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ABSTRACT. In this paper we study a generalized two-component Camassa-Holm system
which can be derived from the theory of shallow water waves moving over a linear shear
flow. This new system also generalizes a class of dispersive waves in cylindrical compress-
ible hyperelastic rods. We show that this new system can still exhibit the wave-breaking
phenomenon. We also determine the exact blow-up rate of such solutions. In addition, we
establish a sufficient condition for global solutions.

1. INTRODUCTION

An interesting phenonmenon in water wave channels is the appearance of waves with
length much greater than the depth of the water. Various models have been proposed in
understanding the long wave, shallow water problem. In the context of nonlinear elasticity,
similar dynamics arise in the study of an elastic rod whose diameter is much smaller than
the axial length scale. Such systems describe in a relatively simple way the competition
between nonlinear and dispersive effects. The best known model is the Korteweg-de Vries
(KdV) equation (see [50] and [44] for a physical derivation).

In 1993, Camassa and Holm [7] proposed a following new equation (CH) for shallow
water waves:

ut − uxxt + 3uux = 2uxuxx + uuxxx. (1.1)
It is a nonlinear dispersive wave equation that models the propagation of unidirectional
irrotational shallow water waves over a flat bed [7, 18, 31, 33], as well as water waves
moving over an underlying shear flow [34]. The CH equation (1.1) also arises in the study
of a certain non-Newtonian fluids [5] and also models finite length, small amplitude radial
deformation waves in cylindrical hyperelastic rods [24]. The CH equation (1.1) was first
obtained by Fokas and Fuchssteiner [27, 28] as a bi-Hamiltonian generalization of KdV.
The novelty of Canmassa and Holm’s work was the physical derivation of (1.1) and the
discovery that the solitary wave solutions to this equation are solitons.

The CH equation (1.1) has caught a lot of attention in recent years due to two remark-
able features. The first is the presence of solutions in the form of peaked solitary waves
or “peakons” [7, 2, 39]: u(t, x) = ce−|x−ct|, c 6= 0, which are smooth except at the
crests, where they are continuous, but have a jump discontinuity in the first derivative. The
peakons replicate a feature that is characteristic for the waves of great height – waves of
the largest amplitude that are exact solutions of the governing equations for water waves
[13, 19, 49]. These peakons are shown to be stable [21, 22, 40]. It is worth mentioning that
recently it was pointed out by Lakshmanan [38] that the Camassa-Holm equation could
be relevant to the modeling of tsunami waves (see also the discussion in Constantin and
Johnson [17], and Segur [46]).

R.M. Chen was supported in part by NSF grants DMS-0908663. Y. Liu was supported in part by NSF grant
DMS-0906099.

1



Another remarkable property of the CH equation is the presence of breaking waves (i.e.
the solution remains bounded while its slope becomes unbounded in finite time [7, 10,
11, 12, 15, 42, 50]). In [3] and [4] the authors show that the solutions can be uniquely
continued after breaking as either global conservative of global dissipative weak solution.
It is noted that the KdV equation does not have wave breaking phenomena [37, 48]. Wave
breaking is one of the most intriguing long-standing problems of water wave theory [50].
As mentioned by Whitham [50], it is intriguing to know which mathematical models for
shallow water waves exhibit both phenomena of soliton interaction and wave breaking. It is
found that the CH equation could be the first such equation and has the potential to become
the new master equation for shallow water wave theory, modeling the soliton interaction
of peaked traveling waves, wave breaking, admitting solutions as permanent waves, and
being integrable Hammiltonian systems.

The Camassa-Holm equation also admits many integrable multi-component generaliza-
tions. The most popular one is{

mt −Aux + umx + 2uxm+ ρρx = 0, m = u− uxx,
ρt + (ρu)x = 0. (1.2)

