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Abstract. The rotation-modified Kadomtsev-Petviashvili equation describes

small-amplitude, long internal waves propagating in one primary direction in
a rotating frame of reference. The main investigation is the existence and

properties of its solitary waves. The existence and non-existence results for

the solitary waves are obtained, and their regularity and decay properties are
established. Various characterizations are given for the ground states and

their cylindrical symmetry is demonstrated. When the effects of rotation are

weak, the energy minima constrained by constant momentum are shown to be
nonlinearly stable. The weak rotation limit of solitary waves as the rotation

parameter tends to zero is studied.

1. Introduction

The rotation-modified Kadomtsev-Petviashvili (RMKP) equation

(1.1) (ut − βuxxx + (u2)x)x + uyy − γu = 0

describes [17, 18] small-amplitude, long internal waves in a rotating fluid propa-
gating in one dominant direction with slow transverse effects, where the effects of
rotation balance with weakly nonlinear and dispersive effects. Here, u(t, x, y) rep-
resents the wave displacement, t ∈ R+ is a timelike variable, x ∈ R is a spatial
variable in the dominant direction of wave propagation, and y ∈ R is a spatial
variable in a direction transverse to the x-direction. The coefficient β determines
the type of dispersion; In case β < 0 (negative dispersion), the equation models
gravity surface waves in a shallow water channel and internal waves in the ocean,
while in case β > 0 (positive dispersion) it models capillary surface waves or oblique
magneto-acoustic waves in plasma. The parameter γ > 0 measures the effects of
rotation and is proportional to the Coriolis force.

In case γ = 0, namely in the absence of rotation effects, (1.1) reduces to the
(usual) Kadomtsev-Petviashvili equation [22]

(1.2) (ut − βuxxx + (u2)x)x + uyy = 0,

method and in the absence of y-dependence, it reduces to the Ostrovsky equa-
tion [34]

(1.3) (ut − βuxxx + (u2)x)x − γu = 0.

The equation (1.1) may be viewed as modified from the Kadomtsev-Petviashvili
equation (1.2) to accommodate the effects of rotation, on one hand, and as extended
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from the Ostrovsky equation (1.3) with allowance for weak transverse effects∗, on
the other hand.

Existence and properties of localized traveling waves, commonly referred to as
solitary waves, are important in general in the study of nonlinear dispersive equa-
tions. In particular, it is of great interest whether those plane solitary waves remain
stable with respect to transverse perturbations and effects of rotation, and if not,
what kind of localized two-dimensional structures may emerge. Our main results
include the existence of solitary waves of (1.1) and their geometric properties, the
existence and the symmetry property of ground states, conditions for stability of
ground states, and the weak rotation limits. Particular emphasis is given to the
effects of rotation. In many geophysical problems, the effects of rotation on the
dynamics of fluid flows and wave motions are subtle and require special attention
[31, 35].

To our knowledge, (1.1) has not been studied analytically although it has been
studied by means of numerical computations and formal analysis in various geo-
metrical settings. The purpose of the present work is to establish fundamental
analytical results regarding (1.1). It is perhaps more interesting to study (1.1) in
the setting of a bounded slab, i.e. 0 < y < b for some b > 0. Laboratory experi-
ments [31] and numerical computations [1, 19] indicate that solitary-like waves are
found in such a setting whose wave fronts are curved in a direction transverse to
the wave propagation, which are accompanied by trailing Poincaré waves, and that
these effects are known to become more pronounced as the effects of rotation are
increased. We are planning to pursue this direction analytically in future.

Remark on the well-posedness. Prior to our development on solitary waves,
we need to understand the (local) well-posedness of the Cauchy problem associated
to (1.1). Without a local existence result in a suitable function space that contains
solitary waves, the question of stability or instability has no clear significance. Upon
the inspection of the equation, the local well-posedness is established in function
spaces consisting of functions which are x-derivatives of L2 functions. For k a
positive integer, let

Ḣ−kx (R2) = {f ∈ S ′(R2) : ξ−kf̂(ξ, η) ∈ L2(R2)}

equipped with the norm ‖f‖−k,x = ‖ξ−kf̂‖L2(R2). For s > 0 a real parameter, let

Xs = {f ∈ Hs(R2) : (ξ−1f̂)∨ ∈ Hs(R2)}

with its norm ‖f‖Xs = ‖f‖Hs(R2) + ‖(ξ−1f̂)∨‖Hs(R2). The operator ∂−kx , with k

a positive integer, acts on Ḣ−kx (R2) and is defined via the Fourier transform as
(∂−kx u)∧(ξ, η) = (iξ)−kû(ξ, η).

Using the parabolic regularization and a compactness argument then we establish
the following local well-posedness result of (1.1).

Theorem 1.1 (Local well-posedness). Let β 6= 0 and γ > 0. If φ ∈ Xs for s > 2,
then there exist T > 0 and the unique solution u = u(t) ∈ C([0, T ];Xs) to (1.1)
with u(0, x, y) = φ(x, y) such that ut is computed with respect to the topology of
Hs−3(R3). Moreover, the map φ 7→ u(t) is continuous in the Hs-norm.

∗In many of earth’s lakes, sea straits, and costal regions, the transverse scale is not negligible
when compared to the Rossby radius [31], indicating that the weak transverse effects may not be

ignored.
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The proof is discussed in the appendix.
It is standard to show that the solution u(t) obtained in Theorem 1.1 satisfies

the conservation laws

E(u(t)) = E(φ) and V (u(t)) = V (φ) for t ∈ [0, T ),

where

(1.4) E(u) =
∫

R2

(
1
2
βu2

x +
1
3
u3 +

1
2

(∂−1
x uy)2 +

1
2
γ(∂−1

x u)2

)
dxdy

and

(1.5) V (u) =
1
2

∫
R2

u2 dxdy,

express, respectively, the energy and the momentum. and Moreover, the zero-
mass condition† in the x-variable∫ ∞

−∞
u(t;x, y) dx = 0

holds for t ∈ (0, T ). However this condition does not give an immediate L1-
integrability of u(t;x, y).

The global well-posedness at this point is open. The conservation laws suggest
that a natural space to establish global well-posedness is the “energy” space X1.
The proof of the above theorem is based on the rather general idea of the parabolic
regularization, and it is proved in Xs for s > 2. To achieve well-posedness in lower
X1, therefore one must study closely the dispersive property and the behavior of
the nonlinearity of (1.1).

We now define the function space in which solitary waves of (1.1) are constructed
and their stability analysis will be performed. Denoted by X is the closure of
∂x(C∞0 (R2)) with the norm

‖u‖2X = ‖u‖2L2 + ‖ux‖2L2 + ‖∂−1
x uy‖2L2 + ‖∂−1

x u‖2L2 ,

where ∂x(C∞0 (R2)) is the space of functions of the form ∂xϕ with ϕ ∈ C∞0 (R2).
Denoted by Y , the function space for the solitary waves of (1.2), is analogously the
closure of ∂x(C∞0 (R2)) with the norm

‖u‖2Y = ‖u‖2L2 + ‖ux‖2L2 + ‖∂−1
x uy‖2L2 .

Note that [8, Remark 1.1] if u ∈ Y and ϕ ∈ Lqloc(R2), 2 6 q < +∞, with ∂xϕ = u
then v = ∂xϕ ∈ L2(R2) is well-defined and is denoted by ∂−1

x uy.
A solitary wave of (1.1) refers to as a traveling-wave solution of the form u(x−

ct, y), where u ∈ X and c ∈ R is the speed of wave propagation. Alternatively, it is
a solution u = u(x, y) in X of the equation

(1.6) −cux − βuxxx + (u2)x + ∂−1
x uyy − γ∂−1

x u = 0

for some c ∈ R. Section 2 concerns the existence and the non-existence of solitary
waves of (1.1). of c. In the negative-dispersion case (β < 0) which is relevant to
(gravity) water waves, there are no solitary waves of (1.1) and any two-dimensional
initial disturbance eventually disperses out. For β > 0 and c < 2

√
βγ solitary waves

†For the Korteweg-de Vries (KdV) equation and many others, the total mass
R

u is an integral
of motion, which may take an arbitrary constant (determined by the initial data). For (1.1),

however, it is not only an integral of motion but also a constraint which requires that only initial

data satisfying the zero-mass condition may be considered.
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of (1.1) are obtained as an application of the concentration-compactness principle
[26]. Solitary waves of (1.1) are shown to be smooth, and they decay algebraically
as (x2 + y2)−1 at infinity.

It is known in [8] that (1.2) with β > 0, which is referred to as the KP-I equation,
has no solitary waves in Y if c > 0. Our result shows that (1.1) when β > 0 has
solitary waves for 0 6 c < 2

√
βγ, indicating the effects of rotation shall not be

ignored. Interpreted in the water-wave context [18], this means that when the
initial soliton disperses out, a new pulse whose shape is close to a Kadomtsev-
Petviashvili solitary wave forms from the leading edge of radiation so that some
sort of recurrence phenomenon takes place.

A ground state of (1.1) is a minimizer for the functional

(1.7) S(u) = E(u)− cV (u)

among all nontrivial solutions in X of (1.6). In what follows, G(c, β, γ) denotes the
set of ground states for parameters c, β and γ. Section 3 then provides for β > 0 and
c < 2

√
βγ an existence proof of ground states of (1.1) and gives characterizations of

G(c, β, γ). In particular, solitary waves of (1.1) obtained in Section 2 are shown to
be exactly the ground states of (1.1). This alternative characterization of a ground
state of (1.1) combined with the unique continuation principle [30] is then used
in Section 4 to demonstrate the cylindrical symmetry of ground states of (1.1).
Section 5 demonstrates for β > 0 and c < 0 that the weak rotation limit of ground
states of (1.1) as γ → 0 is a ground state of (1.2).

Finally, Section 6 is devoted to the stability property of the solitary waves of
(1.1). Let us define the precise notion of orbital stability.

Definition 1.2. A set S ⊂ X is said to be X-stable if for any ε > 0 there exists,
correspondingly, δ > 0 such that for any φ ∈ X

⋂
Xs, s > 2, with

inf
u∈S
‖φ− u‖X < δ

the unique solution u(t) ∈ C([0, T ), X
⋂
Xs) of (1.1) with the initial condition

u(0) = φ satisfies
sup

06t<T
inf
u∈S
‖u(t)− u‖X < ε,

where T > 0 is the maximal time of existence. Otherwise, S is said to be X-
unstable.

