF 2 (un(x, s−), z)

]
π̃(ds, dz)dx

+

∫
D

∫
|z|Z≥1

[
2ρnunG (un(x, s−), z) + ρnG2 (un(x, s−), z)

]
π̃(ds, dz)dx (3.12)

+

∫
D

∫
|z|Z<1

|
√
ρnF (un(x, s−), z) |2µ(dz)dx

+

∫
D

∫
|z|Z≥1

|
√
ρnG (un(x, s−), z) |2µ(dz)dx

+ 2

∫
D

∫
|z|Z≥1

ρnunG (un(x, s−), z)µ(dz)dx,

where s ∈ [0, t ∧ τN ], t ∈ [0, Tn], t ∧ τN := min{t, τN}. From the second and third equations in
(1.1), we can infer that

0 =

∫
D

div(ununρnun)dx =

∫
D

[unundiv(ρnun) + ρnun∇(unun)]dx

=

∫
D

[unun(un · ∇)ρn + 2ρnun(un · ∇)un]dx,

(3.13)

where the first equality is due to the condition that un vanishes on (0, T )× ∂D. It follows from
the second equation in (1.1) that∫

D

unun
∂ρn(s)

∂s
dx = −

∫
D

unun(un · ∇)ρndx = 2

∫
D

ρnun(un · ∇)undx. (3.14)

Substituting (3.14) into (3.12), for all s ∈ [0, t ∧ τN ], it holds that∥∥√ρnun(s)
∥∥2

L2(D)
+ 2ν

∫ s

0

‖∇un(r)‖2L2(D) dr

≤
∥∥∥√ρn0un0∥∥∥2

L2(D)
+

∫ s

0

2|〈un, ρnf(r, un)〉|dr +

∫ s

0

∥∥√ρng(r, un)
∥∥2

L2(D)
dr

+ 2

∣∣∣∣∫ s

0

〈un, ρng(r, un)〉dW
∣∣∣∣+ 2

∣∣∣∣∣
∫ s

0

∫
|z|Z≥1

〈un, ρnG (un(x, r−), z)〉µ(dz)dr

∣∣∣∣∣
+

∫ s

0

∫
|z|Z<1

(
2〈un, ρnF (un(x, r−), z)〉+

∥∥√ρnF∥∥2

L2(D)

)
π̃(dr, dz) (3.15)

+

∫ s

0

∫
|z|Z≥1

(
2〈un, ρnG (un(x, r−), z)〉+

∥∥√ρnG∥∥2

L2(D)

)
π̃(dr, dz)

+

∫ s

0

∫
D

∫
|z|Z<1

|
√
ρnF (un(x, r−), z) |2µ(dz)dxdr
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+

∫ s

0

∫
D

∫
|z|Z≥1

|
√
ρnG (un(x, r−), z) |2µ(dz)dxdr.

Here 〈·, ·〉 denotes the inner product. Taking supremum on both sides of (3.15) over the interval
[0, t ∧ τN ], and then taking the mathematical expectation, we obtain

E sup
0≤s≤t∧τN

∥∥√ρnun(s)
∥∥2

L2(D)
+ 2νE

∫ t∧τN

0

‖∇un(r)‖2L2(D) dr

≤ E
∥∥∥√ρn0un0∥∥∥2

L2(D)
+ E

∫ t∧τN

0

2|〈un, ρnf(r, un)〉|dr + E
∫ t∧τN

0

∥∥√ρng(r, un)
∥∥2

L2(D)
dr

+ 2E sup
0≤s≤t∧τN

∣∣∣∣∫ s

0

〈un, ρng(r, un)〉dW
∣∣∣∣+ 2E

∣∣∣∣∣
∫ t∧τN

0

∫
|z|Z≥1

〈un, G (un(x, r−), z)〉µ(dz)dr

∣∣∣∣∣
+ E sup

0≤s≤t∧τN

∫ s

0

∫
|z|Z<1

(
2〈un, ρnF (un(x, r−), z)〉+

∥∥√ρnF∥∥2

L2(D)

)
π̃(dr, dz) (3.16)

+ E sup
0≤s≤t∧τN

∫ s

0

∫
|z|Z≥1

(
2〈un, ρnG (un(x, r−), z)〉+

∥∥√ρnG∥∥2

L2(D)

)
π̃(dr, dz)

+ E
∫ t∧τN

0

∫
D

∫
|z|Z<1

|
√
ρnF (un(x, r−), z) |2µ(dz)dxdr

+ E
∫ t∧τN

0

∫
D

∫
|z|Z≥1

|
√
ρnG (un(x, r−), z) |2µ(dz)dxdr

:= I0 + I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8.

Now, we shall estimate each term in the right-hand side of (3.16). First, for the term I1, by
Young’s inequality and the hypothesis on f , it holds that

I1 ≤ εE
∫ t∧τN

0

∥∥√ρnun(s)
∥∥2

L2(D)
ds+ CεE

∫ t∧τN

0

∥∥∥√ρn(s)f(s, un)
∥∥∥2

L2(D)
ds

≤ CE
∫ t∧τN

0

∥∥√ρnun(s)
∥∥2

L2(D)
ds+ C.

(3.17)

For the term I2, by the assumption on g, the Hölder’s inequality yields

I2 ≤ CE
∫ t∧τN

0

∥∥∥√ρn(s)un(s)
∥∥∥2

L2(D)
ds+ C. (3.18)

Next, we shall estimate the term I3, the hypothesis on g and Burkholder-Davis-Gundy inequal-
ity imply

I3 ≤ CE
[∫ t∧τN

0

〈ρng(s, un), un〉2ds
] 1

2

≤ CE
[∫ t∧τN

0

‖ρn(s)‖L∞(D)

(
1 + ‖un(s)‖2L2(D)

)∥∥√ρnun(s)
∥∥2

L2(D)
ds

] 1
2

≤ CE sup
0≤s≤t∧τN

∥∥√ρnun(s)
∥∥
L2(D)

(∫ t∧τN

0

‖ρn(s)‖L∞(D)

(
1 + ‖un(s)‖2L2(D)

)
ds

) 1
2

≤ εE sup
0≤s≤t∧τN

∥∥√ρnun(s)
∥∥2

L2(D)
+ CE

∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥2

L2(D)

)
ds.

(3.19)

For the term I4, it follows from the assumption on G and Hölder’s inequality that

I4 ≤ E
∫ t∧τN

0

∣∣∣∣∣
∫
|z|Z≥1

〈
√
ρnun,

√
ρnG (un(x, r−), z)〉µ(dz)dr

∣∣∣∣∣
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≤ E
∫ t∧τN

0

∥∥√ρnun∥∥2

L2(D)
ds+ E ‖ρn‖L∞(D)

∫ t∧τN

0

∣∣∣∣∣
∫
|z|Z≥1

‖G (un(x, s−), z)‖L2(D) µ(dz)

∣∣∣∣∣
2

ds

≤ E
∫ t∧τN

0

∥∥√ρnun∥∥2

L2(D)
ds+ CµE‖ρn‖L∞(D)

∫ t∧τN

0

∫
|z|Z≥1

‖G (un(x, s−), z)‖2L2(D) µ(dz)ds

≤ E
∫ t∧τN

0

∥∥√ρnun(s)
∥∥2

L2(D)
ds+ CµE ‖ρn‖L∞(D)

∫ t∧τN

0

(
1 + ‖un(s)‖2L2(D)

)
ds

≤ (C + 1)E
∫ t∧τN

0

∥∥√ρnun(s)
∥∥2

L2(D)
ds+ C. (3.20)

Here Cµ =
∫
|z|Z≥1

µ(dz) < ∞. For the term I5, in view of the hypothesis on F , using the

Burkholder-Davis-Gundy inequality, Hölder’s and Young’s inequality, we have

I5,1 := 2E sup
0≤s≤t∧τN

∫ s

0

∫
|z|Z<1

〈un, ρnF (un(x, r−), z)〉π̃(dr, dz)

≤ 2E

[∫ t∧τN

0

∫
|z|<1

〈un, ρnF (un(x, s−), z)〉2µ(dz)ds

] 1
2

≤ CE

(
sup

0≤s≤t∧τN

∥∥√ρnun(s)
∥∥2

L2(D)