Notice that the CH equation can be obtained via the obvious reduction ρ ≡ 0 and A = 0.
System (1.2) was derived first in [47], where ρ(t, x) is related to the free surface elevation
from equilibrium (or scalar density), and A ≥ 0 characterizes a linear underlying shear
flow. Recently, Constantin-Ivanov [16] and Ivanov [32] established a rigorous justification
of the derivation of system (1.2). Mathematical properties of the system have been also
studied further in many works, e.g. [1, 9, 26, 43, 45]. Chen, Liu and Zhang [9] estab-
lished a reciprocal transformation between the two-component Camassa-Holm system and
the first negative flow of the AKNS hierarchy. Escher, Lechtenfeld and Yin [26] investi-
gated local well-posedness for the two-component Camassa-Holm system with initial data
(u0, ρ0−1) ∈ Hs(R)×Hs−1(R) with s ≥ 2 by applying Kato’s theory [36], and provided
some precise blow-up scenarios for strong solutions to the system. The local wellposed-
ness is improved by Gui and Liu [29] to the Besov spaces (especially in the Sobolev space
Hs(R) ×Hs−1(R) with s > 3/2), and they showed that the finite time blow-up is deter-
mined by either the slope of the first component u or the slope of the second component
ρ (also see [16, 26]). The blow-up criterion is made more precise in [41] where the au-
thors showed that the wave-breaking in finite time only depends on the slope of u. In other
words, the wave-breaking in umust occur before that in ρ. This blow-up criterion is further
improved in [30] to the lowest Sobolev spaces Hs(R)×Hs−1(R) with s > 3/2.

In this paper we follow Ivanov’s modeling approach [32] and derive the following gen-
eralized two-component CH system{

mt −Aux + σ(2mux + umx) + 3(1− σ)uux + ρρx = 0, m = u− uxx,
ρt + (ρu)x = 0, (1.3)

or equivalently, in terms of u and ρ,{
ut − utxx −Aux + 3uux − σ(2uxuxx + uuxxx) + ρρx = 0,
ρt + (ρu)x = 0, (1.4)

with u→ 0, ρ→ 1 as |x| → ∞. We see the appearance of a new free parameter σ. When
σ = 1 it recovers the standard two-component CH system (1.2). In the case ρ ≡ 0, it
becomes

ut − uxxt + 3uux = σ (2uxuxx + uuxxx) ,
2



which models finite length, small amplitude radial deformation waves in cylindrical hyper-
elastic rods (see [24]). System (1.3) has the following two Hamiltonians

H1 =
1
2

∫
R

(
mu+ (ρ− 1)2

)
dx,

H2 =
1
2

∫
R

(
u3 + σuu2

x + 2u(ρ− 1) + u(ρ− 1)2 −Au2
)
dx.

Similar as in [16, 26], we can use the method of Besov spaces together with the transport
equation theory to show that system (1.3) is locally wellposed in Hs(R)×Hs−1(R) with
s > 3/2. Due to the Hamiltonian H1, the horizontal velocity component u is uniformly
bounded by the Sobolev imbedding of H1(R) into L∞(R).

The two equations for u and ρ are of a transport structure

∂tf + v∂xf = g.

It is well known that most of estimates are available when v has enough regularity. Roughly
speaking, the regularity of the initial data is expected to be preserved as soon as v belongs
to L1(0, T ; Lip). More specifically, u and ρ are “transported” along directions of σu and u
respectively. Thus the solution can be estimated by in a Gronwall way involving ‖ux‖L∞ .
Hence one can use these estimates to derive a criterion which says if∫ T

0

‖ux(τ)‖L∞dτ <∞,

then solutions can be extended further in time, c.f. Theorem 3.3.
In concern of the finite time blow-up, notice that system (1.4) has two characteristics{

∂q1

∂t
= u(t, q1), 0 < t < T,

q1(0, x) = x, x ∈ R,
(1.5)

and {
∂q2

∂t
= σu(t, q2), 0 < t < T,

q2(0, x) = x, x ∈ R.
(1.6)

As disscussed in Section 3, these two characteristics are both increasing diffeomorphisms
of R. When σ = 1, these two characteristics q1 and q2 coincide, which suggests one to
carry out the estimates along that trajectory. In fact one may use the invariance of the ρ
component associated to the transport equation to control ‖ρ‖L∞ and ‖ρx‖L∞ in terms
of ‖ux‖L∞ and construct wave-breaking solutions with certain initial profiles (see [16,
30, 41]). However when σ 6= 1 the analysis is a little different. Since there is no uniform
characteristics, in order to obtain similar estimates, one needs more regularity assumptions.
The way to resolve this issue is to employ the method of characteristics along a properly
chosen q1 which captures the maximum/minimum of ux. In this way, the transport equation
for ρ is the same as before and uxx vanishes a.e. along such characteristics and hence there
is no extra regularity needed. Moreover, using this method of characteristics together with
a use of the conservation laws we have an improved estimate of ux, c.f. Lemma 3.5, which
says that σux is always uniformly bounded from above. Therefore we see that the only
way wave-breaking can occur is that σux tends to −∞ and hence we obtain a necessary
and sufficient condition for the finite time blow-up:

lim
t→T−

inf
x∈R

σux(t, x) = −∞.
3



We also study the problem of global existence of solutions. We use the method of
Lyapunov functions introduced in [16]. We find a sufficient condition for global solutions
which is determined only by a positive profile of the free surface component ρ of the
system, in the case 0 < σ < 2. However the cases when σ < 0 or σ ≥ 2 still remain open
at this moment.