A standard method of studying orbital stability for a general class of nonlinear
Hamiltonian systems, which hinges on that solitary waves are critical points of
some functional constructed with the help of invariant quantities of the evolution
equation ([16], for instance), uses a certain hypothesis on the spectrum of the second
derivative of such a functional. Adapted to our setting, a solitary wave uc of (1.1)
is a critical point of d(c) = E(uc) − cV (uc), where c is the wave speed, and it
is orbitally stable provided that d′′(c) > 0. Unfortunately, the usual scaling and
dilation technique does not lead to an explicit dependence of d(c) on c here, and
thus it is difficult to verify the convexity hypothesis. The difficulty, on the other
hand, is avoided by showing directly that the solitary waves considered are global
minimizers of energy constrained by constant momentum. Theorem 6.1 establishes
that the set of energy minimizers is X-stable if the rotation parameter γ > 0 is
sufficiently small. equations.
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The existence and properties of solitary waves of the Kadomtsev-Petviashvili
equation (1.2) and generalized Kadomtsev-Petviashvili equation, that is, (1.2) with
power nonlinearity up+1 in place of u2, have been studied in many works including
[7, 8, 9, 10, 23, 29]. A main difference of (1.1) from (1.2) from the point of view
of the mathematical analysis of solitary waves is the lack of scaling properties.
Specifically, in case γ = 0 in (1.6), one may assume that c = −1 since the scaling
change uc(x, y) = |c|u(|c|1/2x, |c|y) transforms (1.6) in u into the same equation in
uc with c = −1, whereas such a scaling property is not available if γ > 0. Instead,
uc solves (1.6) with γ replaced by γ|c|−2, concentrating its energy on the rotation
term. Consequently, the traditional method for stability based on a Lyapunov
function ([16], for instance) is difficult to apply.

Our analysis of the existence and properties of solitary waves of (1.1) is closely re-
lated to that of the Ostrovsky equation (1.3) in [24, 25, 28, 37]. While solitary waves
of the Korteweg-de Vries equation are quite different from those of the Kadomtsev-
Petviashvili equaiton, in the presence of the effects of rotation, one-dimensional
solitary waves share much in common geometric and dynamic properties with two-
dimensional solitary waves.

The lack of scaling property also occurs in the Ostrovsky equation (1.3). It is an
interesting future direction to develop a new method to study nonlinear stability
for a class of equations without a good scaling property.

2. Existence of solitary waves

Our investigation is the existence and non-existence of solitary waves of (1.1)
and their geometric properties. A non-existence proof of solitary waves for β 6 0
uses Pohojaev type identities. An existence proof for β > 0 and c < 2

√
βγ uses the

concentration-compactness principle. These solitary waves are shown to be smooth
and decay algebraically like (x2 + y2)−1 at infinity.

Proposition 2.1 (Non-existence of solitary waves). If β 6 0 then (1.6) does not
admit any nontrivial solution u ∈ H1(R2) ∩ L∞loc(R2) and uxx, uyy ∈ L2

loc(R2).

Based on the Pohojaev type identities, the proof is similar to that of [8, Theorem
1.1] for the generalized Kadomtsev-Petviashvili equation, and hence is omitted.

The next theorem establishes for β > 0 and c < 2
√
βγ the existence of solitary

waves of (1.1) in the space X. Compared with the Kadomtsev-Petviashvili equation
(1.2) with β > 0, where solitary waves exist only for c < 0, (1.1) with γ > 0 possesses
solitary waves for 0 6 c < 2

√
βγ, additionally.

Theorem 2.2. If β > 0 and c < 2
√
βγ then (1.6) possesses a nontrivial solution

in X.

Our approach is variational. Let

(2.1) G(u) = G(u; c, β, γ) =
∫

R2

(
−cu2 + βu2

x + (∂−1
x uy)2 + γ(∂−1

x u)2
)
dxdy

and

(2.2) K(u) = −
∫

R2
u3 dxdy.

It is immediate to see that

S(u) =
1
2
G(u)− 1

3
K(u),



6 ROBIN CHEN, VERA HUR, AND YUE LIU

where the functional S(u) is defined in (1.7). If the minimization problem to find

(2.3) Iλ = Iλ(c, β, γ) = inf{G(u; c, β, γ) : u ∈ X, K(u) = λ}

has a nontrivial solution u ∈ X for some λ > 0 then it satisfies the corresponding
Euler-Lagrange equation

−cu− βuxx + ∂−2
x uyy − γ∂−2

x u = −3
2
θu2 in X ′

with a Lagrange multiplier θ, where X ′ is the dual space of X with respect to the
L2-duality and ∂−2

x uyy and ∂−2
x u are elements in X ′ so that

< ∂−2
x uyy, f > = (∂−1

x uy, ∂
−1
x fy)L2 ,

< ∂−2
x u, f > = (∂−1

x u, ∂−1
x f)L2

for any f ∈ X. Differentiating the above equation in the x-variable in D′(R2) and
performing the scale change u = (3/2)θu, one arrives at that u satisfies (1.6) in
D′(R2). That is, u is a solitary wave of (1.1).

Our proof of the existence of a minimizer u ∈ X for Iλ is based on the concentration-
compactness principle [26, Lemma 1.1]. Let us list some relevant properties of Iλ.

First, in view of the homogeneity properties of G(u) and K(u) it follows that
any minimizer u for Iλ is a minimizer for

(2.4) I1 = I1(c, β, γ) = inf
{
G(u; c, β, γ)
K(u)2/3

: u ∈ X, K(u) > 0
}

as well. Subsequently, it follows the scaling property

(2.5) Iλ = λ2/3I1.

The next lemma shows that Iλ is bounded from below for λ > 0.

Lemma 2.3. If β > 0 and c < 2
√
βγ then Iλ > 0 for any λ > 0.

Proof. In case 0 < c < 2
√
βγ, the inequality

G(u; c, β, γ) =
∫

R2

(
cux(∂−1

x u) + βu2
x + (∂−1

x uy)2 + γ(∂−1
x u)2

)
dxdy

>
∫

R2

(
c2δ

4
u2
x + (∂−1

x uy)2 +
γ2δ

1 + γδ
(∂−1
x u)2

)
dxdy

holds, where δ = 2β/c2 − 1/(2γ) > 0, and in case c 6 0 the ineqaulity

G(u; c, β, γ) >
∫

R2

(
βu2

x + (∂−1
x uy)2 + γ(∂−1

x u)2
)
dxdy

holds. Since ‖u‖2L2 6 ‖ux‖L2‖∂−1
x u‖L2 the above two inequalities lead to for β, γ >

0 and c < 2
√
βγ the coercivity condition

(2.6) G(u; c, β, γ) > Cc‖u‖2X .

We observe that G(u; c, β, γ) 6 Cb‖u‖2X for Cb > 0 and for all β, γ > 0. That is to
say, for β, γ > 0 and c < 2

√
βγ the functional G(u; c, β, γ) is equivalent to ‖u‖2X :

Cc‖u‖2X 6 G(u; c, β, γ) 6 Cb‖u‖2X .
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On the other hand, the imbedding theorem for anistropic Sobolev spaces [3,
Lemma 2.1] yields that

‖u‖3L3 6C‖u‖3/2L2 (‖u‖L2 + ‖ux‖L2)‖∂−1
x uy‖1/2L2

6C((‖∂−1
x u‖L2 + ‖ux‖2L2)5/4‖∂−1

x uy‖1/2L2

+ (‖∂−1
x u‖L2 + ‖ux‖2L2)3/4‖ux‖L2‖∂−1

x uy‖1/2L2 )

6C(‖∂−1
x u‖2L2 + ‖ux‖2L2 + ‖∂−1

x uy‖2L2)3/2

6C‖u‖3X ,

where C > 0 is a generic constant independent of u. Therefore,

λ = K(u) 6 ‖u‖3L3 6 C3‖u‖3X 6 C3(G(u)/Cc)3/2,

and correspondingly, if λ > 0 then

Iλ > Cc(λ/C3)2/3 > 0.

This completes the proof. �

Finally, the scaling property (2.5) leads to the strict subadditivity condition

(2.7) Iλ < Iλ−λ′ + Iλ′

for all λ′ ∈ (0, λ).

Proof of Theorem 2.2. Let λ > 0. We call {un} a minimizing sequence if G(un)→
Iλ and K(un) → λ. Furthermore we can make K(un) bounded away from zero
uniformly. The result of Lemma 2.3 allows us to choose a minimizing sequence
{un} for (2.3). The coercivity condition (2.6) of G(u) asserts that {un} is bounded
in the X-norm. Let us define

(2.8) ρn = ρ(un) = β(∂xun)2 + (∂−1
x ∂yun)2 + γ(∂−1

x un)2,

and ρ(u) = β(ux)2 +(∂−1
x uy)2 +(∂−1

x u)2 for u ∈ X. After extracting a subsequence
we may assume that

lim
n→∞

∫
R2

ρn dxdy = L > 0.

Furthermore, after normalization

un 7→ ωnun, where ωn =

√
L∫

R2 ρn dxdy
→ 1,

we get ∫
R2

ρ(ωnun) dxdy = L for all n.

Then K(ωnun) = ω3
nK(un)→ λ and we can make ωn > κ > 0 uniformly. Hence it

is still a minimizing sequence. We still denote the renormalized sequence {un}. By
the concentration-compactness principle [26, Lemma 1.1] there are three possiblities
for {ρn}:

(i) Vanishing : For any R > 0

(2.9) lim
n→∞

sup
(x,y)∈R2

∫
(x,y)+BR

ρn dxdy = 0,
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(ii) Dichotomy : There exists l ∈ (0, L) such that

(2.10) lim
r→∞

Q(r) = l,

where

(2.11) Q(r) = lim
n→∞

sup
(x,y)∈R2

∫
(x,y)+Br

ρn dxdy.

(iii) Compactness: There is a sequence {(xn, yn)} in R2 such that for any ε > 0
there exist R = R(ε) > 0 and n0 > 1 a positive integer such that

(2.12)
∫

(xn,yn)+BR

ρn dxdy >
∫

R2
ρn dxdy − ε

We first assume that “vanishing” occurs. dxdy=0, the origin. The local version
of the embedding theorem for anistropic Sobolev spaces [3, pp. 187] asserts that

‖u‖Lq((x,y)+B1) 6 C
(
‖u‖L2((x,y)+B1) + ‖ux‖L2((x,y)+B1) + ‖∂−1

x uy‖L2((x,y)+B1)

)
for u ∈ X and (x, y) ∈ R2, where 2 6 q 6 6. Correspondingly,∫

(x,y)+B1

|u|3dxdy 6 C

(
sup

(x,y)∈R2

∫
(x,y)+B1

ρ dxdy

)3/2

holds for all u ∈ X, where C > 0 is independent of (x, y) ∈ R2. We cover R2 by
balls of unit radius in a way that each point in R2 is contained in at most three
balls, and thus∫

R2
|u|3dxdy 6 3C

(
sup

(x,y)∈R2

∫
(x,y)+B1

ρ dxdy

)1/2

‖u‖2X

holds for any u ∈ X. In view of (2.9) this implies un → 0 in L3(R2), which however
contradicts since K(un) is bounded away from zero uniformly. Therefore, vanishing
cannot occur.

Next, we assume “dichotomy” occurs. As is done in [26, Lemma 1.1], [8, Theorem
3.1] and [13, Theorem 5.1], for instance, let us split un into two functions u1

n and
u2
n in X satisfying that for any ε > 0 there exist δ(ε) > 0 and n0 > 1 a positive

integer such that δ(ε)→ 0 as ε→ 0 and∣∣G(u1
n) +G(u2

n)−G(un)
∣∣ 6 δ(ε),

and ∣∣K(u1
n) +K(u2

n)− λ
∣∣ 6 δ(ε)

with supp u1
n ⊂ B2R((xn, yn)), supp u2

n ⊂ R2\B2R((xn, yn)), for some (xn, yn) ∈ R2

and some R > 0, supp u1
n

⋂
supp u2

n = ∅, and dist(supp u1
n, supp u2

n) → ∞ as
n→∞. Taking subsequences if necessary, one may assume that

K(u1
n)→ λ1(ε) and K(u2

n)→ λ2(ε)

as n→∞.
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Assume first that λ1(ε) → 0 as ε → 0. Then, λ2(ε) → λ. We use the coercivity
of G(u) as in the proof of Lemma 2.3 and the assumption of dichotomy to estimate

G(u1
n) > Cc

∫
R2

(
β(∂xu1

n)2 + (∂−1
x ∂yu

1
n)2 + γ(∂−1

x u1
n)2
)
dxdy

= Cc

(∫
B2R((xn,yn))

ρn dxdy +O(ε)
)

= Cc(l +O(ε)).