∫ t∧τN

0

∫
|z|Z<1

‖ρn‖L∞(D) ‖F (un(x, s−), z)‖2L2(D) µ(dz)ds

) 1
2

≤ CE

[
sup

0≤s≤t∧τN

∥∥√ρnun(s)
∥∥
L2(D)

(∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥2

L2(D)

)
ds

) 1
2

]
(3.21)

≤ εE sup
0≤s≤t∧τN

∥∥√ρnun(s)
∥∥2

L2(D)
+ CE

∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥2

L2(D)

)
ds,

on the other hand, we can infer that

I5,2 := E sup
0≤s≤t∧τN

∫ s

0

∫
|z|Z<1

∥∥√ρnF∥∥2

L2(D)
π̃(dr, dz)

≤ CE

[∫ t∧τN

0

∫
|z|Z<1

∥∥√ρnF∥∥4

L2(D)
µ(dz)ds

] 1
2

≤ CE

[∫ t∧τN

0

‖ρn‖2L∞(D)

∫
|z|Z<1

‖F‖4L2(D) µ(dz)ds

] 1
2

(3.22)

≤ εE sup
0≤s≤t∧τN

∥∥√ρnun(s)
∥∥2

L2(D)
+ CE

∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥2

L2(D)

)
ds,

then

I5 ≤ εE sup
0≤s≤t∧τN

∥∥√ρnun(s)
∥∥2

L2(D)
+ CE

∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥2

L2(D)

)
ds. (3.23)

For the term I6, similarly to I5, by the assumption on G, one has

I6 ≤ εE sup
0≤s≤t∧τN

∥∥√ρnun(s)
∥∥2

L2(D)
+ CE

∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥2

L2(D)

)
ds. (3.24)
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Finally, we shall estimate the last two terms. For the term I7, in virtue of the assumption (B),
using Hölder’s inequality, we can infer that

I7 ≤ CE
∫ t∧τN

0

‖ρn(s)‖L∞(D)

∫
|z|Z<1

‖F (un(x, s−), z)‖2L2(D) µ(dz)ds

≤ CE
∫ t∧τN

0

∥∥√ρnun(s)
∥∥2

L2(D)
ds+ C.

(3.25)

Similarly to I7, in view of the hypothesis on G, one deduces that

I8 ≤ CE
∫ t∧τN

0

∥∥√ρnun(s)
∥∥2

L2(D)
ds+ C. (3.26)

Substituting (3.17)-(3.26) into (3.16), for sufficiently small ε > 0, it holds that

E sup
0≤s≤t∧τN

∥∥√ρnun(s)
∥∥2

L2(D)
+ 2νE

∫ t∧τN

0

‖∇un(s)‖2L2(D) ds

≤ E
∥∥∥√ρn0un0∥∥∥2

L2(D)
+ CE

∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥2

L2(D)

)
ds.

(3.27)

By the Gronwall inequality, we have

E sup
0≤s≤t∧τN

∥∥√ρnun(s)
∥∥2

L2(D)
+ 2νE

∫ t∧τN

0

‖∇un(s)‖2L2(D) ds ≤ C. (3.28)

Note that by the property of stopping time, we have t∧ τN → t as N →∞. Then letting N →∞
in (3.28), for any t ∈ [0, Tn], we obtain

E sup
0≤s≤t

∥∥√ρnun(s)
∥∥2

L2(D)
+ 2νE

∫ t

0

‖∇un(s)‖2L2(D) ds ≤ C. (3.29)

Since the constant C is independent of n, then Tn = T .
Applying Itô’s formula to (3.1) when p ≥ 2, integrating over [0, s], s ∈ [0, t ∧ τN ], one has∥∥√ρnun(s)

∥∥p
L2(D)

+ pν

∫ s

0

∥∥√ρnun(r)
∥∥p−2

L2(D)
‖∇un(r)‖2L2(D) dr

= p

∫ s

0

∥∥√ρnun(r)
∥∥p−2

L2(D)
〈un, ρng(r, un)〉dW

+
p

2

∫ s

0

∥∥√ρnun(r)
∥∥p−2

L2(D)

[
2〈un, ρnf(r, un)〉+

∥∥√ρng(r, un)
∥∥2

L2(D)

]
dr

+
p

2

(p
2
− 1
)∫ s

0

∥∥√ρnun(r)
∥∥p−4

L2(D)
〈un, ρng(r, un)〉2dr +

3∑
i=1

Ji,s,

(3.30)

where

J1,s :=

∫ s

0

∫
|z|Z≥1

{∥∥√ρnun(r) +
√
ρnG(un(r−), z)

∥∥p
L2(D)

−
∥∥√ρnun(r)

∥∥p
L2(D)

}
π(dz, dr),

(3.31)

J2,s :=

∫ s

0

∫
|z|Z<1

{∥∥√ρnun(r) +
√
ρnF (un(r−), z)

∥∥p
L2(D)

−
∥∥√ρnun(r)

∥∥p
L2(D)

}
π̃(dz, dr),

(3.32)
and

J3,s :=

∫ s

0

∫
|z|Z<1

{∥∥√ρnun(r) +
√
ρnF (un(r−), z)

∥∥p
L2(D)

−
∥∥√ρnun(r)

∥∥p
L2(D)

− p
∥∥√ρnun(r)

∥∥p−2

L2(D)
〈
√
ρnun, F (un(r−), z)〉

}
µ(dz)dr.

(3.33)
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Now, taking supremum up to time t ∧ τN and taking mathematical expectation in both sides of
(3.30), and then we shall estimate each term of the resulting equation. For the first term, by
the Burkholder-Davis-Gundy inequality and Hölder’s inequality, in virtue of assumption (A) and
(3.7), we have

E sup
0≤s≤t∧τN

∣∣∣∣∫ s

0

∥∥√ρnun(r)
∥∥p−2

L2(D)
〈un, ρng(r, un)〉dW

∣∣∣∣
≤ CE

[
sup

0≤s≤t∧τN

∥∥√ρnun(s)
∥∥p−2

L2(D)

(∫ t∧τN

0

〈un, ρng(s, un)〉2dt
) 1

2

]

≤ CE

[
sup

0≤s≤t∧τN

∥∥√ρnun(s)
∥∥p−1

L2(D)

(∫ t∧τN

0

∥∥√ρng(s, un)
∥∥2

L2(D)
dt

) 1
2

]

≤ εE sup
0≤s≤t∧τN

∥∥√ρnun(s)
∥∥p
L2(D)

+ CE
(∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥p
L2(D)

)
ds

)
.

(3.34)

For the second, third and fourth terms, similar to the first term, Hölder’s inequality, (3.7) and
assumption (A) yield

E
∫ t∧τN

0

∥∥√ρnun(s)
∥∥p−2

L2(D)
〈un, ρnf(s, un)〉ds

≤ CE
∫ t∧τN

0

∥∥√ρnun(s)
∥∥p−2

L2(D)

(
1 +

∥∥√ρnun(s)
∥∥2

L2(D)

)
ds

≤ CE
∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥p
L2(D)

)
ds,

(3.35)

and

E
∫ t∧τN

0

∥∥√ρnun(s)
∥∥p−2

L2(D)

∥∥√ρng(s, un)
∥∥2

L2(D)
ds ≤ CE

∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥p
L2(D)

)
ds,

(3.36)
and

E
∫ t∧τN

0

∥∥√ρnun(s)
∥∥p−4

L2(D)
〈un, ρng(s, un)〉2ds

≤ CE
∫ t∧τN

0

∥∥√ρnun(s)
∥∥p−2

L2(D)

(
1 +

∥∥√ρnun(s)
∥∥2

L2(D)

)
ds

≤ CE
∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥p
L2(D)

)
ds.