Our main results of the paper are Theorem 3.4 (Wave-breaking criterion), Theorem 3.9
(Wave-breaking), Theorem 4.1 (Blow-up rate), and Theorem 5.1 (Global exsitence).

The rest of the paper is organized as follows. Section 2 gives a new generalized two-
component CH system using the same approach as in [32]. Section 3 concerns the wave-
breaking of this new system. Theorem 3.3 states a wave-breaking criterion which says
that the the wave-breaking only depends on the slope of u not the slope of ρ. Theo-
rem 3.4 improves the blow-up criterion with a more precise condition. Various results
of wave-breaking are demonstrated in details. Section 4 is about the blow-up rate of strong
solutions. Finally Section 5 provides a sufficient condition for global solutions.

2. DERIVATION OF THE MODEL

Following Ivanov’s approach in [32] (also see [16]), we consider the motion of an in-
viscid incompressible fluid with a constant density % governed by the Euler’s equations

~vt + (~v · ∇)~v = −1
%
∇P + ~g,

∇ · ~v = 0,

where ~v(t, x, y, z) is the velocity of the fluid, P (t, x, y, z) is the pressure and~g = (0, 0,−g)
is the gravity acceleration.

Using the shallow water approximation and non-dimensionalization the above equations
can be written as

ut + ε(uux + wuz) = −px,
δ2 (wt + ε(uwx + wwz)) = −pz,
ux + wz = 0,
w = ηt + εuηx, p = η on z = 1 + εη,

w = 0 on z = 0,

where now ~v = (u, 0, w), p(x, z, t) is the pressure variable measuring the deviation from
the hydrostatic pressure distribution, η(t, x) is the deviation from the mean level z = h
of the water surface, and ε = a/h, δ = h/λ are the two dimensionless parameters with a
being the typical amplitude of the wave and λ being the typical wavelength of the wave.

In the presence of an underlying shear flow, the horizontal velocity of the flow becomes
u+ Ũ(z). Taking the simplest case Ũ(z) = Az where A > 0 is a constant. Notice that the
Burns condition [6] gives the shallow-water limit of the dispersion relation for the waves
with vorticity and hence determines the speed of propagation of the linear waves [23, 35].
From Burns condition one has the following expression for the speed c of the traveling
waves in linear approximation:

c =
1
2

(
A±

√
4 +A2

)
. (2.1)
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In the case of constant vorticity ω = A, one obtain at the order ofO(ε, δ2) the following
equations for u0 and η, where u0 is the leading order approximation for u.(

u0 − δ2 1
2
u0xx

)
t

+ εu0u0x + ηx − δ2A

3
u0xxx = 0, (2.2)

ηt +Aηx +
[
(1 + εη)u0 + ε

A

2
η2

]
x

− δ2 1
6
u0xxx = 0. (2.3)

Introducing a new variable

ρ = 1 + εαη + ε2βη2 + εδ2γu0xx,

for some constants α, β and γ satisfying

γ

α
=

1
6(c−A)

α = 1 +
Ac

2
+
β

α
,

equations (2.2) and (2.3) become
mt +Amx −Au0x + δ2

(
A
6 + κ(A− c)− γ

α

)
u0xxx

+ε
(

1− α2+2β
α c2

)
u0u0x + 1

2εα (ρ2)x = 0,
ρt +Aρx + αε(ρu0)x = 0,

(2.4)

where m = u0 − δ2( 1
2 + κ)u0xx. As for the first equation, one may choose κ to be

κ =
1

A− c

(γ
α
− A

6

)
=

1
6(c−A)

(
A− 1

c−A

)
,

so that the u0xxx term disappears. At the order of O(1), we may break u0u0x up as

u0u0x = s(2mu0x + u0mx) + (1− 3s)u0u0x +O(δ2),

for any s ∈ R. Thus equation (2.4) can be written at the order O(ε, δ2) as

mt +Amx −Au0x + ε
(

1− α2 + 2β
α

c2
)
s(2mu0x + u0mx)

+ ε
(

1− α2 + 2β
α

c2
)

(1− 3s)u0u0x +
1

2εα
(ρ2)x = 0.