Therefore,

G(un) = G(u1
n) +G(u2

n) +O(ε) > Cc(l +O(ε)) +G(u2
n) +O(ε).

Letting n → ∞ it follows thatIλ > Ccl + Iλ > Iλ, which is impossible. Therefore,
dichotomy cannot occur.

If λ1(ε) > 0 and λ2(ε) > 0 as ε→ 0, then

Iλ1 + Iλ2 6 lim inf
n→∞

G(u1
n) + lim inf

n→∞
G(u2

n) 6 Iλ +O(ε).

By letting ε tend to zero, this however leads to a contradiction since Iλ = λ2/3I1.
Finally, if λ1(ε) > λ (or equivalently λ1(ε) < 0) we use the positivity of Iλ and

the scaling property (2.5) to get

Iλ = λ2/3I1 > Iλ1 +O(ε) = λ
2/3
1 I1 +O(ε).

Once again sending ε→ 0 yields the contradiction

Iλ > λ
2/3
1 I1 > λ2/3I1 = Iλ.

Therefore, dichotomy cannot occur.
The only remaining possibility is “compactness”. Hence from (2.12) we know

(2.13) L =
∫

R2
ρn dxdy >

∫
(xn,yn)+BR

ρn dxdy >
∫

R2
ρn dxdy − ε

for all n > n0. Accordingly,∫
BR

(∂−1
x un)2 dxdy >

∫
R2

(∂−1
x un)2 dxdy − 2ε(2.14)

for n > 1 and R > 0 sufficiently large. Since {un} is bounded in X, we may assume
that {un(· − xn, · − yn)} converges weakly in X to some u ∈ X. The weak lower
semi-continuity of G(u) then yields that

G(u) 6 lim inf
n→∞

G(un) = Iλ.

Since X is imbedded in L2
loc(R2) compactly, we may assume up to a subsequence

that un(·−xn, ·−yn) converges to u strongly in L2
loc(R2), and furthermore we have

that ∂−1
x un(· − xn, · − yn) converges to ∂−1

x u strongly in L2
loc(R2). This, together

with (2.14), yields that ∂−1
x un(· −xn, · − yn) converges to ∂−1

x u strongly in L2(R2).
Since

‖un‖2L2 = −
∫

R2
∂−1
x un∂xun dxdy,

subsequently, un(· − xn, · − yn) converges to u strongly in L2(R2). Then, by inter-
polation and with the use of the embedding theorem [3, pp. 323] for anisotropic
Sobolev spaces X ⊂ L6(R2), the convergence of un(· − xn, · − yn) to u is strongly
in L3(R2), and as such K(u) = λ. Therefore, u is a solution for Iλ of (2.3). This
completes the proof. �
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Remark 2.4 (Non-existence for β > 0 and c > 2
√
βγ). Theorem 2.1 and Theorem

2.2 leave the question of the existence of solitary waves of (1.1) for β > 0 and c >
2
√
βγ unanswered. In the one-dimensional case, namely, the Ostrovsky equation

(1.3), the non-existence of solitary waves under β > 0 and c > 2
√
βγ is established

in [15] via Rolle’s theorem. We remark on the two-dimensional setting, that is, the
non-existence of solitary waves of (1.1) for β > 0 and c > 2

√
βγ.

Let u ∈ X be a nontrivial solution of (1.6). Theorem 2.5 below shows that
u ∈ H∞(R2), and in particular, u ∈ C1(R2) and u, ux, uy → 0 as x2 + y2 → ∞.
Thus, the asymptotic state of u near infinity satisfies the linear equation

−cuxx − βuxxxx + uyy − γu = 0.

Consider the separation of variables u(x, y) = U(x)V (y). Then

cUxx + βUxxxx + γU

U
=
Vyy
V

= µ,

where µ ∈ R. Correspondingly, the characteristic equations for U and V are given
as

βk4
1 + ck2

1 + (γ − µ) = 0 and k2
2 = µ,

whose solutions are

k2
1 =
−c±

√
c2 − 4β(γ − µ)

2β
and k2 = ±√µ,

respectively. Here, k1 and k2 are respectively variables for the characteristic equa-
tions for U and V .

Since V (y) → 0 as |y| → ∞ for every x ∈ R it follows that µ > 0. If β > 0
and c > 2

√
βγ, however, all four roots for k1 would be purely imaginary since

c2− 4β(γ −µ) > c2− 4βγ > 0, which would contradict since U(x)→ 0 as |x| → ∞
for every y ∈ R. Therefore, such solitary waves of (1.1) do not exist for β > 0 and
c > 2

√
βγ.

the KP-I equation A generic solitary wave of (1.1) is not expected to be in
the form of the product of a function of the x-variable only and a function of
the y-variable only. Nevertheless, from the above arguments one may expect the
nonexistence of solitary waves of (1.1) in case c > 2

√
βγ, although a rigorous proof

is still missing at this moment.

Our next result concerns the regularity of solitary waves.

Proposition 2.5 (Smoothness of solitary waves). For β > 0 and c < 2
√
βγ a

solitary wave solution of (1.1) belongs to

H∞(R2) =
⋂
k>1

Hk(R2),

where k is a positive integer. In particular, u ∈ C1+α(R2), where α ∈ (0, 1), and
u, ux, uy → 0 as x2 + y2 →∞.

The proof of the first assertion is very similar to that of [8, Theorem 4.1] for the
generalized Kadomtsev-Petviashvili equation, and thus it is omitted.

We end the section with the algebraic decay property of solitary waves of (1.1).

Theorem 2.6 (Algebraic decay of solitary waves). For β > 0 and c < 2
√
βγ any

nontrivial solitary wave u ∈ X of (1.1) satisfies r2u ∈ L∞(R2), where r2 = x2 +y2.
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The method is related to that of [4, Theorem 3.1.2] or [9, Theorem 3.1], studying
the decay property of solutions to the convolution equation equivalent to (1.6).

Our first task of the proof of Theorem 2.6 is the following simple integral decay
estimate.

Lemma 2.7. Under the condition β, γ > 0 and c < 2
√
βγ, any solitary wave of

(1.1) satisfies

(2.15)
∫

R2
r2(u2 + (uy)2 + u2

xx)dxdy < +∞,

where r2 = x2 + y2.

Proof. The proof is similar to that of [9, Lemma 3.1]. The regularity of u may be
justified by the standard truncation argument as in the proof of [9, Lemma 3.1],
and thus we shall proceed formally.

Multiplication of (1.6) by x2u and several applications of integration by parts
yield that∫

R2
x2(−cu2

x + βu2
xx + u2

y + γu2) dxdy

=
∫

R2

(
−cu2 + 4βu2

x +
4
3
u3

)
dxdy − 2

∫
R2
x2uu2

x dxdy.

Since the result of Theorem 2.5 is that u → 0 as r → ∞, it follows that for
0 < ε < 2

√
βγ− c there exists R > 0 such that r > R implies |u| 6 ε/2, and as such∫

R2
x2u2

xu dxdy 6 C(R) +
ε

2

∫
R2
x2u2

x dxdy

for some C(R) > 0. Accordingly, the above equation reduces to
(2.16)∫

R2
x2((−c−ε)u2

x+βu2
xx+u2

y+γu2) dxdy 6 2C(R)+
∫

R2

(
−cu2 + 4βu2

x +
4
3
u3

)
dxdy.

In case 0 < c+ ε < 2
√
βγ, as is done in the proof of Lemma 2.3, the inequality∫

R2
((−c− ε)x2u2

x + βx2u2
xx + γx2u2) dxdy

= (−c− ε)
∫

R2
u2 dxdy +

∫
R2

((c+ ε)x2uuxx + βx2u2
xx + γx2u2) dxdy

> (−c− ε)
∫

R2
u2 dxdy +

∫
R2
x2

(
(c+ ε)2δ

4
u2
xx +

γ2δ

1 + γδ
u2

)
dxdy

holds true, where δ = 2β/(c + ε)2 − 1/(2γ) > 0. In case 0 6 c + ε, then (2.16)
reduces to∫

R2
x2(βu2

xx + u2
y + γu2) dxdy 6 2C(R) +

∫
R2

(
−cu2 + 4βu2

x +
4
3
u3

)
dxdy.

Therefore, (2.16) becomes
(2.17)

C

∫
R2
x2(u2

xx + u2
y + u2) dxdy 6 2C(R) +

∫
R2

(
(|c|+ ε)u2 + 4βu2

x +
4
3
u3

)
dxdy

for some C(R) > 0 and C > 0.
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Similarly, multiplication of (1.6) by y2u and integrations by parts yield that∫
R2
y2(−cu2

x + βu2
xx + u2

y + γu2) dxdy =
∫

R2
u2 dxdy − 2

∫
R2
y2uu2

x dxdy.

The same calculations as above then imply that

(2.18) C

∫
R2
y2(u2

xx + u2
y + u2) dxdy 6 2C(R) +

∫
R2
u2 dxdy

holds true, where C(R) and C > 0 are as in (2.17). The assertion then follows by
adding (2.17) and (2.18). �

Our next task is the analysis of the decay of solutions of the convolution equation

(2.19) u = h ∗ u2,

where

ĥ(ξ, η) =
−ξ2

−cξ2 + βξ4 + η2 + γ
.

Lemma 2.8. The function h is bounded and decays algebraically as (x2 + y2)−1 at
infinity. More precisely, h, r2h ∈ L∞(R2).

Proof. It is immediate that ‖h‖L∞ 6 C‖ĥ‖L1 6 C ′. On the other hand, it is
straightforward to show that ∂ξĥ, ∂ηĥ = O((ξ2 + η2)−3/2) and ∂2

ξ ĥ, ∂
2
η ĥ = O((ξ2 +

η2)−2) as ξ2 + η2 →∞. Since

|r2h(x, y)| 6 C
∫

R2
|∂2
ξ ĥ(ξ, η)|+ |∂2

η ĥ(ξ, η)|dξdη,

the assertion follows. �

We are now in a position of the proof of Theorem 2.6.

Proof of Theorem 2.6. In view of (2.19), one writes

|(x2 + y2)u(x, y)| 6C
∣∣∣ ∫

R2
|((x− x′)2 + (y − y′)2)h(x− x′, y − y′)||u2(x′, y′) dx′dy′

∣∣∣
+ C

∣∣∣ ∫
R2
|h(x− x′, y − y′)|((x′)2 + (y′)2)u2(x′, y′) dx′dy′

∣∣∣.
By Lemma 2.8 and the fact that u ∈ L2(R2), the first term in the right-side is
bounded independently of x and y. By Lemma 2.8 and Lemma 2.7 then the last
term in the right-side is bounded independently of x and y. This completes the
proof. �

If γ = 0 the optimal algebraic decay rate as (x2 + y2)−1 at infinity is sharp.
Indeed, the lump solution of the KP-I equation

u(x− ct, y) =
4c(1 + c/3(x− ct)2 + c2/3y2)
(1− c/3(x− ct)2 + c2/3y2)2

exhibits the precise decay rate of (x2 + y2)−1 at infinity. The optimal decay rate of
the solitary waves of (1.1) in the presence of rotation γ > 0 remains open‡.