(3.37)

For the term J1,s, it follows from the inequality (a+b)p ≤ 2p−1(ap+bp) for all p ≥ 1 and a, b ≥ 0,
(3.7) and assumption (B) that

E sup
0≤s≤t∧τN

|J1,s| ≤ E sup
0≤s≤t∧τN

∫ s

0

∫
|z|Z≥1

{∥∥√ρnun(r) +
√
ρnG(un(r−), z)

∥∥p
L2(D)

}
π(dz, dr)

≤ 2p−1E
∫ t∧τN

0

∫
|z|Z≥1

{∥∥√ρnun(s)
∥∥p
L2(D)

+
∥∥√ρnG(un(s−), z)

∥∥p
L2(D)

}
µ(dz)ds

≤ C(p)

(
E(t ∧ τN ) +

∫ t∧τN

0

E
∥∥√ρnun(s)

∥∥p
L2(D)

ds

)
.

(3.38)

On the other hand, the terms J2,s and J3,s can be rewrite as

J2,s + J3,s =

∫ s

0

∫
|z|Z<1

{∥∥√ρnun(r) +
√
ρnF (un(r−), z)

∥∥p
L2(D)

−
∥∥√ρnun(r)

∥∥p
L2(D)
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− p
∥∥√ρnun(r)

∥∥p−2

L2(D)
〈
√
ρnun, F (un(r−), z)〉

}
π(dz, dr)

+

∫ s

0

∫
|z|Z<1

p
∥∥√ρnun(r)

∥∥p−2

L2(D)
〈
√
ρnun, F (un(r−), z)〉π̃(dz, dr)

:= J4,s + J5,s.

For all a, b ∈ H and p ≥ 2, from Taylor’s formula, it holds that∣∣∣|a+ b|pH − |a|
p
H − p|a|

p−2
H 〈a, b〉

∣∣∣ ≤ C(p)
(
|a|p−2

H |b|2H + |b|pH
)
.

From this above inequality, one has

E sup
0≤s≤t∧τN

|J4,s| ≤ C(p)E sup
0≤s≤t∧τN

∫ s

0

∫
|z|Z<1

{∥∥√ρnun(r)
∥∥(p−2)

L2(D)

∥∥√ρnF (un(r−), z)
∥∥2

L2(D)

+
∥∥√ρnF (un(r−), z)

∥∥p
L2(D)

}
π(dz, dr)

≤ C(p)E

(
sup

0≤s≤t∧τN

∥∥√ρnun(s)
∥∥(p−2)

L2(D)

∫ t∧τN

0

∫
|z|Z<1

∥∥√ρnF (un(s−), z)
∥∥2

L2(D)
µ(dz)ds

)

+ C(p)E
∫ t∧τN

0

∫
|z|Z<1

∥∥√ρnF (un(s−), z)
∥∥p
L2(D)

µ(dz)ds.

It follows from the assumption (B) and Hölder’s inequality that

E sup
0≤s≤t∧τN

|J4,s| ≤
1

8
E sup

0≤s≤t∧τN

∥∥√ρnun(s)
∥∥p
L2(D)

+ C(p)E
[∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥2

L2(D)

)
ds

] p
2

+ C(p)E
∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥p
L2(D)

)
ds

≤ 1

8
E sup

0≤s≤t∧τN

∥∥√ρnun(s)
∥∥p
L2(D)

+ C(p, T )E
∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥p
L2(D)

)
ds.

(3.39)

For the term J5,s, by the Burkholder-Davis-Gundy inequality and Young’s inequality, we have

E sup
0≤s≤t∧τN

|J5,s| ≤ C(p)E

{(
sup

0≤s≤t∧τN

∥∥√ρnun(s)
∥∥2(p−1)

L2(D)

) 1
2

×

(∫ t∧τN

0

∫
|z|Z<1

∥∥√ρnF (un(s−), z)
∥∥2

L2(D)
µ(dz)ds

) 1
2
}

≤ 1

8
E sup

0≤s≤t∧τN

∥∥√ρnun(s)
∥∥p
L2(D)

+ C(p)E
[∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥2

L2(D)

)
ds

] p
2

≤ 1

8
E sup

0≤s≤t∧τN

∥∥√ρnun(s)
∥∥p
L2(D)

+ C(p, T )E
∫ t∧τN

0

(
1 +

∥∥√ρnun(s)
∥∥p
L2(D)

)
ds.

(3.40)

Plugging (3.34)-(3.40) into (3.30), one deduces that

3

8
E sup

0≤s≤t∧τN

∥∥√ρnun(s)
∥∥p
L2(D)

+ CE
∫ t∧τN

0

∥∥√ρnun(s)
∥∥p−2

L2(D)
‖∇un(s)‖2L2(D) ds

≤ E
∥∥∥√ρn0un0∥∥∥p

L2(D)
+ C(p, T )

(
1 + E

∫ t∧τN

0

∥∥√ρnun(s)
∥∥p
L2(D)

ds

)
.

(3.41)
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Applying the Gronwall inequality to (3.41), we can infer that

E sup
0≤s≤t∧τN

∥∥√ρnun(s)
∥∥p
L2(D)

≤ C
(

1 + E
∥∥∥√ρn0un0∥∥∥p

L2(D)

)
. (3.42)

Therefore,

E sup
0≤s≤t∧τN

∥∥√ρnun(s)
∥∥p
L2(D)

+ CE
∫ t∧τN

0

∥∥√ρnun(s)
∥∥p−2

L2(D)
‖∇un(s)‖2L2(D) ds

≤ C
(

1 + E
∥∥∥√ρn0un0∥∥∥p

L2(D)

)
.

(3.43)

By the argument similar to the case of p = 2, since t ∧ τN → t as N → ∞, letting N → ∞ in
(3.43), then

E sup
0≤s≤t

∥∥√ρnun(s)
∥∥p
L2(D)

+ CE
∫ t

0

∥∥√ρnun(s)
∥∥p−2

L2(D)
‖∇un(s)‖2L2(D) ds

≤ C
(

1 + E
∥∥∥√ρn0un0∥∥∥p

L2(D)

)
.

(3.44)

Taking the power p ≥ 1 to (3.15), it follows from (3.44) that

E

(∫ T

0

‖∇un(s)‖2L2(D) ds

)p
≤ C. (3.45)

Next, in order to get the tightness of ρnun, we need to estimate some increments in time of
ρnun in the space V ′. For this, we need the following estimates. First, it follows from (3.44) and
ρn ∈ L∞(0, T ;L∞(D)) that

ρnun ∈ Lp(Ω;L∞(0, T ;L2(D))). (3.46)

Then we have

∇(ρnun) ∈ Lp(Ω;L∞(0, T ;H−1(D))). (3.47)

From this, the continuity equation implies that

∂tρ
n ∈ Lp(Ω;L∞(0, T ;H−1(D))). (3.48)

For p ≥ 1, from (3.45), it holds that

un ∈ Lp(Ω;L2(0, T ;V )).

Since V ↪→ L6, then

un ∈ Lp(Ω;L2(0, T ;L6(D))), (3.49)

and

ρnun ∈ Lp(Ω;L2(0, T ;L6(D))). (3.50)

To get the another estimate of ρnun, we need the following lemma in [4, Theorem 1.1.1].

Lemma 3.1. Let T be a linear operator from Lp1(0, T ) into Lp2(D) and from Lq1(0, T ) into
Lq2(D) with q1 ≥ p1 and q2 ≤ p2. Then for any s ∈ (0, 1),T maps Lr1(0, T ) into Lr2(D), where
r1 = 1

s/p1+(1−s)/q1 , r2 = 1
s/p2+(1−s)/q2 .

When p1 = 2, p2 = 6, q1 =∞, q2 = 2 and s = 3
4 , it follows from Lemma 3.1, (3.46) and (3.50)

that

ρnun, un ∈ Lp(Ω;L8/3(0, T ;L4(D))). (3.51)
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By Hölder’s inequality and (3.51), it holds that∫ T

0

(∫
D

(ρnunun)2dx

)2/3

dt ≤
∫ T

0

(∫
D

(ρnun)4dx

)1/3(∫
D

(un)4dx

)1/3

dt

≤

((∫
D

(ρnun)4dx

)2/3

dt

)1/2(∫ T

0

(∫
D

(un)4dx

)2/3

dt

)1/2

≤ C
∫ T

0

(∫
D

(ρnun)4dx

)2/3

dt+ C

∫ T

0

(∫
D

(un)4dx

)2/3

dt

≤ C.
(3.52)

Then, we have

ρnunun ∈ Lp(Ω;L4/3(0, T ;L2(D))), (3.53)

and

∇(ρnunun) ∈ Lp(Ω;L4/3(0, T ;H−1(D))). (3.54)

In virtue of the definition of the norm of V ′, one deduces that

‖ρnun(t+ θ)− ρnun(t)‖V ′ = sup
ϕ∈V, ‖ϕ‖V =1

∫
D

[ρnun(t+ θ)− ρnun(t)]ϕdx.