Using the same scaling as in [32]: u0 → 1
αεu0, x → δ√

B
x t → δ√

B
t, then (2.4)

becomes
mt +Amx −Au0x + 1

α

(
1− α2+2β

α c2
)
s(2mu0x + u0mx)

+ 1
α

(
1− α2+2β

α c2
)

(1− 3s)u0u0x + ρρx = 0, m = u0 − u0xx,

ρt +Aρx + (ρu0)x = 0.

Now if we choose
1

3α

(
1− α2 + 2β

α
c2
)

= 1,

and denote σ = 3s. Then we arrive at{
mt +Amx −Au0x + σ(2mu0x + u0mx) + 3(1− σ)u0u0x + ρρx = 0,
ρt +Aρx + (ρu0)x = 0. (2.5)
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Thus the constants α, β, γ and c satisfy

α =
1

3(1 + c2)
+
c2

3
,

β = α2 − α
(

1 +
Ac

2

)
,

γ =
α

6(c−A)
,

c2 −Ac− 1 = 0.

With a further Galilean transformation x → x − ct, t → t, as used in [32] we can
drop the terms Aρx and Amx in (2.5) and hence obtain the generalized two-component
Camassa-Holm system (1.3) or (1.4). Notice that we have the following two conservation
laws for system (1.4)

E(u, ρ) =
1
2

∫
R

(
u2 + u2

x + (ρ− 1)2
)
dx, (2.6)

F (u, ρ) =
1
2

∫
R

(
u3 + σuu2

x + 2u(ρ− 1) + u(ρ− 1)2 −Au2
)
dx. (2.7)

3. FORMATION OF SINGULARITIES FOR σ 6= 0

Applying transport equation theory combined with the method of Besov spaces, one
may follow the similar argument as in [29] to obtain the following local well-posedness
result for the system (1.4).

Theorem 3.1. If (u0, ρ0 − 1) ∈ Hs × Hs−1, s > 3/2, then there exists a maximal
time T = T (‖(u0, ρ0 − 1)‖Hs×Hs−1) > 0 and a unique solution (u, ρ − 1) of (1.4) in
C([0, T );Hs×Hs−1)∩C1([0, T );Hs−1×Hs−2) with (u, ρ)|t=0 = (u0, ρ0). Moreover,
the solution depends continuously on the initial data and T is independent of s. In addition,
the Hamiltonian E(u, ρ) defined in (2.6) is independent of the existence time.

As introduced in the introduction, we consider the following two associated Lagrangian
scales of the two component CH system (1.4){

∂q1

∂t
= u(t, q1), 0 < t < T,

q1(0, x) = x, x ∈ R,

and {
∂q2

∂t
= σu(t, q2), 0 < t < T,

q2(0, x) = x, x ∈ R,

where u ∈ C1([0, T ), Hs−1) is the first component of the solution (u, ρ) to (1.4) with
initial data (u0, ρ0) ∈ Hs × Hs−1 with s > 3/2 and T > 0 is the maximal time of
existence. Notice that when σ = 1 the two characteristics q1(t, x) and q2(t, x) are the
same.

A direct calculation shows

q1,tx(t, x) = ux(t, q1(t, x))q1,x(t, x)

and
q2,tx(t, x) = σux(t, q2(t, x))q2,x(t, x).
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Thus for t > 0, x ∈ R

q1,x(t, x) = e
R t
0 ux(τ,q1(τ,x))dτ > 0, and q2,x(t, x) = e

R t
0 σux(τ,q2(τ,x))dτ > 0,

indicating that q1(t, ·) : R → R and q2(t, ·) : R → R are diffeomorphisms of the line
for each t ∈ [0, T ). Hence the L∞ norm of any function v(t, ·) ∈ L∞(R), t ∈ [0, T ) is
preserved under the family of diffeomorphisms q1(t, ·) and q2(t, ·) with t ∈ [0, T ), i.e.,

‖v(t, ·)‖L∞(R) = ‖v(t, q1(t, ·))‖L∞(R) = ‖v(t, q2(t, ·))‖L∞(R), t ∈ [0, T ). (3.1)

Similarly we have

inf
x∈R

v(t, x) = inf
x∈R

v(t, q1(t, x)) = inf
x∈R

v(t, q2(t, x)), t ∈ [0, T ), (3.2)

sup
x∈R

v(t, x) = sup
x∈R

v(t, q1(t, x)) = sup
x∈R

v(t, q2(t, x)), t ∈ [0, T ). (3.3)

Our system (1.4) can be written in the following “transport” type{
ut + σuux = −∂xp ∗

(
−Au+ 3−σ

2 u2 + σ
2u

2
x + 1

2ρ
2
)
,

ρt + uρx = −uxρ,
(3.4)

where p(x) := 1
2e
−|x|, x ∈ R. We may use the following proposition derived in [30] to

handle the regularity propogation of solutions to (1.4).