‡Laboratory experiments [31] and numerical computations [1] indicate that solitary waves of
(1.1) in a bounded slab in the y-direction, that is, 0 < y < b for some b, decays exponentially in

the y-direction.
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3. The characterization of ground states

A ground state of (1.6) is a solitary wave of (1.1) which minimizes the functional

S(u) = E(u)− c V (u)

among all nonzero solutions of (1.6), where E(u) and V (u) are defined in (1.4)
and (1.5), respectively. Both E(u) and V (u) are conserved quantities associated to
(1.1). Our goal in this section is to establish for β > 0 and c < 2

√
βγ the existence

of a ground state of (1.6) and to give its alternative characterizations. Recall that
a solitary wave of (1.1) corresponds to a critical point of S(u), that is, S′(u) = 0.
Thus, the set of ground states may be characterized as
(3.1)
G(c, β, γ) = {u ∈ X : S′(u) = 0, S(u) 6 S(v) for all v ∈ X satisfying S′(v) = 0}.

In Section 2 established is for β > 0 and c < 2
√
βγ the existence of solitary waves

of (1.1) as a minimizer for Iλ in (2.3).
Let

(3.2) P (u) =
∫

R2

(
−cu2 + βu2

x + (∂−1
x uy)2 + γ(∂−1

x u)2 + u3
)
dxdy.

Since P (u) = G(u)−K(u) it is straightforward to see that

S(u) =
1
2
P (u) +

1
6
K(u) =

1
2
G(u)− 1

3
K(u),

where G(u) and K(u) are defined in (2.1) and (2.2), respectively. Note that P (u) =
0 for any solution of (1.6). The theorem below finds a ground state of (1.6) as a
minimizer for S(u) under the constraint that P (u) = 0. Our result is related to
that in [27].

Theorem 3.1 (Existence of ground states). If β > 0 and c < 2
√
βγ then G(c, β, γ)

is nonempty and u∗ ∈ G(c, β, γ) if and only if S(u∗) solves the minimization problem

(3.3) J = inf{S(u) : u ∈ X, u 6= 0, P (u) = 0}.

(??).

Let us denote

(3.4) J1 = inf{S1(u) : u ∈ X, u 6= 0, P (u) 6 0},

where

S1(u) = S(u)− 1
3
P (u) =

1
6
G(u).

For u ∈ X with P (u) = 0 it is straightforward to see J1 6 S1(u) = S(u), and
correspondingly, J1 6 J . We claim that J 6 J1. Indeed, provided that β > 0 and
c < 2

√
βγ, any u ∈ X with

P (u) = 2
∫

R2

(
−cu2 + βu2

x + (∂−1
x uy)2 + γ(∂−1

x u)2
)
dxdy +

∫
R2

u3 dxdy 6 0

satisfies
(3.5)

P (bu) = b2
∫

R2

(
−cu2 + βu2

x + (∂−1
x uy)2 + γ(∂−1

x u)2
)
dxdy + b3

∫
R2

u3 dxdy > 0
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for b ∈ (0, 1) sufficiently small. We choose b0 ∈ (0, 1) such that P (b0u) = 0, and
furthermore

J 6 S(b0u) =
b20
2

∫
R2

(
−cu2 + βu2

x + (∂−1
x uy)2 + γ(∂−1

x u)2
)
dxdy +

b30
3

∫
R2

u3 dxdy

6 (
b20
2
− b30

3
)
∫

R2

(
−cu2 + βu2

x + (∂−1
x uy)2 + γ(∂−1

x u)2
)
dxdy

6
b20
6
G(u) 6 S1(u).

This proves the claim. Therefore, J = J1.

Proof of Theorem 3.1. Our approach is to show the existence of a minimizer for J1

in (3.4). The coercivity condition of G(u) = 6S1(u) allows us to choose a minimizing
sequence {un} for S1(u) satisfying

(3.6) P (un) 6 0 for all n and S1(un) = (1/6)G(un)→ J1 as n→∞.

Since {un} is bounded in X a subsequence, still denoted by {un}, converges weakly
to some u∗ ∈ X. Our goal is then to show that S1(u∗) = (1/6)G(u∗) = J1 and
P (u∗) = 0.

The proof is divided into several steps. The first step is to show that

inf
n
‖un‖3L3 > 0.

Suppose on the contrary that a subsequence, still denoted by {un}, of the mini-
mizing sequence satisfying (3.6) has un 6= 0 yet ‖un‖3L3 → 0 as n → ∞. Since
P (un) 6 0 it follows that

G(un) =
∫

R2

(
− cu2

n + β(∂xun)2 + (∂−1
x ∂yun)2 + γ(∂−1

x un)2
)
dxdy

6 −
∫

R2
u3
n dxdy 6 ‖un‖3L3 → 0

(3.7)

and G(u∗) 6 0. On the other hand, a Sobolev embedding theorem [3, pp. 323] for
anistropic Sobolev spaces asserts that

‖un‖3L3 6C(‖∂−1
x un‖2L2 + ‖∂−1

x ∂yun‖2L2 + ‖∂xun‖2L2)3/2

6C ′(−c‖un‖2L2 + β‖∂xun‖2L2 + ‖∂−1
x ∂yun‖2L2 + γ‖∂−1

x un‖2L2)3/2

=C ′G3/2(un)

holds, where C,C ′ > 0 depend only on c, β and γ. The first inequality is obtained in
the proof in Lemma 2.3, and the second inequality uses that β > 0 and c < 2

√
βγ.

(See again the proof of Lemma 2.3.) This, combined with (3.7) leads to

G(un)(1− C ′G1/2(un)) 6 0,

and subsequently, G(u∗) > (C ′)−2 > 0. A contradiction then proves the assertion.
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The next step is to show that u∗ 6= 0 almost everywhere in R2. The result of
the previous step is that infn ‖un‖3L3 = α > 0. It is straightforward that

α 6 ‖un‖3L3 =
∫
|un|6ε

|un|3 dxdy +
∫
ε<|un|<1/ε

|un|3 dxdy +
∫
|un|>1/ε

|un|3 dxdy

6 ε
∫
|un|6ε

|un|2 dxdy + (1/ε)3meas({|un| > ε}) + ε

∫
|un|>1/ε

|un|4 dxdy

6 ε‖un‖2X + (1/ε)3meas({|un| > ε}) + Cε‖un‖4X
6 C ′ε+ (1/ε)3meas({|un| > ε})

holds for any ε > 0, where C,C ′ > 0 are independent of u. We choose ε < α/C ′

sufficiently small so that

meas({|un| > ε}) > ε3(α− C ′ε) = δ > 0.

Since ‖un‖X is bounded, Lemma 4 in [29] applies to asserts that

meas(B ∩ {|u∗| > ε/2}) > δ0 > 0

for some δ0 > 0, where B is a ball in R2 of unit radius. This proves the assertion.
The third step is to prove that P (u∗) 6 0 and S(u∗) = 1

6G(u∗) = J1. Since
{un} is bounded in X and un converges to u∗ as n→∞ almost everywhere in R2,
the refinement due to Brézis and Lieb [11] of Fatou’s lemma applies to G(un) and
K(un) to assert that

G(un)−G(un − u∗)−G(u∗)→ 0,

K(un)−K(un − u∗)−K(u∗)→ 0

as n→∞. Correspondingly,

P (un)− P (un − u∗)− P (u∗)→ 0

as n→∞.
Suppose that P (u∗) > 0. Since P (un) 6 0 for all n it follows from the above

convergence that P (un − u∗) 6 0 as n → ∞. By (3.4), subsequently, it follows
that 1

6G(un − u∗) > J1. On the other hand, since 1
6G(un) → J1 as n → ∞

the above convergence asserts that G(u∗) 6 0. Correspondingly, the coercivity
condition (2.6) of G(u) implies that ‖u∗‖X 6 0. This in turn implies that u∗ = 0
almost everywhere in R2, which contradicts the result obtained in the previous step.
Therefore, P (u∗) 6 0, and by the weak lower semi-continuity of G(u) it follows that
1
6G(u∗) = J1.

The fourth step of the proof is to show that P (u∗) = 0. Suppose on the
contrary that P (u∗) < 0. Note that P (δu∗) > 0 for δ ∈ (0, 1) sufficiently small. By
continuity of P (u) then P (δ0u∗) = 0 for some δ0 ∈ (0, 1). Accordingly.

J1 6
1
6
G(δ0u∗) =

1
6
δ2
0G(u∗) <

1
6

(G∗) = J1,

A contradiction then proves the assertion.
Our next task is to show that u∗ ∈ G(c, β, γ), that is, S′(u∗) = 0 and S(u∗) 6

S(u) for all u ∈ X satisfying S′(u) = 0. We recall that J = J1. Since S1(u∗) =
S(u∗)− 1

3P (u∗) = S(u∗) it follows that

(3.8) S(u∗) = J = inf{S(u) : u ∈ X, u 6= 0, P (u) = 0}.
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In other words, u∗ is a minimizer for J . Thus, it satisfies the Euler-Lagrange
equation

S′(u∗) + θP ′(u∗) = 0

for some θ ∈ R. Taking the L2-inner product of this equation with u∗ it reduces to
θ(P ′(u∗), u∗)L2 = 0. Indeed, (S′(u∗), u∗)L2 = P (u∗) = 0. On the other hand,

(P ′(u∗), u∗)L2

= 2
∫

R2

(
−c(u∗)2 + β(∂xu∗)2 + (∂−1

x ∂yu
∗)2 + γ(∂−1

x u∗)2
)
dxdy + 3

∫
R2

(u∗)3 dxdy

= 2G(u∗)− 3K(u∗) = −G(u∗) < 0.

Therefore, θ = 0 and in turn S′(u∗) = 0. Moreover, since (S′(u), u)L2 = P (u) for
any u ∈ X, the equation (3.8) asserts that S(u∗) 6 S(u) for any solitary wave
u ∈ X of (1.1).

Our last step is to show that a ground state of (1.6) is a minimizer for J
in (3.3). Let ū ∈ X satisfy ū 6= 0, S′(ū) = 0 and S(ū) 6 S(u) for any u ∈ X
satisfying S′(u) = 0. Since S′(u) = 0 implies P (u) = (S′(u), u)L2 = 0, it follows
that S(ū) 6 S(u) for any u ∈ X with P (u) = 0. That is, u is a minimizer for J .
This completes the proof. �

The proposition below gives other characterizations of a ground state of (1.6),
which will be useful in future consideration.

Proposition 3.2 (Characterization of ground states). There is a positive real num-
ber λ∗ such that the following statements are equivalent:

(i) K(u∗) = λ∗ and u∗ is a minimizer for Iλ∗ in (2.3);
(ii) u∗ is a ground state;
(iii) P (u∗) = 0 and K(u∗) = inf{K(u) : u ∈ X,u 6= 0, P (u) = 0};
(iv) P (u∗) = 0 = inf{P (u) : u ∈ X,u 6= 0,K(u) = K(u∗)}.