Thus it follows from (3.1) that

E
∫ T−θ

0

‖ρnun(t+ θ)− ρnun(t)‖2V ′ dt = E
∫ T−θ

0

∥∥∥∥∥
∫ t+θ

t

d(ρnun)ds

∥∥∥∥∥
2

V ′

dt

≤ E
∫ T−θ

0

(J1 + J2 + J3 + J4 + J5 + J6)dt,

(3.55)

where

J1(t) :=

∥∥∥∥∥
∫ t+θ

t

div(ρnun ⊗ un)ds

∥∥∥∥∥
2

V ′

, J2(t) :=

∥∥∥∥∥
∫ t+θ

t

µ̄∆unds

∥∥∥∥∥
2

V ′

,

J3(t) :=

∥∥∥∥∥
∫ t+θ

t

ρnf(s, un)ds

∥∥∥∥∥
2

V ′

, J4(t) :=

∥∥∥∥∥
∫ t+θ

t

ρng(s, un)dW

∥∥∥∥∥
2

V ′

,

J5(t) :=

∥∥∥∥∥
∫ t+θ

t

∫
|z|Z<1

ρnF (un(x, s−), z) π̃(ds, dz)

∥∥∥∥∥
2

V ′

,

J6(t) :=

∥∥∥∥∥
∫ t+θ

t

∫
|z|Z≥1

ρnG (un(x, s−), z)π(ds, dz)

∥∥∥∥∥
2

V ′

.

For the term J1(t), one has

J
1/2
1 = sup

ϕ∈V ; ‖ϕ‖V =1

{∫
D

(∫ t+θ

t

div(ρnun ⊗ un)ds

)
ϕ(x)dx

}

≤ C
∫ t+θ

t

‖ρnunun‖L2(D) ds.

By Hölder’s inequality and (3.53), then

E
∫ T−θ

0

J1(t)dt . θ1/2

E(∫ T

0

‖ρnunun‖4/3L2(D) dt

)2
3/4

≤ Cθ1/2. (3.56)
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For the term J2(t), similarly to (3.56), we have

E
∫ T−θ

0

J2(t)dt ≤ E
∫ T−θ

0

(∫ t+θ

t

‖∇un‖L2(D) ds

)2

dt

≤ θE
∫ T−θ

0

∫ t+θ

t

‖∇un‖2L2(D) dsdt ≤ Cθ.

(3.57)

For the term J3(t), by Hölder’s inequality, it follows from the assumption (A) and (3.7) that

E
∫ T−θ

0

J3(t)dt ≤ CE
∫ T−θ

0

[∫ t+θ

t

‖ρn(s)‖L∞(D)

(
1 + ‖un‖2L2(D)

)
ds

]2

dt

≤ CθE

[
‖ρn‖2L∞(0,T ;L∞(D))

∫ T−θ

0

∫ t+θ

t

(
1 + ‖un(s)‖2L2(D)

)
dsdt

]
≤ Cθ.

(3.58)

For the term J4, in virtue of the Burkholder-Davis-Gundy inequality, Hölder’s inequality and the
condition on g, we obtain

J4 ≤
∫ T

0

E

(
sup

ϕ∈V,‖ϕ‖V =1

∫ t+θ

t

∫
D

ρng(s, un)ϕdxdW

)2

dt

≤
∫ T

0

E

(
sup

ϕ∈V,‖ϕ‖V =1

∫ t+θ

t

(∫
D

ρng(s, un)ϕdx

)2

ds

)
dt

≤
∫ T

0

(
E
∫ t+θ

t

‖ρn‖2L∞(D) ‖g(s, un)‖2L2(D) ds

)
dt (3.59)

≤
∫ T

0

(
E
∫ t+θ

t

‖ρn‖2L∞(D)

(
1 + ‖un‖2L2(D)

)
ds

)
dt

≤ CθE
∫ T

0

sup
0≤t≤T

‖ρn‖2L∞(D)

(
1 + ‖un‖2L2(D)

)
dt ≤ Cθ.

For the term J5, by the Burkholder-Davis-Gundy inequality and Hölder’s inequality, the assump-
tion (B) and (3.7) imply

J5 ≤
∫ T

0

E

(
sup

ϕ∈V,‖ϕ‖V =1

∫ t+θ

t

∫
|z|Z<1

∫
D

ρnG (un(x, s−), z)ϕdxπ̃(ds, dz)

)2

dt

≤ C
∫ T

0

E sup
ϕ∈V,‖ϕ‖V =1

∫ t+θ

t

∫
|z|Z<1

(∫
D

ρnG (un(x, s−), z)ϕdx

)2

µ(dz)dsdt

≤ C
∫ T

0

E
∫ t+θ

t

∫
|z|Z<1

‖ρn‖2L∞(D) ‖G (un(x, s−), z)‖2L2(D) µ(dz)dsdt

≤ C
∫ T

0

E
∫ t+θ

t

‖ρn‖2L∞(D)

(
1 + ‖un‖2L2(D)

)
dsdt

≤ CE
∫ T

0

θ sup
0≤t≤T

‖ρn‖2L∞(D)

(
1 + ‖un‖2L2(D)

)
dt ≤ Cθ.

(3.60)

Finally, for the term J6, similarly to (3.60), one has

J6 ≤ CE
∫ T−θ

0

θ sup
0≤t≤T

‖ρn‖2L∞(D)

(
1 + ‖un‖2L2(D)

)
dt ≤ Cθ. (3.61)
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Plugging (3.56)-(3.61) into (3.55), we obtain

E
∫ T−θ

0

‖ρn(t+ θ)un(t+ θ)− ρn(t)un(t)‖2V ′ dt ≤ Cθ
1
2 . (3.62)

Now, we want to get the estimates of the increment of un for the tightness of un. Note that

ρn(t+ θ) [un(t+ θ)− un(t)] = ρn(t+ θ)un(t+ θ)− ρn(t)un(t)− un(t) [ρn(t+ θ)− ρn(t)] , (3.63)

then we only need to estimate the term un(t) [ρn(t+ θ)− ρn(t)]. To this end, it follows from
Sobolev embedding theorem, Lemma 2.1, (3.45) and (3.48) that

E
∫ T−θ

0

‖un(t) [ρn(t+ θ)− ρn(t)]‖2
W−1, 3

2 (D)
dt

≤ E
∫ T−θ

0

(
‖un‖H1(D)

∫ t+θ

t

‖ρns ‖W−1, 3
2 (D)

ds

)2

dt

≤ Cθ2E

(
‖ρns ‖

2
L∞(0,T ;H−1(D))

∫ T

0

‖un(t)‖2H1(D) dt

)
≤ Cθ2.

(3.64)

This combining with (3.62) and (3.63) yields

E
∫ T−θ

0

‖ρn(t+ θ) [un(t+ θ)− un(t)]‖2
W−1, 3

2 (D)
dt ≤ Cθ 1

2 . (3.65)

Applying (3.7), then we have

E
∫ T−θ

0

‖un(t+ θ)− un(t)‖2
W−1, 3

2 (D)
dt ≤ Cθ 1

2 . (3.66)

4. Tightness property for the approximation solutions and convergence

4.1. Tightness property for the approximation solutions.
In this subsection, we shall show the tightness property for the approximation solutions in the

following lemma.