Proposition 3.2. Let 0 < s < 1. Suppose that f0 ∈ Hs, g ∈ L1 ([0, T ];Hs), v, vx ∈
L1 ([0, T ];L∞) and that f ∈ L∞ ([0, T ];Hs) ∩ C ([0, T ];S ′) solves the one-dimensional
linear transport equation {

ft + vfx = g,
f(0, x) = f0(x). (3.5)

Then f ∈ C ([0, T ];Hs). More precisely, there exists a constant C depending only on s
such that the following estimate holds:

‖f(t)‖Hs ≤ ‖f0‖Hs + C

(∫ t

0

‖g(τ)‖Hsdτ +
∫ t

0

‖f(τ)‖HsV ′(τ)dτ
)
. (3.6)

Hence

‖f(t)‖Hs ≤ eCV (t)

(
‖f0‖Hs + C

∫ t

0

‖g(τ)‖Hsdτ
)
, (3.7)

where V (t) =
∫ t

0
(‖v(τ)‖L∞ + ‖vx(τ)‖L∞) dτ .

The above proposition was proved using Littlewood-Paley analysis for the transport
equation and Moser-type estimates. Using this result, and performing the same argument
as in [30] we can obtain the following blowup criterion. The proof is very similar to that
of Theorem 4.1 in [30], and hence is omitted.

Theorem 3.3. Let σ 6= 0 and (u, ρ) be the solution of (1.4) with initial data (u0, ρ0−1) ∈
Hs(R)×Hs−1(R), s > 3/2, and T the maximal time of existence. Then

T <∞ ⇒
∫ T

0

‖ux(τ)‖L∞dτ =∞. (3.8)

Next we state the necessary and sufficient condition for the blowup of solutions.
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Theorem 3.4 (Wave-breaking criterion for σ 6= 0). Let σ 6= 0 and (u, ρ) be the solution
of (1.4) with initial data (u0, ρ0 − 1) ∈ Hs(R)×Hs−1(R), s > 3/2, and T the maximal
time of existence. Then the solution blows up in finite time if and only if

lim
t→T−

inf
x∈R

σux(t, x) = −∞. (3.9)

To prove this wave-breaking criterion, we use the following lemma to show that indeed
σux is uniformly bounded from above.

Lemma 3.5. Let σ 6= 0 and (u, ρ) be the solution of (1.4) with initial data (u0, ρ0 − 1) ∈
Hs(R)×Hs−1(R), s > 3/2, and T the maximal time of existence. Then

(1) If σ > 0 then

sup
x∈R

ux(t, x) ≤ ‖u0,x‖L∞ +

√
‖ρ0‖2L∞ + C2

1

σ
. (3.10)

(2) If σ < 0, then

inf
x∈R

ux(t, x) ≥ −‖u0,x‖L∞ −
C2√
−σ

. (3.11)

The constants above are defined as follows.

C0 = ‖(u0, ρ0 − 1)‖H1×L2 , (3.12)

C1 =

√
1 +A2 + |σ|+ 2|3− σ|

2
C0, (3.13)

C2 =

√
2 +

5 +A2 − 2σ
2

C0, for σ < 0. (3.14)

Remark 3.6. It was shown in [30] and [41] that when σ = 1 and ux is bounded from below
then ux grows at most exponentially. Such a result can be easily extended to the case when
σ > 0. However we show here that indeed σux is always bounded from above uniformly
by a constant, even if we don’t know whether it is bounded from below. This result of the
uniform upper bound of ux is also discussed in the Camassa-Holm case A = 0, ρ ≡ 0
and σ = 1 in [11] and [41], which says that the solution of the Camassa-Holm equation
with initial data u0 ∈ Hs(R), s > 3/2 always has a uniform upper bound. In the two-
component Camassa-Holm system, it was proved in [41] that ux is uniformly bounded
from above on the set [0, T ) × Λ, where Λ = {x ∈ R : ρ0(x) = 0}, the zero level set of
ρ0. Hence here we improve the estimate to all of R.