Proof. Our first task is to show that (i) implies (iii). Let K(u∗) = λ∗ and u∗ ∈ X
is a minimizer for Iλ∗ . Note that P (u∗) = 0 and G(u∗) = V (u∗) = λ∗. Let u ∈ X
be such that u 6= 0 and P (u) = 0. Let

b =
(
K(u∗)
K(u)

)1/3

.

Note that P (u) = 0 implies that G(u) = V (u) > 0 unless u ≡ 0. Our goal is to
show that b 6 1.

Straightforward calculations yield that P (bu) = b2G(u)−b3K(u) = b2(1−b)G(u).
Since K(bu) = b3K(u) = K(u∗) = λ∗, it follows that G(u∗) 6 G(bu), and subse-
quently,

0 = P (u∗) =G(u∗)−K(u∗)

6G(bu)−K(bu) = P (bu) = b2(1− b)G(u).

Therefore, b 6 1, and the assertion follows.
The result of Theorem 3.1 says that (ii) is equivalent to (iii).
Next, our task is to show that (ii) implies (i). Let u∗ is a ground state of (1.6).

Since P (u∗) = G(u∗)−V (u∗) = 0 and S(u∗) = 1
2G(u∗)− 1

3V (u∗) it follows that u∗

minimizes G(u) among solutions of (1.6). Let λ∗ = K(u∗) = G(u∗).
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Let u1 be a minimizer for Iλ∗ . That is, K(u1) = λ∗ and G(u1) = Iλ∗ minimizes
G(u) among K(u) = λ∗. In particular,

Iλ∗ = G(u1) 6 G(u∗) = λ.

From the variational consideration, u1 satisfies that

−cu1 − β(u1)xx + ∂−1
x (u1)yy − γ∂−2

x u1 = −θu2
1

for some θ ∈ R. Multiplication of the above by u1 and integration by parts then
yield that G(u1) = θλ∗. Since G(u1) = Iλ∗ , this implies θ 6 1.

On the other hand, since u2 = θu1 is a solution of (1.6), one obtains

θ2G(u1) = G(u2) 6 G(u∗).

Since G(u1) = θλ∗ and G(u∗) = λ∗, this implies θ > 1. Therefore, θ = 1 and
G(u∗) = Iλ∗ . This proves the assertion.

Our next task is to prove that (iii) implies (iv). Let u ∈ X,u 6= 0 with
K(u) = K(u∗), where u∗ ∈ X satisfies (iv). Our goal is to prove that P (u) > 0.
Suppose on the contrary that P (u) < 0. Note from (3.5) that P (bu) > 0 for
b ∈ (0, 1) sufficiently small. Correspondingly, K(u) > 0 must hold and P (b0u) = 0
for some b0 ∈ (0, 1). This however contradicts (iii) since

V (b0u) = b30K(u) < K(u) = K(u∗).

Therefore, P (u) > 0. The assertion then follows since P (u∗) = 0.
Finally, our task is to show that (iv) implies (iii). Let u ∈ X,u 6= 0 with

P (u) = 0. Our goal is to show that K(u) > K(u∗), where u∗ ∈ X satisfies (iv).
Assume the opposite inequality. Similarly as in the previous argument, a scaling
consideration dictates that

∫
R2 u3 dxdy < 0 and P (bu) < 0 for b > 1. We may

choose b0 > 1 such that V (b0u) = b30K(u) = K(u∗). This contradicts (iii) since
P (b0u) < 0 = P (u∗). This completes the proof. �

The result of Proposition 3.2 says that minima for Iλ in (2.3) are exactly the
ground states of (1.6).

4. Symmetry property of the ground states

Our goal in this section is to prove that any ground state of (1.6) is cylindrically
symmetric, in the sense that it has radial symmetry with respect to the transverse
coordinate, that is, the y-direction, up to a translation of the origin.

Theorem 4.1 (Cylindrical symmetry of ground states). Any ground state u∗ of
(1.6) is symmetric in the y-direction up to a translation of the origin of the coordi-
nate in y.

The proof relies on the unique continuation principle due Lopes [30], which we
present in a form suitable for our purposes.

Lemma 4.2. Let a, b, c ∈ L∞(R2) and let u satisfy

uyy − uxxxx = a(x, y)u+ b(x, y)ux + c(x, y)uxx in R2

and u, uy, uxy, uxx, uxxx ∈ L2(R2). If u vanishes on a half-plane in R2 then it
vanishes everywhere in R2.

The proof is found, for instance, in the appendix of [9].
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Proof of Theorem 4.1. Our proof is very similar to that of [9, Theorem 2.1] for
the generalized Kadomtsev-Petviashivili equation although our characterization of
the ground states of (1.6) is different from that for the generalized Kadomtsev-
Petviashvili equation.

Since u∗ is a ground state of (1.6), in view of its characterization in Proposiion
3.2 it follows that

∫
R2 (u∗)3 dxdy < 0. By continuity we may choose b ∈ R such

that ∫
∆+

(u∗)3 dxdy =
∫

∆−
(u∗)3 dxdy =

1
2

∫
R2

(u∗)3 dxdy,(4.1)

where ∆+ = {(x, y) ∈ R2 : y > b} and ∆− = {(x, y) ∈ R2 : y < b} denote the half
planes delimited by the horizontal line y = b.

Let us define the function u+ as u+ = u∗ in ∆+ and u+ is symmetric with
respect to y = b. We claim that u+ ∈ X. Indeed, if ϕ ∈ L2

loc(R2) satisfies ϕx = u∗

and ϕy = ∂−1
x u∗y and if

ϕ+(x, y) =

{
ϕ(x, y) if y > b,

ϕ(x, 2b− y) if y < b,

then ϕ+
x = u+ and

∫
R2 (ϕ+

y )2 dxdy = 2
∫

∆+ ϕ
2
y dxdy < +∞. From a density

argument it then follows that ∂−1
x u+

y = ϕ+
y and ∂−1

x u+ ∈ L2(R2). This proves
the claim. Moreover, from (4.1) it follows that

∫
R2 (u+)3 dxdy =

∫
R2 (u∗)3 dxdy.

Similarly, if u− = u∗ in ∆− and u−is symmetric with respect to y = b then u− ∈ X
and

∫
R2 (u−)3 dxdy =

∫
R2 (u∗)3 dxdy. Hence, it follows from Proposition 3.2 that

P (u+), P (u−) > 0.
On the other hand, it is readily seen that

P (u+) + P (u−) = 2P (u∗) = 0,

and as such u+ and u− are both ground states of (1.6). Accordingly, u∗, u+, and
u− satisfy

−cuxx − βuxxxx + uyy − γu = (u2)xx in R2.

Finally, since u+ = u∗ in ∆+ and u− = u∗ in ∆−, the unique continuation principle
Lemma 4.2 applies to u+ − u∗ and u− − u∗ assert u∗ = u+ = u−. That is to say,
u∗ is symmetric with respect to y = b. This completes the proof. �

5. Weak rotation limit as γ → 0

Our investigation in this section concerns the behavior of solitary waves of (1.1)
as the rotation parameter γ tends to zero.

In case γ = 0, (1.1) formally reduces to the Kadomtsev-Petviashvili equation
(1.2). A solitary wave of (1.2) then refers to as a solution u ∈ Y of the equation

(5.1) −cux − βuxxx + (u2)x + ∂−1
x uyy = 0.

Recall that Y is the closure of ∂x(C∞0 (R2)) with the norm

‖u‖2Y = ‖u‖2L2 + ‖ux‖2L2 + ‖∂−1
x uy‖2L2 .

The result of Theorem 2.2 is that for each γ > 0 and for β > 0 and c < 2
√
βγ

there exists a solitary wave of (1.1) in X, and the result of [8] that for each β > 0
and c < 0 there exists a solitary wave of (1.2) in the function space Y . A natural
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question is then for β > 0 and c < 0 whether the solitary waves of (1.1) converge
to that of (1.2) as γ → 0+. The answer is YES.

The following theorem is a precise statement of the weak rotation limit.

Theorem 5.1 (Weak rotation limit). For β > 0 and c < 0 fixed, let a sequence
{γn} be such that γn → 0+ as n→∞, and let un ∈ X be a solitary wave solution
of (1.1) with γ = γn. There exist a solitary wave u0 ∈ Y of (1.2), a subsequence,
still denoted as {γn}, and a sequence in R2 of translations {(xn, yn)} such that

un(· − xn, · − yn)→ u0 in Y

as n→∞. That is, u0 is the limit in Y of solitary waves {un} of (1.1) as γ → 0+.

The proof uses the variational characterization of solitary waves of (1.1) and
(1.2).

For β, γ > 0 and c < 2
√
βγ, let us define

(5.2) d(c, β, γ) = S(u) = E(u)− cV (u)

where u ∈ X is a ground state of (1.6). Since a solitary wave of (1.1) satisfies
P (u) = G(u; c, β, γ)−K(u) = 0 it follows that

d(c, β, γ) =
1
2
G(u; c, β, γ)− 1

3
K(u) =

1
6
G(u; c, β, γ).

Furthermore, in view of the minimization problem for I1(c, β, γ) in (2.4) it follows
that

d(c, β, γ) =
1
6
G(u; c, β, γ) =

1
6
K(u) =

1
6
I3
1 (c, β, γ).

That is, the function d is well-defined, independent of the choice of the ground
state. The above equations characterize the set of ground states of (1.6) as

(5.3) G(c, β, γ) =
{
u ∈ X : d(c, β, γ) =

1
6
I3
1 (c, β, γ) =

1
6
G(u; c, β, γ) =

1
6
K(u)

}
.

Theorem 2.2 then can be stated in terms of d(c, β, γ) as the relative compactness,
up to translation, of a minimizing sequence for I1(c, β, γ).

(Cγ) If {un} in X satisfies

lim
n→∞

G(un; c, β, γ) = lim
n→∞

K(un) = 6d(c, β, γ),

then there exist u ∈ G(c, β, γ), a subsequence, still renamed {un}, and a
sequence {(xn, yn)} in R2 such that un(· −xn, · − yn)→ u strongly in X as
n→∞.

Similarly, we may state the existence of solitary waves of (1.2) in terms of
d(c, β, 0) and the relative compactness in Y . Indeed, a solitary wave solution of
the KP-I equation, (1.2) with β > 0, is obtained in [8] by the same variational
approach as devised for the solitary waves of (1.1) in Section 2, but with γ = 0 and
in the space Y . That is, it achieves the minimum

I1(c, β, 0) = inf
{
G(u; c, β, 0)
K(u)2/3

: u ∈ Y, K(u) 6= 0
}
,

where

G(u; c, β, 0) =
∫

R2
(−cu2 + βu2

x + (∂−1
x uy)2) dxdy
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and K(u) is defined in (2.2). Note that if β > 0 and c < 0 then

Cc‖u‖2Y 6 G(u; c, β, 0) 6 Cb‖u‖2Y
for some Cc, Cb > 0. Let us then extend the definition of d(c, β, γ) and say

d(c, β, 0) =
1
6
G(u; c, β, 0) =

1
6
K(u) =

1
6
I3
1 (c, β, 0),

where u ∈ Y is a solitary wave of (1.2). One may repeat the argument for γ > 0 to
assert that d(c, β, 0) is well-defined, independent of the choice of the ground state.
It is known [9], moreover, that the minima for I1(c, β, 0) are exactly the ground
states of (5.1). The set of ground states of (5.1) is thus characterized as

(5.4) G(c, β, 0) =
{
u ∈ Y : d(c, β, 0) =

1
6
I3
1 (c, β, 0) =

1
6
G(u; c, β, 0) =

1
6
K(u)

}
,

and the existence theorem in [8] is stated as is done for the ground states of (1.6), as
the relative compactness of a minimizing sequence for I1(c, β, 0) up to translations.