Lemma 4.1. Define

S = C(0, T ;Rd)×MN(Z × [0, T ])× L∞(0, T ;W−1,∞(D))

× L2(0, T ;L2(D))× L2(0, T ;W−α,2(D)), 0 < α <
6

13

equipped with its Borel σ-algebra. Let Πn be the probability on S which is the image of P on Ω
by the map: ω 7→ (Wn(ω, ·), πn(ω, ·), ρn(ω, ·), un(ω, ·), ρnun(ω, ·)), that is, for any B ⊆ S,

Πn(B) = P {ω ∈ Ω : (Wn(ω, ·), πn(ω, ·), ρn(ω, ·), un(ω, ·), ρnun(ω, ·)) ∈ B} .

Then the family Πn is tight.

Remark 4.1. We can also prove that un is tight in D([0, T ];Hw) as [52, 55], where D([0, T ];Hw)
denotes the space of H-valued weakly càdlàg functions.

In order to get the tightness of ρn, un and ρnun, we need the following Proposition in [66].

Proposition 4.1. Let X,B and Y be Banach spaces such that X ⊂⊂ B ⊂ Y . Assume 1 ≤ p ≤ ∞,
E is a set bounded in Lp(0, T ;X) and ‖y(t+ θ)− y(t)‖Lp(0,T−θ;Y ) → 0 as θ → 0 uniformly for

y ∈ E . Then E is relatively compact in Lp(0, T ;B).
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Proof of Lemma 4.1. Denote C(0,T ;Rd)×L∞(0,T ;W−1,∞(D))×L2((0, T )×D)×L2(0, T ;W−α,2(D))
by S1. Let Πn

1 be the probability on S1. We shall find for any ε subsets: Σε ∈ C(0, T ;Rd), Xε ∈
L∞(0, T ;W−1,∞(D)), Yε ∈ L2(0, T ;L2(D)) and Zε ∈ L2(0, T ;W−α,2(D)) are compact, such that
P (Wn /∈ Σε) ≤ ε

4 , P (ρn /∈ Xε) ≤ ε
4 , P (un /∈ Yε) ≤ ε

4 and P (ρnun /∈ Zε) ≤ ε
4 . We will prove these

results in the following four steps.
Step 1: Find a Σε ∈ C(0, T ;Rd) which is compact, such that P (Wn /∈ Σε) ≤ ε

4 . To this end.
For Σε we rely on classical results concerning the Brownian motion. For a constant Lε to be
chosen later, we consider the set

Σε =

{
W (·) ∈ C(0, T ;Rd) : sup

t1,t2∈[0,T ],|t1−t2|< 1
m6

m|W (t2)−W (t1)| ≤ Lε, ∀m ∈ N

}
.

Σε is relatively compact in C(0, T ;Rd) by Arzsela-Ascoli’s Theorem. Furthermore Σε is closed in
C(0, T ;Rd). Therefore Σε is a compact subset of C(0, T ;Rd). We can show that P (Wn /∈ Σε) ≤ ε

4 .

In fact, by the Chebyshev inequality P{ω : ξ(ω) ≥ r} ≤ 1
rk
E
[
|ξ(ω)|k

]
, we have

P{ω : Wn(ω, ·) /∈ Σε} ≤ P

[ ∞⋃
m=1

{
ω : sup

t1,t2∈[0,T ],|t1−t2|<m−6

|Wn(t1)−Wn(t2)| > Lε
m

}]

≤
∞∑
m=1

m6−1∑
i=0

(
m

Lε

)4

E

[
sup

iTm−6≤t≤(i+1)Tm−6

∣∣Wn(t)−Wn

(
iTm−6

)∣∣4]

≤ C
∞∑
m=1

(
m

Lε

)4 (
Tm−6

)2
m6 =

C

L4
ε

∞∑
m=1

1

m2
.

Therefore choosing L4
ε = 1

4Cε

(∑∞
m=1

1
m2

)−1
we obtain that P{ω : Wn(ω, ·) ∈ Σε} ≥ 1− ε

4 .

Step 2: To find an Xε ∈ L∞(0, T ;W−1,∞(D)) that is compact, such that P (ρn /∈ Xε) ≤ ε
4 .

For this, we introduce the space Y1 with the norm

‖y‖Y1 := ‖y‖L∞(0,T ;L∞(D)) +

∥∥∥∥∂y∂t
∥∥∥∥
L∞(0,T ;H−1(D))

,

then Y1 is a Banach space. For q > 0, E‖y‖qL∞(0,T ;L∞(D)) ≤ C and E
∥∥∥∂y∂t ∥∥∥q

L∞(0,T ;H−1(D))
≤ C,

define ‖y‖Y1
E

as the space of random variables y endowed with the norm

‖y‖Y1
E

:=
(
E‖y‖qL∞(0,T ;L∞(D))

) 1
q

+

(
E
∥∥∥∥∂y∂t

∥∥∥∥q
L∞(0,T ;H−1(D))

) 1
q

.

We choose Xε as a closed ball of radius rε centered at 0 in L∞(0, T ;W−1,∞(D)) with the norm
‖·‖Y1 . By Proposition 4.1, then Xε is compact.

It follows from (3.7), (3.48) and Chebyshev’s inequality that

P (ρn /∈ Xε) = P
(
‖ρn‖Y1 > rε

)
≤ 1

rε
E
(
‖ρn‖Y1

)
≤ 1

rε
‖y‖Y1

E
≤ C

rε
.

Choosing rε = 4Cε−1, we have P (ρn /∈ Xε) ≤ ε
4 . Then P{ω : ρn(ω, ·) ∈ Xε} ≥ 1− ε

4 .

Step 3: Find a Yε ∈ L2(0, T ;L2(D)) that is compact, such that P (un /∈ Yε) ≤ ε
4 . For this, we

introduce Y2 with the norm:

‖y‖Y2 := sup
0≤t≤T

‖y(t)‖L2(D) +

(∫ T

0

‖y(t)‖2V ds

) 1
2

+

(∫ T−θ

0

‖y(t+ θ)− y(t)‖2
W−1, 3

2 (D)
dt

) 1
2

,
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then Y2 is a Banach space. For 1 ≤ p <∞, E sup0≤t≤T ‖y(t)‖pL2(D) ≤ C, E
(∫ T

0
‖y(t)‖2V ds

) p
2 ≤ C

and E
∫ T−θ

0
‖y(t+ θ)− y(t)‖2

W−1, 3
2 (D)

dt ≤ C, define

‖y‖Y2
E

:=

(
E sup

0≤t≤T
‖y(t)‖pL2(D)

) 1
p

+

E(∫ T

0

‖y(t)‖2V ds

) p
2

 2
p

+ E

(∫ T−θ

0

‖y(t+ θ)− y(t)‖2
W−1, 3

2 (D)
dt

) 1
2

.

Choose Yε as a closed ball of radius r′ε centered at 0 in Y2 with the norm ‖·‖Y2 . Then Proposition

4.1 yields that Yε is compact in L2(0, T ;L2(D)). From (3.66) and Chebyshev’s inequality, one
deduces that

P (un /∈ Yε) = P
(
‖un‖Y2 > r′ε

)
≤ 1

r′ε
E
(
‖un‖Y2

)
≤ 1

r′ε
‖y‖Y2

E
≤ C

r′ε
.

Choosing r′ε = 4Cε−1, we have P (un /∈ Yε) ≤ ε
4 . Then P{ω : un(ω, ·) ∈ Yε} ≥ 1− ε

4 .

Step 4: Find a Zε ∈ L2(0, T ;W−α,2(D)), 0 < α < 6
13 that is compact, such that P (ρnun /∈

Zε) ≤ ε
4 . To this end, define the space Y3 with the norm:

‖y‖Y3 := ‖y(t)‖
L

8
3 (0,T ;L4(D))

+

(∫ T−θ

0

‖y(t+ θ)− y(t)‖2V ′dt

) 1
2

,

then Y3 is a Banach space. For 1 ≤ p < ∞ and y such that E‖y(t)‖p
L

8
3 (0,T ;L4(D))

≤ C and

E
∫ T−θ

0
‖y(t+ θ)− y(t)‖2V ′dt ≤ C, define

‖y‖Y3
E

:=

(
E‖y(t)‖p

L
8
3 (0,T ;L4(D))

) 1
p

+ E

(∫ T−θ

0

‖y(t+ θ)− y(t)‖2V ′dt

) 1
2

.