The approach we take here is the method of characteristics. Applying the following
Lemma 3.7 we may carry out the estimates along the characteristics q1(t, x) which captures
supx∈R ux(t, x) and infx∈R ux(t, x).

Lemma 3.7. ([14]) Let T > 0 and v ∈ C1
(
[0, T );H1(R)

)
. Then for every t ∈ [0, T )

there exists at least one point ξ(t) ∈ R with

m(t) := inf
x∈R

[vx(t, x)] = vx (t, ξ(t)) .

The function m(t) is absolutely continuous on (0, T ) with

dm(t)
dt

= vtx (t, ξ(t)) a.e. on (0, T ).
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Proof of Lemma 3.5. The local wellposedness theorem and a density argument implies that
it suffices to prove the desired estimates for s ≥ 3. Thus we take s = 3 in the proof. Also
we may assume that

u0 6≡ 0. (3.15)

Otherwise the results become trivial. Note that if p(x) := 1
2e
−|x|, x ∈ R, then (1 −

∂2
x)−1f = p ∗ f for all f ∈ L2(R). Hence we can rewrite the first equation in (1.4) as

ut + σuux + ∂xp ∗
(
−Au+

3− σ
2

u2 +
σ

2
u2
x +

1
2
ρ2

)
= 0. (3.16)

Differentiating the above with respect to x and using the identity −∂2
xp ∗ f = f − p ∗ f we

obtain

utx+σuuxx+
σ

2
u2
x =

1
2
ρ2+

3− σ
2

u2+A∂2
xp∗u−p∗

(
3− σ

2
u2 +

σ

2
u2
x +

1
2
ρ2

)
. (3.17)

(1) When σ > 0, using Lemma 3.7 and the fact that

sup
x∈R

[vx(t, x)] = − inf
x∈R

[−vx(t, x)] ,

we can consider m̄(t) and η(t) as follows

m̄(t) := ux (t, η(t)) = sup
x∈R

(ux(t, x)) , t ∈ [0, T ). (3.18)

Hence
uxx (t, η(t)) = 0, a.e. t ∈ [0, T ). (3.19)

Take the trajectory q1(t, x) defined in (1.5). Then we know that q1(t, ·) : R → R is a
diffeomorphism for every t ∈ [0, T ). Therefore there exists x1(t) ∈ R such that

q1 (t, x1(t)) = η(t) t ∈ [0, T ). (3.20)

Now let
ζ̄(t) = ρ(t, q1(t, x1)), t ∈ [0, T ). (3.21)

Therefore along this trajectory q1(t, x1) equation (3.17) and the second equation of (1.4)
become

m̄′(t) = −σ
2
m̄2 +

1
2
ζ̄2 + f(t, q1(t, x1)),

ζ̄ ′(t) = −ζ̄m̄, (3.22)

for t ∈ [0, T ), where ′ denotes the derivative with respect to t and f(t, q(t, x)) is given by

f =
3− σ

2
u2 +A∂2

xp ∗ u− p ∗
(

3− σ
2

u2 +
σ

2
u2
x +

1
2
ρ2

)
. (3.23)

We first derive the upper and lower bounds for f for later use in getting the wave-
breaking result. Using that ∂2

xp ∗ u = ∂xp ∗ ∂xu, we have

f =
3− σ

2
u2 +A∂xp ∗ ∂xu− p ∗

(
3− σ

2
u2 +

σ

2
u2
x

)
− 1

2
p ∗ 1− p ∗ (ρ− 1)

− 1
2
p ∗ (ρ− 1)2

≤ 3− σ
2

u2 +A|px ∗ ux|+
∣∣∣∣p ∗ (3− σ

2
u2 +

σ

2
u2
x

)∣∣∣∣− 1
2

+ |p ∗ (ρ− 1)|.