(C0) If {un} in X satisfies

lim
n→∞

G(un; c, β, 0) = lim
n→∞

K(un) = 6d(c, β, 0),

then there exist u ∈ G(c, β, 0), a subsequence, still renamed {un}), and a
sequence {(xn, yn)} in R2 such that un(· − xn, · − yn)→ u strongly in Y as
n→∞.

The next lemma establishes the continuity and monotonicity of the function
d(c, β, γ).

Lemma 5.2. In the domain β > 0, γ > 0 and c < 2
√
γβ, the function d(c, β, γ) is

continuous, and d(c, β, γ) is strictly increasing in γ and β and is strictly decreasing
in c.

Proof. For β > 0, γ1, γ2 > 0 and c ∈ R such that γ1 > γ2 > c2+/4β, where
c+ = max{0, c} (thus, c+ < 2

√
βγj , j = 1, 2), let u1 and u2 be ground states of

(1.6) corresponding to γ = γ1 and γ = γ2, respectively. It is straightforward that

I1(c, β, γ2) 6
G(u1; c, β, γ2)
K(u1)2/3

=
G(u1; c, β, γ1) + (γ2 − γ1)

∫
R2(∂−1

x u1)2 dxdy

K(u1)2/3

=
G(u1; c, β, γ1)
K(u1)2/3

+ (γ2 − γ1)

∫
R2(∂−1

x u1)2 dxdy

K(u1)2/3

= I1(c, β, γ1) + (γ2 − γ1)

∫
R2(∂−1

x u1)2 dxdy

K(u1)2/3

< I1(c, β, γ1).

That means, I1(c, β, γ) is strictly increasing in γ. By (5.3), correspondingly, d(c, β, γ)
is strictly increasing in γ.

The same calculation as above yields that

I1(c, β, γ1) 6 I1(c, β, γ2) + (γ1 − γ2)

∫
R2(∂−1

x u2)2 dxdy

K(u2)2/3
.
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Since

K(u2) = G(u2; c, β, γ2) > Cc
∫

R2
(∂−1
x u2)2 dxdy,

where Cc > 0 is chosen as in Lemma 2.3, it follows that

|I1(c, β, γ1)− I1(c, β, γ2)| 6 C−1
c I1(c, β, γ2)(γ1 − γ2).

That is, I1(c, β, γ) is locally Lipschitz continuous in γ. Correspondingly, d(c, β, γ)
is locally Lipschitz continuous in γ.

Finally, similar arguments as above are employed to show that I1(c, β, γ) is
strictly decreasing in c and strictly increasing in β, and is locally Lipschitz contin-
uous in c and β. Then, (5.2) proves the assertions. �

It is readily seen that X ⊂ Y . Furthermore, X is dense in Y .

Lemma 5.3. The space X is dense in Y .

Proof. For any u ∈ Y and δ > 0, let us define uδ as

ûδ(ξ, η) =

{
û(ξ, η) for |ξ| > δ,

0 for |ξ| ≤ δ.

By Parseval’s identity follow that

‖∂−1
x uδ‖2L2 = ‖ξ−1ûδ‖2L2 =

∫∫
|ξ|>δ

ξ−2|û(ξ, η)|2dξdη < δ−2‖u‖2L2 < +∞

and that

‖∂−1
x ∂yuδ‖2L2 = ‖ξ−1ηûδ‖2L2 =

∫∫
|ξ|>δ

ξ−2η2|û(ξ, η)|2dξdη < ‖∂−1
x uy‖L2 < +∞.

Since

‖uδ‖L2 6 ‖u‖L2 < +∞ and ‖∂xuδ‖L2 6 ‖ux‖L2 < +∞

it follows that uδ ∈ X. In view of the definition of uδ and u ∈ Y then the inequality

‖uδ − u‖2Y =
∫
|ξ|<δ

(
(1 + ξ2)‖û(ξ, ·)‖2Ly(R) + ξ−2‖ûy(ξ, ·)‖2Ly(R)

)
dξ

≤ ‖u‖2Y < +∞

holds true. Hence from continuity we may choose δ > 0 sufficiently small so that

‖uδ − u‖2Y =
∫
|ξ|<δ

(
(1 + ξ2)‖û(ξ, ·)‖2Ly(R) + ξ−2‖ûy(ξ, ·)‖2Ly(R)

)
dξ < ε,

which completes the proof. �

Proof of Theorem 5.1. For β > 0 and c < 0 let {un} be a sequence in X of the
ground states of (1.6) with γ = γn, where γn → 0+ as n → ∞. It is immediate
that

G(un; c, β, γn) = K(un) = I3
1 (c, β, γn) = d(c, β, γn)
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holds for each n. Below we prove the continuity of I1(c, β, γ) at γ = 0, that is,
limγ→0+ I1(c, β, γ) = I1(β, c, 0). Then it follows that

G(un; c, β, 0) = G(un; c, β, γn)− γn
∫

R2
(∂−1
x un)2 dxdy

6 G(un; c, β, γn)

= I3
1 (c, β, γn)→ I3

1 (c, β, 0) = 6d(c, β, 0)

and
K(un) = I3

1 (c, β, γn)→ I3
1 (c, β, 0) = 6d(c, β, 0).

The assertion then follows from (C0).
We now claim that limγ→0+ I1(c, β, γ) = I1(β, c, 0). By the monotonicity of

I1(c, β, γ) in γ, it suffices to show that I1(c, β, γn) → I1(c, β, 0) for some sequence
{γn} with γn → 0 as n → ∞. Let u ∈ Y is a ground state of (5.1). For each n
a positive integer it follows from Lemma 5.3 that there is a function un ∈ X with
‖un − u‖Y < 1/n. Let

γn = min

(
1
n
,

1
n

(∫
R2

(∂−1
x un)2 dxdy

)−1
)
,

and as such

I1(c, β, γn) 6
G(un; c, β, γn)
K(un)2/3

=
G(un; c, β, 0) + γn

∫
R2(∂−1

x un)2 dxdy

K(un)2/3

6
G(un; c, β, 0) + 1/n

K(un)2/3
.

Since both G(u; c, β, 0) and K(u) are continuous functions on Y , therefore it follows
that

lim
n→∞

I1(c, β, γn) 6
G(u; c, β, 0)
K(u)2/3

= I1(c, β, 0).

On the other hand, since I1(c, β, γ) is strictly increasing in γ, it follows that

lim
n→∞

I1(c, β, γn) = I1(c, β, 0)

This proves the claim. The proof is complete. �

Remark 5.4 (Stability of ground states in terms of d(c)). The function d(c, β, γ)
may serve as a Lyapunov function in the study of stability of ground states of (1.6)
(see [16], for instance). Indeed, it is standard to show that for β > 0 and c < 2

√
βγ

the set of ground states of (1.6) is X-stable provided that d′′(c) > 0. Since d(c) is
strictly increasing in c, we may write c(u) = d−1(K(u)/6), where u is a ground state
of (1.6). The proof then relies on the expansion near a ground state u ∈ G(c, β, γ)
that

E(v)− E(u)− c(v)(V (v)− V (u)) >
1
4
d′′(c)|c(v)− c|2

for v ∈ X in the ε-tube, infu∈G(c,β,γ) ‖v − u‖X < ε. However, it is difficult to
establish the convexity of d′′(c) since it is difficult to describe d(c) explicitly in
terms of c.
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6. Stability of the set of ground states

This section is devoted to the orbital stability of the ground states of (1.6) in
the sense in Definition 1.2.

As is discuss in Remark 5.4, a method of studying orbital stability of solitary
waves, based on the fact that ground states are characterized as

d(c, β, γ) := S(u; c, β, γ) =
1
6
G(u; c, β, γ) =

1
6
I3
1 (c, β, γ),

has difficulties since the usual scaling and dilation technique does not give the
description of the function d(c, β, γ) corresponding to (1.1) explicitly in terms of
the wave speed c. On the other hand, this technical part may be avoided if it is
possible to show directly that the ground states considered are global minima of
energy constrained by constant momentum, which is the approach taken here. We
show in case of weak effects of rotation, i.e. γ > 0 small that the ground state
solutions of (1.6) with c < 0 are characterized as energy minimizers constrained
by constant momentum and study its implications for nonlinear stability. The
smallness of γ > 0 is required to ensure that the energy of the rotation terms is
dominated by the energy of the Kadomtsev-Petrivashvili terms. See Remark 6.5.

For β, γ > 0 and q > 0, let us consider the minimization problem

(6.1) jq(β, γ) = inf{E(u;β, γ) : u ∈ X, V (u) = q}.

Let

(6.2) Σq(β, γ) = {u ∈ X : E(u;β, γ) = jq(β, γ), V (u) = q}

denote the set of minimizers for jq(β, γ).
The Euler-Lagrange equation for the constrained minimization problem for Σq(β, γ)

is
−βuxx + u2 + ∂2

xuyy − γ∂2
xu = θu in X ′

for some Lagrange multiplier θ ∈ R, where X ′ is the dual space of X with respect
to the L2-duality, and ∂−2

x uyy and ∂−2
x u are elements of X ′. In view of (1.6) this

says that if u ∈ Σq(β, γ) then u is a solitary wave of (1.1) with the wave speed θ.
Multiplication of the above equation by u and integration by parts yield that∫

R2
(βu2

x + u3 + (∂−1
x uy)2 + γ(∂−1

x u)2) dxdy = θ

∫
R2
u2 dxdy.

On the other hand, we shall show below in Lemma 6.3 that

E(u;β, γ) =
∫

R2

(
β

2
u2
x +

1
3
u3 +

1
2

(∂−1
x uy)2 +

γ

2
(∂−1
x u)2

)
dxdy < 0

for any q = 1
2

∫
R2 u

2 dxdy > 0, if γ > 0 is sufficiently small. In particular, a
constrained energy minimizer must satisfy

∫
R2 u

3 dxdy < 0. Accordingly,∫
R2

(βu2
x + u3 + (∂−1

x uy)2 + γ(∂−1
x u)2) dxdy = 2E(u;β, γ) +

1
3

∫
R2
u3 dxdy < 0,

and therefore, θ < 0. That is, for β > 0 and γ > 0 sufficiently small, u ∈ Σq(β, γ) is
a ground state of (1.6) for some wave speed c < 0. In the absence of the effects of
rotation, γ = 0, a scaling argument asserts that the speed of wave propagation c in
the solitary wave problem (1.6) may be set to be c = −1. Then, the set of minima
for jq is exactly equal to the set of ground states. In contrast, with a nontrivial
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rotation effects, it is not known that a ground state with c < 0 is indeed a minimizer
for jq.