Take Zε as a closed ball of radius r̃ε centered at 0 in Y3 with the norm ‖·‖Y3 . From Proposition 4.1,

it holds that Zε is compact in L2(0, T ;W−α,2(D)) . On the other hand, (3.55) and Chebyshev’s
inequality imply

P (ρnun /∈ Zε) = P
(
‖ρnun‖Y3 > r̃ε

)
≤ 1

r̃ε
E
(
‖ρnun‖Y3

)
≤ 1

r̃ε
‖y‖Y3

E
≤ C

r̃ε
.

Choosing r̃ = 4Cε−1, we have P (ρnun /∈ Zε) ≤ ε
4 . Then P{ω : ρnun(ω, ·) ∈ Zε} ≥ 1− ε

4 .
To summarize, we can find suitable θ such that

P {ω : Wn ∈ Σε, ρ
n ∈ Xε, u

n ∈ Yε, ρnun ∈ Zε} ≥ 1− ε.

Hence

Πn
1 (Σε ×Xε × Yε × Zε) ≥ 1− ε. (4.1)

Since MN(Z× [0, T ]) endowed with the Prohorov’s metric is a separable metric space, by Theorem
3.2 in [59, pp.29], then it holds that the distributions of the family {πn, n ∈ N} are tight on
MN(Z× [0, T ]). Therefore, it follows from Corollary 1.3 in [47, pp.16] that the distribution of the
joint processes

{(Wn(ω, ·), πn(ω, ·), ρn(ω, ·), un(ω, ·), ρnun(ω, ·)) : n ∈ N}

are tight on S. The tightness property of Πn is thus proved. �
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4.2. Convergence.
In this subsection, we shall pass to the limit directly to get the solution. The following proof

differs from the approach of Da Parto-Zabczyk in [21]. It is based on the method used by Ben-
soussan in [2]. In the above Subsection, we know that Πn is tight on the space S = C(0, T ;Rd)×
MN(Z × [0, T ]) × L∞(0, T ;W−1,∞(D)) × L2(0, T ;L2(D)) × L2(0, T ;W−α,2(D)), 0 < α < 6

13 .
According to Jakubowski-Skorohod’s theorem, there exist a subsequence {nj}, and a probability

space (Ω̊, F̊, P̊ ) and random variables (W̊nj , π̊nj , ρ̊
nj , ůnj , ρ̊nj ůnj ); (W,π, ρ, u, h) with values in S,

such that the probability distribution of (W̊nj , π̊nj , ρ̊
nj , ůnj , ρ̊nj ůnj ) is Πnj and the probability

distribution of (W,π, ρ, u, h) is a Radon measure, and

(W̊nj , π̊nj , ρ̊
nj , ůnj , ρ̊nj ůnj )→ (W,π, ρ, u, h) in S, P̊ − a.s. (4.2)

Here W is F̊t = σ{ρ(s), u(s),W (s), π(s)}0≤s≤t-standard Brownian motion. In fact, we need to
prove that for s ≤ t and i2 = −1

E̊ [exp {iλ(W (t)−W (s)}] = exp

(
−λ

2

2
(t− s)

)
. (4.3)

It is sufficient to show that

E̊
[
exp {iλ(W (t)−W (s)} |F̊s

]
= exp

(
−λ

2

2
(t− s)

)
. (4.4)

Here E̊ denotes the mathematical expectation with respect to the probability space (Ω̊, F̊, P̊ ).

Note that if X is F̊ measurable and E̊(|Y |), E̊(|XY |) <∞, then

E̊(XY |F̊) = XE̊(Y |F̊), E̊(E̊(Y |F̊)) = E̊(Y ). (4.5)

Thus

E̊(XY ) = E̊
(
XE̊(Y |F̊)

)
. (4.6)

Using (4.6), we can prove (4.4) if the following equality is satisfied.

E̊ [exp{iλ(W (t)−W (s))}Λ(ρ, u,W, π)] = exp

(
−λ

2(t− s)
2

)
E̊ (Λ(ρ, u,W, π)) , (4.7)

for any continuous bounded functional Λ(ρ, u,W, π) on S depending only on the values of ρ, u,W, π

on (0, s). Since W̊nj (t)− W̊nj (s) is independent of Λ(ρ̊nj , ůnj , W̊nj , π̊nj ) and W̊nj is a Brownian
motion, then we have

E̊
[
exp{iλ(W̊nj (t)− W̊nj (s))}Λ(ρ̊nj , ůnj , W̊nj , π̊nj )

]
= E̊

[
exp{iλ(W̊nj (t)− W̊nj (s))}

]
E̊(Λ(ρ̊nj , ůnj , W̊nj , π̊nj ))

= exp

(
−λ

2(t− s)
2

)
E̊(Λ(ρ̊nj , ůnj , W̊nj , π̊nj )).

(4.8)

Taking j →∞, (4.2) and the continuity of Λ imply (4.7). Then W (t) is a F̊t-standard Brownian
motion.

For a random measure η on Z × [0, T ] and for any A ∈ Z, where Z is the Borel sets on Z,
define the measure valued process Nη(t) by Nη(t) = {A 7→ Nη(t, A) := η(A× (0, t])} , t ∈ [0, T ].
We have the following proposition:

Proposition 4.2. π̊nj and π are time homogeneous Poisson random measures on B(Z)×B([0, T ])

over (Ω̊, F̊, P̊ ) with intensity measure µ.

Proof. We shall prove the Proposition by the definition. Since π̊n and πn have the same distribu-
tion and πn is a time homogeneous Poisson random measure, from [9, Proposition A.5, Remark
A.6], it holds that π̊n satisfies (1)-(3) of Definition 2.2.
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Therefore, we only need to prove that π̊n satisfies (4) of Definition 2.2 with the filtration

F̊t = σ {W (s), π(s), ρn(s), un(s), ρ, u; 0 ≤ s ≤ t} , t ∈ [0, T ]. To this end, fix n ∈ N, t0 ∈ [0, T ] and

t0 ≤ s ≤ t. The definition of F̊t implies that π̊n is F̊t-adapted. Then it remains to prove that

X̊n = Nπ̊n(t)−Nπ̊n(s) is independent of F̊t0 .

It follows from (2) of Definition 2.2 that the random variable X̊n = Nπ̊n(t) − Nπ̊n(s) is in-

dependent of Nπ̊n(t0), hence we only need to prove that X̊n is independent of ρ̊n(r), ůn(r) and
ρ(r), u(r) for any r ≤ t0.

Fix r ∈ [0, t0]. Since the distributions of (W̊n, π̊n, ρ̊
n, ůn) and (Wn, πn, ρ

n, un) are same,

then L(ρ̊n|[0,r], ůn|[0,r], X̊n) = L(ρn|[0,r], un|[0,r], Xn), where Xn = Nπn(t) − Nπn(s) and L(h)
denotes the distribution of h. Note that π̊n = π (see [9, Theorem D.1]), (ρn, un) is the so-
lution of the stochastic approximation equations, then it is adapted to the σ-algebra gener-
ated by π̊n. Therefore, ρn|[0,r], un|[0,r] are independent of Xn. From [9, Remark A.6] and

L(ρ̊n|[0,r], ůn|[0,r], X̊n) = L(ρn|[0,r], un|[0,r], Xn), one can deduce that ρ̊n|[0,r], ůn|[0,r] are inde-

pendent of X̊n. By [9, Lemma 9.3], it holds that X̊n is independent of ρ|[0,r], u|[0,r]. Since
π(ω) = π̊n(ω) for all ω ∈ Ω and n ∈ N, then π is a time homogeneous Poisson random mea-
sure. �

Now we need to prove that (W̊nj , π̊nj , ρ̊
nj , ůnj ) satisfies the equation (3.1), that is,

Pn[ρ̊nj ůnj (t)] +

∫ t

0

Pn [div(ρ̊nj ůnj ⊗ ůnj )− ν∆ůnj ] ds

= Pn[ρ̊nj ůnj (0)] + Pn
[∫ t

0

ρ̊njf(s, ůnj )ds+

∫ t

0

ρ̊njg(s, ůnj )dW̊nj

]
(4.9)

+ Pn
∫ t

0

∫
|z|Z<1

ρ̊njF (̊unj (x, s−), z) ˜̊πnj (ds, dz)

+ Pn
∫ t

0

∫
|z|Z≥1

ρ̊njG (̊unj (x, s−), z) π̊nj (ds, dz),

where Pn : L2(D)→ Xn is the projection onto Xn. To this end, we define

ξn(t) = Pn[ρnun(t)− ρnun(0)] +

∫ t

0

Pn [div(ρnun ⊗ un)− ν∆un] ds

− Pn
[∫ t

0

ρnf(s, un)ds+

∫ t

0

ρng(s, un)dWn

]
− Pn

∫ t

0

∫
|z|Z<1

ρnF (un(x, s−), z) π̃n(ds, dz)

− Pn
∫ t

0

∫
|z|Z≥1

ρnG (un(x, s−), z)πn(ds, dz),

and

Zn =

∫ T

0

‖ξn(t)‖2H−1(D)dt.