9



Since

A|px ∗ ux| ≤ A‖px‖L2‖ux‖L2 =
1
2
A‖ux‖L2 ≤ 1

4
+

1
4
A2‖ux‖2L2 ,

(3.24)

|p ∗ (ρ− 1)| ≤ ‖p‖L2‖ρ− 1‖L2 =
1
2
‖ρ− 1‖L2 ≤ 1

4
+

1
4
‖ρ− 1‖2L2 ,

(3.25)

3− σ
2

u2 ≤ |3− σ|
4

∫
R

(u2 + u2
x) dx, (3.26)∣∣∣∣p ∗ (3− σ

2
u2 +

σ

2
u2
x

)∣∣∣∣ ≤ 1
2

∥∥∥∥3− σ
2

u2 +
σ

2
u2
x

∥∥∥∥
L1

≤
∫

R

(
|3− σ|

4
u2 +

|σ|
4
u2
x

)
dx,

(3.27)

Therefore we obtain the upper bound of f

f ≤ 1
4
‖ρ− 1‖2L2 +

|3− σ|
2
‖u‖2L2 +

A2 + |3− σ|+ |σ|
4

‖ux‖L2 (3.28)

≤ 1 +A2 + |σ|+ 2|3− σ|
4

‖(u0, ρ0 − 1)‖2H1×L2 =
1
2
C2

1 . (3.29)

Now we turn to the lower bound of f . Similar as before, we get

−f ≤ σ − 3
2

u2 +A|px ∗ ux|+
∣∣∣∣p ∗ (3− σ

2
u2 +

σ

2
u2
x

)∣∣∣∣+
1
2

+ |p ∗ (ρ− 1)|

+
1
2
p ∗ (ρ− 1)2.

≤ 1 +
1
2
‖ρ− 1‖2L2 +

|3− σ|
2
‖u‖2L2 +

A2 + |3− σ|+ |σ|
4

‖ux‖L2

≤ 1 +
2 +A2 + |σ|+ 2|3− σ|

4
‖(u0, ρ0 − 1)‖2H1×L2 . (3.30)

When σ < 0, we have a finer estimate

−f ≤ 1 +
1
2
‖ρ− 1‖2L2 +

3− σ
4
‖u‖2L2 +

A2 − σ
4
‖ux‖2L2

≤ 1 +
5 +A2 − 2σ

4
‖(u0, ρ0 − 1)‖2H1×L2 =

1
2
C2

2 . (3.31)

Combining (3.29) and (3.30) we obtain

|f | ≤ 1 +
2 +A2 + |σ|+ 2|3− σ|

4
‖(u0, ρ0 − 1)‖2H1×L2 . (3.32)

Since now s ≥ 3, we have u ∈ C1
0 (R). Therefore

inf
x∈R

ux(t, x) ≤ 0, sup
x∈R

ux(t, x) ≥ 0, t ∈ [0, T ). (3.33)

Hence m̄(t) > 0 for t ∈ [0, T ). From the second equation of (3.22) we obtain that

ζ̄(t) = ζ̄(0)e−
R t
0 m̄(τ)dτ . (3.34)

Hence

|ρ(t, q1(t, x1))| = |ζ̄(t)| ≤ |ζ̄(0)| ≤ ‖ρ0‖L∞ .
10



For any given x ∈ R, define

P1(t) = m̄(t)− ‖u0,x‖L∞ −
√
‖ρ0‖2L∞ + C2

1

σ
.

Notice that P1(t) is a C1-differentiable function in [0, T ) and satisfies

P1(0) ≤ m̄(0)− ‖u0,x‖L∞ ≤ 0.

We will show that
P1(t) ≤ 0, for t ∈ [0, T ). (3.35)

If not, then suppose there is a t0 ∈ [0, T ) such that P1(t0) > 0. Define

t1 = max{t < t0 : P1(t) = 0}.
Then P1(t1) = 0 and P ′1(t1) ≥ 0, or equivalently,

m̄(t1) = ‖u0,x‖L∞ +

√
‖ρ0‖2L∞ + C2

1

σ
,

m̄′(t1) ≥ 0.

On the other hand, we have

m̄′(t1) = −σ
2
m̄2(t1) +

1
2
ζ̄2(t1) + f(t1, q(t1, x))

≤ −σ
2

[
‖u0,x‖L∞ +

√
‖ρ0‖2L∞ + C2

1

σ

]2

+
1
2
‖ρ0‖2L∞ +

1
2
C2

1 < 0,

a contradiction. Therefore P1(t) ≤ 0, for t ∈ [0, T ). Since x is chosen arbitrarily, we
obtain (3.10).