Our main result in this section is that Σq(β, γ) is X-stable, provided that γ > 0
is small.

Theorem 6.1 (Orbital stability of energy minimizers). For β > 0 and q > 0 there
exists γ0 > 0 sufficiently small such that for 0 < γ < γ0, the set Σq(β, γ) defined in
(6.2) is X-stable.

Note that if u is in the set Σq then so is its translate u(·−x, ·−y) with (x, y) ∈ R2.
Theorem 6.1 then says in the light of Definition 1.2 that if φ ∈ X ∩Xs is close to
u ∈ Σq in X then the solution of the Cauchy problem for (1.1) with initial value φ
remains close to the orbit of u modulo translations.

The proof of Theorem 6.1 uses that energy minimizers constrained by constant
momentum is a ground state of (1.6). This characterization of global energy min-
imizers as ground states and its implication for stability were first used for the
standing waves of the subcritical nonlinear Schrödinger equation [12] and ground
states of the generalized Kadomtsev-Petvishvili equation [10]. A main difference
from [12, 10] is that (1.1) lacks scaling properties and thus one may not obtain a
description of the minimizer for jq explicitly in terms of q.

Proposition 6.2. For q > 0 and β > 0 there exists γ0 > 0 sufficiently small such
that for 0 < γ < γ0, the followings hold true.

(a) The minimization problem of jq(β, γ) in (6.1) has a solution.
(b) Any minimizing sequence {un} for jq(β, γ), i.e.

V (un) = q for all n and E(un;β, γ)→ jq as n→∞,

is relatively compact in X up to translations. That is, there exist a sequence of
translation vectors {(xn, yn)} and u ∈ Σq such that a subsequence of un(·−xn, ·−yn)
converges strongly in X to u.

(c) limn→∞ infu∈Σq(β,γ) ‖un−u‖X = 0, where {un} is a minimizing sequence for
jq(β, γ).

The proofs of (a) and (b) of Proposition 6.2 use a modified concentration-
compactness lemma [26], for which we will need several preliminary results. Our
first preliminary result is that −∞ < jq(β, γ) < 0 provided that γ > 0 is small.

Lemma 6.3. For q > 0 and β > 0, there exists γ0 > 0 sufficiently small such that
if 0 < γ < γ0 then −∞ < jq(β, γ) < 0.

Proof. We first show that jq(β) > −∞. It is straightforward to see that

‖u‖3L3 6 C‖u‖3/2L2 (‖u‖L2 + ‖ux‖L2)‖∂−1
x uy‖1/2L2

6 Cε(‖u‖10/3
L2 + ‖u‖6L2) + ε(‖ux‖2L2 + ‖∂−1

x uy‖2L2)

for any u ∈ X, for ε > 0 small, where C,Cε > 0 are independent of u. The first
inequality uses the embedding theorem for the anistropic Sobolev spaces, and the
second inequality uses Young’s inequality. Let u ∈ X satisfy V (u) = q. One can
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then deduce that

E(u;β, γ) = E(u;β, γ) + βV (u)− βV (u)

=
∫

R2

(
β

2
u2
x +

β

2
u2 +

1
2

(∂−1
x uy)2 +

γ

2
(∂−1
x u)2 +

1
3
u3

)
dxdy − βq

>
1
2

min(β, γ)‖u‖2L2 −
1
3
ε‖u‖2L2 − Cε(‖u‖10/3

L2 + ‖u‖6L2)− βq

>
1
4
q − Cβ,γ((2q)5/3 + (2q)3)− βq > −∞.

Our next task is to show that jq(β, γ) < 0 when γ is small. Let u1 ∈ G(c1, β, 1)
for c1 < 0. Since P (u1) = 0 it follows that

−
∫

R2
(u1)3 dxdy =

∫
R2

(
− c1(u1)2 + β(∂xu1)2 + (∂−1

x u1)2 + (∂−1
x ∂yu1)2

)
dxdy > 0.

Now let us choose a constant a > 0 so that w = au1 satisfies that

V (w) = a2V (u1) = q.

That is, a =
√
q/V (u1). Note that

∫
R2 w3 dxdy = a3

∫
R2 (u1)3 dxdy < 0. For b > 0

let us define wb ∈ X as

wb(x, y) = δw(b5/8x, b11/8y).

It is straightforward that V (wb) = V (w) = q for all b > 0. Moreover,

E(wb;β, γ) =
∫

R2

(β
2
b5/4w2

x +
γ

2
b−5/4(∂−1

x w)2 +
1
2
b3/2(∂−1

x wy)2 +
1
3
bw3

)
dxdy

= b

∫
R2

(β
2
b1/4w2

x +
1
2
b1/4(∂−1

x w)2 +
1
2
b1/2(∂−1

x wy)2 +
1
3
w3
)
dxdy

= ba2

∫
R2

(β
2
b1/4(∂xu1)2 +

1
2
b1/4(∂−1

x u1)2 +
1
2
b1/2(∂−1

x ∂yu1)2 +
1
3
au3

1

)
dxdy,

provided that b = γ2/5 > 0. By taking γ0 > 0 sufficiently small (γ0 < (q/V (u1))5/2/3,
for instance) for each 0 < γ < γ0 it follows that E(wb;β, γ) < 0. Consequently,
jq(β, γ) < 0. This completes the proof. �

The smallness of γ is required in the proof to ensure that jq(β, γ) < 0. More
precisely, energy due to the Kadomtsev-Petviashvili considerations must dominate
the energy due to rotation effects.

The next lemma establishes the subadditivity property of jq.

Lemma 6.4. Any q1, q2 > 0 with q1 + q2 = q satisfy

(6.3) jq < jq1 + jq2 .

Proof. We claim that for any 0 < q′ < q it follows that

(6.4) jq′ >
(q′
q

)5/3

jq.
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To see this, let u ∈ X be such that V (u) = q, and let us define w(x, y) = b2u(bx, y),
where b > 0. A straightforward calculation yields that

E(w) = b5
∫

R2

(β
2
u2
x +

γ

2
b−4(∂−1

x u)2 +
1
2
b−4(∂−1

x uy)2 +
1
3
u3
)
dxdy,

V (w) =
1
2
b3
∫

R2
u2 dxdy = b3q.

We choose b = (q′/q)1/3, and as such b < 1. Accordingly, V (w) = q′ and

E(w) > b5E(u) =
(q′
q

)5/3

E(u).

This implies (6.4).
As a consequence, for any q1, q2 > 0 satisfying q1 + q2 = q it follows that

jq1 + jq2 >
((q1

q

)5/3

+
(q2

q

)5/3)
jq > jq.

This completes the proof. �

Remark 6.5. We may extend our definition of jq(β, γ) to the case when γ = 0 as

jq(β, 0) = inf{E(u;β, 0) : u ∈ Y, V (u) = q},
where

E(u;β, 0) =
∫

R2

(
β

2
u2
x +

1
2

(∂−1
x uy)2 +

1
3
u3

)
dxdy.

It is then straightforward to see that for ub(x, y) = b2u(bx, b2y) the energy and
momentum are scaled as

E(ub;β, 0) = b3E(u;β, 0) and V (ub) = bV (u).

Hence, if −∞ < E(u, β, 0) < 0 for some q then −∞ < E(u;β, 0) < 0 for all
q, and thus Lemma 6.3 becomes immediate. Moreover, jq(β, 0) = q3j1(β, 0), and
consequently, it follows that −∞ < jq(β, 0) < 0 for any q > 0 and that jq < jq1 +jq2
for any q1, q2 > 0 satisfying q1 + q2 = q. See the proof of [10, Lemma 2.2]. Thus,
the application of the concentration-compactness lemma is standard.

By allowing the effects of rotation, on the other hand, one breaks down the scaling
property of the Kadomtsev-Petviashvili equation (1.2). More precisely, V (ub) =
bV (u) yet

E(ub;β, γ) = b3
∫

R2

(
β

2
u2
x +

1
2

(∂−1
x uy)2 +

1
3
u3

)
dxdy + b−1

∫
R2

γ

2
(∂−1
x u)2 dxdy.

In other words, as b → 0 the L2-norm V (ub) shrinks while the energy E(ub;β, γ)
grows unboundedly by concentrating it on the rotation term, unless the rotation
coefficient γ shrinks accordingly so that the energy due to rotation effects is not
dominant.

Lemma 6.6. For q > 0, β > 0 and 0 < γ < γ0, where γ0 > 0 is obtained in the
proof of Lemma 6.3, let {un} is a minimizing sequence for jq. That is,

V (un) = q for all n, E(un;β, γ)→ jq as n→∞.
(a) ‖un‖X is bounded for n.
(b) ‖un‖L3 > δ0 > 0 for all sufficiently large n for some δ0.
(c) For a subsequence, still denoted by {un}, it follows limn→∞ ‖un‖2X = α > 0.
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Proof. (a) In view of the coercivity property of G(u; 0, β, γ) in (2.6) the inequalities

‖un‖2X =
∫

R2

(
(∂xun)2 + (∂−1

x ∂yun)2 + (∂−1
x un)2

)
dxdy + 2q

6 C−1
c G(un; 0, β, γ) + 2V (un)

= 2C−1
c

(
E(un;β, γ)− 1

3

∫
R2

u3
n dxdy

)
+ 2V (un)

6 2C−1
c sup

n
E(un;β, γ) + 2q

+ C‖un‖3/2L2 (‖un‖L2 + ‖∂xun‖L2)‖∂−1
x ∂yun‖1/2L2

6 C ′(1 + ‖un‖3/2X )

hold, where Cc > 0 is given in the proof of Lemma 2.3 and C ′ > 0 depend only on
β, γ and q, jq. This proves the assertion.

(b) Suppose on the contrary that

lim inf
n→∞

‖un‖L3 = 0.

This would imply

jq(β, γ) = lim
n→∞

∫
R2

(β
2

(∂xun)2 +
γ

2
(∂−1
x un)2 +

1
2

(∂−1
x ∂yun)2 +

1
3
u3
n

)
dxdy

> −1
3

lim inf
n→∞

‖un‖3L3 = 0,

which however contradicts Lemma 6.3.
(c) By (a) it follows that there exists a subsequence, still denoted {un}, such

that limn→∞ ‖un‖X = α. By (b) then it follows that

0 < δ3
0 6 ‖un‖3L3 6 C0‖un‖3/2L2 (‖un‖L2 + ‖∂xun‖L2)‖∂−1

x ∂yun‖1/2L2 6 C0‖un‖3X .

Therefore α > 0. This completes the proof. �

Proof of Proposition 6.2. The proof of (a) and (b) uses the concentration-compactness
lemma as is done in the proof of Theorem 2.2, and thus we only provide its sketch.

Let {un} be a minimizing sequence for jq(β, γ). The results of Lemma 6.6 (a) and
(c) are that {un} is bounded in X and that there is a subsequence, still denoted
by {un}, such that ‖un‖2X → α > 0 as n → ∞. We apply the concentration-
compactness lemma [26] to

(6.5) ρ̄n = (∂xun)2 + u2
n + (∂−1

x ∂yun)2 + (∂−1
x un)2.