Of course

Zn = 0, P − a.s.
Let

ξ̊nj (t) = Pn[ρ̊nj ůnj (t)− ρ̊nj ůnj (0)] +

∫ t

0

Pn
[
div(ρ̊n

j

ůn
j

⊗ ůnj )− ν∆ůnj
]
ds

− Pn
[∫ t

0

ρ̊njf(s, ůnj )ds+

∫ t

0

ρ̊njg(s, ůnj )dW̊nj

]
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− Pn
∫ t

0

∫
|z|Z<1

ρ̊njF (̊unj (x, s−), z) ˜̊πnj (ds, dz)

− Pn
∫ t

0

∫
|z|Z≥1

ρ̊njG (̊unj (x, s−), z) π̊nj (ds, dz).

and

Z̊nj =

∫ T

0

‖ξ̊nj (t)‖2H−1(D)dt.

We have the following proposition:

Proposition 4.3. Z̊nj = 0 P̊ − a.s., that is, (W̊nj , π̊nj , ρ̊
nj , ůnj ) satisfies the equation (3.1).

Proof. Here the difficulty comes from the presence of the stochastic integrals in Zn. By Theorem
2.4 and Corollary 2.5 in [10], we can infer that

L(ρn, un, ξn,Wn, πn) = L(ρ̊nj , ůnj , ξ̊nj , W̊nj , π̊nj ). (4.10)

Note that Z̊nj is continuous as a function of ξ̊nj if ůnj belongs to a finite-dimensional subspace
of H1(D). In view of (4.10) and the continuity of Z̊nj , one deduces that the distribution of Z̊nj

is equal to the distribution of Znj on R+, that is,

E̊φ(Z̊nj ) = Eφ(Znj ), (4.11)

for any φ ∈ Cb(R+), where Cb(X) is the space of continuous bounded functions defined on X.
Now, let ε > 0 be an arbitrary but fixed number and φε ∈ Cb(R+) defined by

φε =

{
y
ε , 0 ≤ y < ε;

1, y ≥ ε.

One can check that

P̊ (Z̊nj ≥ ε) =

∫
Ω̊

1[ε,∞]Z̊
njdP̊ ≤

∫
Ω̊

1[0,ε]
Z̊nj

ε
dP̊ +

∫
Ω̊

1[ε,∞]Z̊
njdP̊ .

Hence by the definition of E̊(Z̊nj ), we can infer that

P̊ (Z̊nj ≥ ε) ≤ E̊φε(Z̊nj ),

which, together with (4.11) implies that

P̊ (Z̊nj ≥ ε) ≤ Eφε(Znj ).

By the fact that (ρn, un,Wn, πn) satisfies the Galerkin equation, from the above inequality, it
holds that

P̊ (Z̊nj ≥ ε) ≤ Eφε(Znj ) = 0, (4.12)

for any ε > 0. Since ε > 0 is arbitrary, from (4.12), we can infer that

Z̊nj = 0 P̊ − a.s.. (4.13)

It follows from (4.13) that (W̊nj , π̊nj , ρ̊
nj , ůnj ) satisfies the equation (3.1). �

Now, we want to pass to the limit directly. To this end, we need the following proposition and
lemma (see [41, Chapter 3]).

Proposition 4.4 (Uniform integrability). If there exists a nonnegative measurable function f in

R+, such that lim
x→∞

f(x)
x = ∞ and supα∈Γ E[f(|Xα|)] < ∞. Then {Xα, α ∈ Γ} are uniformly

integrable.
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Lemma 4.2 (Vitali’s convergence Theorem). Suppose p ∈ [1,∞), {Xn} ∈ Lp and {Xn} converges
to X in probability. Then the following are equivalent:

(1) Xn
Lp→ X;

(2) the variables |Xn|p, n ∈ N are uniformly integrable;
(3) E(|Xn|p)→ E(|X|p).

Let us denote the subsequence (ρ̊nj , ůnj ), j ≥ 1 by (ρ̊n, ůn). Since (ρ̊n, ůn) and (ρn, un) has
the same distribution, thus by (3.44) and (3.45), we have

sup
n

E̊
(

sup
0≤s≤T

∥∥∥√ρ̊nůn∥∥∥2p

L2(D)

)
≤ C, (4.14)

sup
n

E̊

(∫ T

0

‖∇ůn(s)‖2L2(D) ds

)
≤ C. (4.15)

Proof of Theorem 1.1. In order to prove Theorem 1.1, we will break the limits into deterministic
and stochastic parts. First, we pass the limits of the deterministic parts and finally pass the
limits of the stochastic parts.
Taking the limits of deterministic parts: Note that ρ̊n ∈ L4(Ω̊;L∞(0, T ;L∞(D))), then

ρ̊n → ρ weakly star in L2(Ω̊;L∞(0, T ;L∞(D))), (4.16)

and
E̊ sup
t∈[0,T ]

‖ρ̊n‖4W−1,∞(D) ≤ C. (4.17)

This together with Proposition 4.4, (4.2) and Vitali’s convergence Theorem implies

ρ̊n → ρ strongly in L2(Ω̊;L∞(0, T ;W−1,∞(D))). (4.18)

By (4.15) we can infer that the sequence ůn contains a subsequence, still denoted by ůn, that
satisfies

ůn → u weakly in L2(Ω̊;L2(0, T ;H1(D))). (4.19)

Similar, by the fact ρ̊n(ω) ∈ L∞(0, T ;L∞(D)), in view of (4.14), it holds that

ůn → u weakly star in L4(Ω̊;L∞(0, T ;L2(D))). (4.20)

Let us consider the positive nondecreasing function f(x) = x2 in Proposition 4.4. The function

f(x) obviously satisfies lim
x→∞

f(x)
x = ∞. Thanks to the estimate E̊ supt∈[0,T ] ‖ůn‖

4
L2(D) ≤ C,

we have that supn≥1 E̊f(‖ůn‖2L2(0,T ;L2(D))) ≤ C. By Proposition 4.4, we see that the family{
‖ůn‖2L2(0,T ;L2(D)) : n ∈ N

}
is uniformly integrable with respect to the probability measure. From

Vitali’s convergence Theorem and (4.2), one deduces that

ůn → u strongly in L2(Ω̊;L2(0, T ;L2(D))). (4.21)

Next, from (4.14), it holds that

ρ̊nůn → h weakly star in L2(Ω̊;L∞(0, T ;L2(D))). (4.22)

By (4.14), we have E̊ supt∈[0,T ] ‖ρ̊nůn‖
4
L2(D) ≤ C. This yields that E̊ supt∈[0,T ] ‖ρ̊nůn‖

4
W−α,2(D) ≤

C. It follows from (4.2) and Vitali’s convergence Theorem that

ρ̊nůn → h strongly in L2(Ω̊;L2(0, T ;W−α,2(D))). (4.23)

From the fact that ‖fg‖W−1,6(D) ≤ C ‖f‖W−1,∞(D) ‖g‖H1(D) in Lemma 2.1, (4.18) and (4.19),

then one has
ρ̊nůn → ρu weakly in L2(Ω̊;L2(0, T ;W−1,6(D))). (4.24)

This together with (4.23) implies that
h = ρu. (4.25)
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It follows form (3.53) that

ρ̊nůnůn → h̄ weakly in L2(Ω̊;L4/3(0, T ;L2(D))). (4.26)

Similarly, by the fact that ‖fg‖W−1,3(D) ≤ C ‖f‖W−1,6(D) ‖g‖H1(D) in Lemma 2.1, and (4.19),

(4.23) and (4.25), we can infer that

ρ̊nůnůn → ρuu weakly in L2(Ω̊;L1(0, T ;W−1,3(D))). (4.27)

Then h̄ = ρuu. By (4.21), the continuity of f and g, Vitali’s convergence Theorem imply that

f(t, ůn)→ f(t, u) strongly in L2(Ω̊;L2(0, T ;L2(D))), (4.28)

and

g(t, ůn)→ g(t, u) strongly in L2(Ω̊;L2(0, T ;L2(D))). (4.29)

Taking the limits of stochastic parts: First, we show that∫ t

0

ρ̊ng(s, ůn(s))dW̊n(s)→
∫ t

0

ρg(s, u(s))dW (s) weakly in L2(Ω̊;L2(0, T ;L2(D))). (4.30)

To deal with the stochastic integral, we introduce the function:

G̃ε(t) =
1

ε

∫ t

0

J

(
t− s
ε

)
G̃(s)ds, (4.31)

where J is the standard mollifier, G̃(s) = ρ(s)g(s, u(s)). Set G̃n(s) := ρ̊n(s)g(s, ůn(s)). Note that

E̊
∫ T

0

∥∥∥G̃ε(t)∥∥∥2

L2(D)
dt ≤ E̊

∫ T

0

∥∥∥G̃(t)
∥∥∥2

L2(D)
dt, (4.32)

and

G̃ε(t)→ G̃(t) in L2(0, T ;L2(D)). (4.33)

Since
∫ t

0
G̃n(s)dW̊n(s) ∈ L2(Ω̊;L2(D)), then for ∀φ ∈ L2(Ω̊;L2(D)), there exists a ξ such that

E̊
〈
φ,

∫ t

0

G̃n(s)dW̊n(s)

〉
→ E̊ 〈φ, ξ〉 . (4.34)

Next, we will show that ξ =
∫ t

0
G̃(s)dW (s). Integrating by parts, we obtain∫ t

0

G̃nε (s)dW̊n(s) = G̃nε (t)W̊n(t)−
∫ t

0

[G̃nε (s)]sW̊n(s)ds. (4.35)

Letting n→∞ in (4.35), in virtue of (4.2) and (4.29), we can obtain∫ t

0

G̃nε (s)dW̊n(s) ⇀ G̃ε(t)W (t)−
∫ t

0

[G̃ε(s)]sW (s)ds =

∫ t

0

G̃ε(s)dW (s). (4.36)

Here the symbol “⇀” denotes weak convergence. Since

E̊
∥∥∥∥∫ t

0

G̃nε (s)dW̊n(s)

∥∥∥∥2

L2(D)

= E̊
(∫ t

0

‖G̃nε (s)‖2L2(D)ds

)
≤ E̊

(∫ t

0

‖ρ̊ng(s, ůn(s))‖2L2(D)ds

)
≤ C,

(4.37)

then it follows from Remark 2.1 that∫ t

0

G̃nε (s)dW̊n(s) ⇀

∫ t

0

G̃ε(s)dW (s) in L2(Ω̊;L2(D)). (4.38)

That is, ∀φ ∈ L2(Ω̊;L2(D)), we have

E̊
〈
φ,

∫ t

0

G̃nε (s)dW̊n(s)

〉
→ E̊

〈
φ,

∫ t

0

G̃ε(s)dW (s)

〉
. (4.39)
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Note that

E̊
〈
φ,

∫ t

0

G̃n(s)dW̊n(s)

〉
− E̊

〈
φ,

∫ t

0

G̃(s)dW (s)

〉
= E̊

〈
φ,

∫ t

0

[G̃n(s)− G̃nε (s)]dW̊n(s)

〉
+ E̊

〈
φ,

∫ t

0

G̃nε (s)dW̊n(s)−
∫ t

0

G̃ε(s)dW (s)

〉
(4.40)

+ E̊
〈
φ,

∫ t

0

[G̃ε(s)− G̃(s)]dW (s)

〉
:= H1 +H2 +H3.

For the first term H1, the Cauchy-Schwarz inequality, (4.29) and (4.32) yield that

E̊
〈
φ,

∫ t

0

[G̃n(s)− G̃nε (s)]dW̊n(s)

〉

≤
(
E̊‖φ‖2L2(D)

) 1
2

(
E̊
∥∥∥∥∫ t

0

[G̃n(s)− G̃nε (s)]dW̊n(s)

∥∥∥∥2

L2(D)

) 1
2

≤
(
E̊‖φ‖2L2(D)

) 1
2 E̊
(∫ t

0

∥∥∥G̃n(s)− G̃nε (s)
∥∥∥2

L2(D)
ds

) 1
2

→ 0,

(4.41)

as n → ∞ and ε → 0. Similar as H1, for the term H3, it follows from the Cauchy-Schwarz

inequality and (4.33) that E̊
〈
φ,
∫ t

0
[G̃ε(s)− G̃(s)]dW (s)

〉
→ 0 as n → ∞ and ε → 0. This

together with (4.39), (4.40) and (4.41) implies that ξ =
∫ t

0
G̃(s)dW (s). The proof of (4.30) is

thus complete.
Next, we show that∫ t

0

∫
|z|Z<1

Pn [ρ̊nF (̊un(x, s−), z)] ˜̊πn(ds, dz) ⇀

∫ t

0

∫
|z|Z<1

ρF (u(x, s−), z) π̃(ds, dz) (4.42)

in M2(Ω̊, [0, T ], L2(D)), which is the space of all F̊t-martingales Mt such that E̊
∫ T

0
‖Mt‖2L2(D) dt <

∞. From (4.21) and the continuity of F (̊un(x, s−), z), we can infer that Pn [F (̊un(x, s−), z)]

converges to F (u(x, s−), z) in L2(Z, µ;L2(D)) almost everywhere (ω̊, s) ∈ Ω̊× [0, T ]. Thanks to
the convergence (4.16), it holds that

Pn [ρ̊nF (̊un(x, s−), z)] ⇀ ρF (u(x, s−), z) in L2(Ω̊× [0, T ];L2(Z, µ;L2(D))). (4.43)

On the other hand, for any ψ ∈ L2(Ω̊× [0, T ];L2(Z, µ;L2(D))), one has∫ t

0

∫
|z|Z<1

〈Pn [ρ̊nF (̊un(x, s−), z)] , ψ〉 ˜̊πn(ds, dz)−
∫ t

0

∫
|z|Z<1

〈ρF (u(x, s−), z) , ψ〉 π̃(ds, dz)

=

∫ t

0

∫
|z|Z<1

〈Pn [ρ̊nF (̊un(x, s−), z)] , ψ〉 (˜̊πn − π̃)(ds, dz) (4.44)

+

∫ t

0

∫
|z|Z<1

{〈Pn [ρ̊nF (̊un(x, s−), z)]− ρF (u(x, s−), z) , ψ〉} π̃(ds, dz).

Note that all the integrals in (4.44) are well-defined thanks to the discussion above. Since π̊n = π
for any n almost surely, by [9, Proposition B.1], we can infer that the first term on the right-hand
side of (4.44) goes to 0 as n → ∞. It follows from the continuity of the stochastic integral (as

linear functional from M2([0, T ], L2(Z, µ;L2(D))) into M2(Ω̊× [0, T ];L2(D))) and (4.43) that the
second term on the right-hand side of (4.44) also converges to zero as n→∞. Similarly, thanks
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to
∫
|z|Z≥1

|z|pµ(dz) <∞,∀p ≥ 1, one deduces that
∫ t

0

∫
|z|Z≥1

Pn [ρ̊nG (̊un(x, s−), z)] π̊n(ds, dz) ⇀∫ t
0

∫
|z|Z≥1

ρG (u(x, s−), z)π(ds, dz). The proof of Theorem 1.1 is thus complete. �
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