Note that
∫

R2 ρ̄n dxdy = ‖un‖2X .
First, “vanishing” is ruled out since in this case the embedding theorem for

anistropic Sobolev spaces [3] applies to assert un tends to zero as n→∞ in Lq(R2)
for 2 < q < 6 while Lemma 6.6 says that ‖un‖L3 > δ0 > 0 for n sufficiently large.

Next, “dichotomy” can be treated by the similar method as applied in Theorem
2.2. Using the same notation of the concentration function Q as defined in (2.11)
we have that in the dichotomy case,

lim
r→∞

Q(r) = η ∈ (0, α),
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and hence there is a splitting of un into wn and vn satisfying that for any ε > 0
there exist a δ(ε) > 0 (with δ(ε) → 0 as ε → 0), and an integer n0 > 0 such that
for n > n0,

‖wn + vn − un‖X 6 δ(ε),∣∣∣‖wn‖2X − η∣∣∣ 6 δ(ε), ∣∣∣‖vn‖2X − (α− η)
∣∣∣ 6 δ(ε),∣∣∣‖wn‖2L2 + ‖vn‖2L2 − ‖un‖2L2

∣∣∣ 6 δ(ε),∣∣∣E(wn) + E(vn)− E(un)
∣∣∣ 6 δ(ε)

and
suppwn

⋂
suppvn = ∅, dist(suppwn, suppvn)→ +∞.

Taking a subsequence if necessary, we may assume

lim
n→∞

‖wn‖L2 = q1(ε), lim
n→∞

‖vn‖L2 = q2(ε)

with |q1(ε) + q2(ε)− q| 6 δ(ε). Applying the similar scaling argument in Theorem
2.2 we obtain that limε→0 qi(ε) > 0, for i = 1, 2 and

jq1(ε) + jq2(ε) 6 lim inf
n→∞

E(wn) + lim inf
n→∞

E(vn) 6 jq + δ(ε).

Hence by letting ε→ 0 we reach a contradiction with the subadditivity property of
jq in Lemma 6.4.

The only remaining possibility is then “compactness”. That is, {un} is relatively
compact up to translations. As is shown in the proof of Theorem 2.2, this implies
that a subsequence, still denoted by {un(· − xn, · − yn)}, converges weakly in X
to some u ∈ X. Using the relative compactness of the injection X ⊂ L2

loc(R2),
one then obtains that un(· − xn, · − yn) converges to u strongly in L2(R2) and
furthermore in L3(R2), which is a minimum of jq(β, γ). See the proof of Theorem
2.2 for details. It follows that it converges indeed to u strongly in X. This proves
(a) and (b).

(c) We first claim that

lim
n→∞

inf
u∈Σq

inf
(x,y)∈R2

‖un(· − x, · − y)− u‖X = 0.

Suppose on the contrary that there exists a subsequence {unk
} of {un} such that

(6.6) inf
u∈Σq

inf
(x,y)∈R2

‖unk
(· − x, · − y)− u‖X > δ > 0

for all k > 1. By (a) it then follows that there exist a sequence {(xk, yk)} in R2

and u∗ ∈ Σq(β, γ) such that

lim
k→∞

‖unk
(· − xk, · − yk)− u∗‖X = 0,

which contradicts (6.6). This proves the claim.
Since E(u) and V (u) are translation invariant, u ∈ Σq(β, γ) implies u(· − x, · −

y) ∈ Σq(β, γ) for any (x, y) ∈ R2. Therefore,

lim
n→∞

inf
u∈Σq

‖un − u‖X 6 lim
n→∞

inf
u∈Σq

‖un − u(· − x, · − y))‖X

= lim
n→∞

inf
u∈Σq∗

‖un(· − x, · − y)− u‖X = 0.

This proves the assertion. �
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Now we are ready to prove the stability of Σq(β, γ).

Proof of Theorem 6.1. For simplicity of exposition, we drop β and γ dependence
of E and Σ.

The assertion follows from Proposition 6.2 by using the classical argument which
we repeat here for completeness. Suppose on the contrary that for some u∗ ∈ Σq
there exist ε > 0, sequences {φn} in X and {tn} with 0 6 tn < T such that
‖φn − u∗‖X → 0 as n→∞ yet

inf
u∈Σq

‖un(tn)− u‖X > ε > 0

for all n > 1, where un(t) is the unique solution of the Cauchy problem associated
to (1.1) on the time interval [0, T ) with the initial condition un(0, x, y) = φn(x, y).

Since φn → u∗ in X as n → ∞ and since E(u∗) = jq and V (u∗) = q, it follows
that

E(φn)→ jq and V (φn)→ q

as n→∞. Moreover, Since E(u) and V (u) are conservation laws of (1.1), it follows
that

E(un(t)) = E(φn)→ jq and V (un(t)) = V (φn)→ q

as n→∞. In particular, {un(tn)} is bounded in the X-norm, say by C > 0.
Let

αn =
( q

V (φn)

)1/2

,

and as such αn → 1 as n → ∞. Note that V (αnun) = q for each n. Since
E(αnun) → jq as n → ∞, it follows that {αnun} is a minimizing sequence for jq
in (6.1). Proposition 6.2 (c) then asserts that for n sufficiently large there exists
u∗n ∈ Σq such that ‖αnun − u∗n‖X < ε/2. It is straightforward that

‖un(tn)− u∗n‖X 6 ‖un(tn)− αnun‖X + ‖αnun − u∗n‖X
6 |1− αn|‖un(tn)‖X + ε/2 < |1− αn|C + ε/2.

This however contradicts since infu∈Σq
‖un(tn) − u‖X > ε. This completes the

proof. �

Appendix A. Remarks on the well-posedness

This section concerns the existence and uniqueness of the solution to the Cauchy
problem

(A.1)

{
(ut − βuxxx + (u2)x)x + uyy − γu = 0
u(0, x, y) = φ(x, y).

in the Sobolev space Hs, where s > 2.
Our first step is the establishment of the local well-posedness of (A.1) in Xs for

s > 2. Recall that

Xs = {u ∈ Hs(R2) : (ξ−1f̂)∨ ∈ Hs(R2)}.

Proof of Theorem 1.1. The proof uses the parabolic regularization in [21]. Let ε > 0
and let φε ∈ ∂x(C∞0 (R2)) converge to φ in Xs as ε→ 0. We look at the regularized
problem of (1.1)

(A.2)
(
ut + ε∆2ut − βuxxx + (u2)x

)
x

+ uyy − γu = 0.
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It is standard that (A.2) has a unique solution uε ∈ C([0, T ], Hk), where k is any
fixed integer.

Integrating (A.2) in x once and taking the Hs scalar product with uε yields that
1
2
d

dt

(
‖uε‖2Hs + ε‖∆uε‖2Hs

)
+ 2(uεuεx, u

ε)s = 0,

where (·, ·)s denotes the Hs scalar product. Then from the standard commutator
estimate we obtain that

d

dt

(
‖uε‖2Hs + ε‖∆uε‖2Hs

)
6 C‖∇uε‖L∞‖uε‖2Hs

6 C‖uε‖H2+‖uε‖2Hs .

Similarly, we obtain
d

dt

(
‖∂−1
x uε‖2Hs + ε‖∆∂−1

x uε‖2Hs

)
6 C‖uε‖L∞‖∂−1

x uε‖Hs‖uε‖Hs

6 C‖uε‖H1+‖∂−1
x uε‖Hs‖uε‖Hs .

Therefore, we eliminate the ε term and arrive at
d

dt
‖uε‖2Xs

6 C‖uε‖H2+‖uε‖2Xs .

Thus, T = T (‖φ‖H2+). A standard compactness argument shows that (1.1)
possesses for each φ ∈ Xs, where s > 2, a unique solution u ∈ L∞([0, T ], Xs).
Further, by the regularization technique of [6] it follows that u ∈ C([0, T ], Xs) and
the solution depends continuously on φ. �

Next, let us write down the corresponding integral equation for (1.1) as

(A.3) u(t) = W (t)φ−
∫ t

0

W (t− τ)∂x
(
u2(τ)

)
dτ,

where W (t) = exp(t(β∂3
x − ∂−1

x ∂2
y + γ∂−1

x )) is the Fourier multiplier with symbol

exp
(
−it

(
βξ3 +

η2 + γ

ξ

))
.

The next theorem concerns the local well-posedness of (1.1) in Hs(R2) as a
solution to the integral equation (A.3).

Theorem A.1. For φ ∈ Hs(R2), s > 2, the integral equation (A.3) has a unique
solution u(t) ∈ Hs(R2). Moreover, the map φ 7→ u(t) is continuous in the Hs-norm.

Proof. Given φ ∈ Hs(R2) with s > 2, one may find [32] a sequence {φε} ⊂ X∞
such that φε converges to φ in Hs(R2). Theorem 1.1 then asserts that for each ε
a unique solution uε ∈ C([0, T ε], X∞) of (A.1) exists with initial data φε. As in
the proof of Theorem 1.1 we know that {uε} is bounded in L∞([0, T ], Hs) where
T = T (‖φ‖Hs).

On [0, T ] the limit function uε satisfies

uε(t) = W (t)φε −
∫ t

0

W (t− τ)∂x
(
uε(τ)

)2
dτ := W (t)φε − vε(t).

Our goal is then to show that

vε(t)→ v(t) =
∫ t

0

W (t− τ)∂x(u(τ))2dτ

as ε→ 0.
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Since vε is bounded in L∞([0, T ], Hs−1(R2)), from

vεt = ∂x
(
uε(t)

)2 − ∫ t

0

(β∂3
x − ∂−1

x ∂2
y + γ∂−1

x )W (t− τ)∂x
(
uε(τ)

)2
dτ

it follows that vεt is bounded in L∞([0, T ], Hs−4(R2)). Subsequently, the Aubin-
Lions compactness theorem asserts that vε → v as ε→ 0 in L2

loc((0, T )× R2).
Next, since W (t)φε → W (t)φ in L∞((0, T ), Hs(R2)), it follows that uε → u as

ε→ 0 in L2
loc((0, T )×R2). Since L∞((0, T ), Hs−1(R2)) is an algebra, then (uε)2 is

bounded in L∞((0, T ), Hs−1(R2)) and the above convergence of uε in L2
loc((0, T )×

R2) asserts that (uε)2 → u2 as ε → 0 weakly in L2((0, T ), Hs−1(R2). Hence, for
a fixed t > 0 it follows that W (t − τ)∂x

(
uε(τ)

)2 → W (t − τ)∂x
(
u(τ)

)2 as ε → 0
weakly in L2((0, T ), Hs−2(R2)), and accordingly,∫ t

0

W (t− τ)∂x
(
uε(τ)

)2
dτ →

∫ t

0

W (t− τ)∂x
(
u(τ)

)2
dτ weakly in Hs−2(R2).

In particular, the convergence is in sense of distributions. Therefore,

v(t) =
∫ t

0

W (t− τ)∂x
(
u(τ)

)2
dτ.

which completes the proof. �

The conservation laws

E(u(t)) = E(φ) and V (u(t)) = V (φ),

where E and V are defined as in (1.4) and (1.5) suggest that a natural space
to establish the well-posedness of the Cauchy problem associated to (1.1) be the
“energy” space X1. Indeed, (1.1) is not completely integrable§ [18] (although it is a
Hamiltonian system) and its global well-posedness may not utilize higher Sobolev
norms.
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