(2) To derive a lower bound for ux in the case of σ < 0, we consider the functions m(t)
and ξ(t) as in Lemma 3.7

m(t) := ux (t, ξ(t)) = inf
x∈R

(ux(t, x)) , t ∈ [0, T ). (3.36)

Hence
uxx (t, ξ(t)) = 0 a.e. t ∈ [0, T ). (3.37)

Similar as before, we take the characteristic q1(t, x) defined in (1.5) and choose x2(t) ∈ R
such that

q1 (t, x2(t)) = ξ(t) t ∈ [0, T ). (3.38)
Let

ζ(t) = ρ (t, q1(t, x2)) , t ∈ [0, T ). (3.39)
Hence along this trajectory q1(t, x2) equation (3.17) and the second equation of (1.4) be-
come

m′(t) = −σ
2
m2 +

1
2
ζ2 + f(t, q1(t, x2)),

ζ ′(t) = −ζm, (3.40)

we can define now for any given x ∈ R

P2(t) = m(t) + ‖u0,x‖L∞ +
C2√
−σ

.

Then P2(t) is also C1-differentiable on [0, T ) and satisfies

P2(0) ≥ m(0) + ‖u0,x‖L∞ ≥ 0.
11



We now claim that
P2(t) ≥ 0, for t ∈ [0, T ). (3.41)

If not, then suppose there is a t̄0 ∈ [0, T ) such that P2(t̄0) < 0. Define

t2 = max{t < t̄0 : P2(t) = 0}.

Then P2(t2) = 0 and P ′2(t2) ≤ 0, or equivalently,

m(t2) = −‖u0,x‖L∞ −
C2√
−σ

,

m′(t2) ≤ 0.

On the other hand, we have

m′(t2) = −σ
2
m2(t2) +

1
2
ζ2(t2) + f(t2, q(t2, x))

≥ −σ
2

(
‖u0,x‖L∞ +

C2√
−σ

)2

− 1
2
C2

2 > 0,

a contradiction. Therefore P2(t) ≥ 0, for t ∈ [0, T ). Since x is chosen arbitrarily, we
obtain (3.11).

�

In fact if σux is bounded from below, we may obtained the following estimates for
‖ρ‖L∞(R).

Proposition 3.8. Let σ 6= 0 and (u, ρ) be the solution of (1.4) with initial data (u0, ρ0 −
1) ∈ Hs(R) × Hs−1(R), s > 3/2, and T the maximal time of existence. If there is an
M ≥ 0 such that

inf
(t,x)∈[0,T )×R

σux ≥ −M, (3.42)

Then
(1) If σ > 0 then

‖ρ(t, ·)‖L∞ ≤ ‖ρ0‖L∞eMt/σ. (3.43)

(2) If σ < 0, then

‖ρ(t, ·)‖L∞ ≤ ‖ρ0‖L∞eNt, (3.44)

where N = ‖u0,x‖L∞ + C2√
−σ and C2 is given in (3.14).

Proof. (1) We define for any given x ∈ R

U(t) = ux(t, q1(t, x)), γ(t) = ρ(t, q1(t, x)), x ∈ R, t ∈ [0, T ). (3.45)

Then the ρ equation of system (1.4) becomes

γ′(t) = −γU. (3.46)

Thus
γ(t) = γ(0)e−

R t
0 U(τ)dτ . (3.47)

From the assumption (3.42) and σ > 0 we see

U(t) ≥ −M
σ
, t ∈ [0, T ).
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Hence

|ρ(t, q1(t, x))| = |γ(t)| ≤ |γ(0)|e
R t
0 −U(τ)dτ ≤ |γ(0)|eMt/σ

≤ ‖ρ0‖L∞eMt/σ,

which, together with (3.1), leads to (3.43).
(2) To obtain (3.44), we perform a similar argument as before. Using (3.45), (3.47) and

the lower bound (3.11) we have

|ρ(t, q1(t, x))| = |γ(t)| ≤ e
R t
0 −U(τ)dτ |γ(0)| ≤ ‖ρ0‖L∞eNt,

which, combining with (3.1), proves to (3.44). �

Proof of Theorem 3.4. Assume that T < ∞ and (3.9) is not valid. Then there is some
positive number M > 0 such that

σux(t, x) ≥ −M, ∀(t, x) ∈ [0, T )× R.
It now follows from Lemma 3.5 that

|ux(t, x)| ≤ C. (3.48)

where C = C(A,M, σ, ‖(u0, ρ0 − 1)‖Hs×Hs−1). Therefore Theorem 3.3 implies that the
maximal existence time T =∞, which contradicts the assumption that T <∞.

Conversely, the Sobolev embedding theorem Hs(R) ↪→ L∞(R) with s > 1/2 implies
that if (3.9) holds, the corresponding solution blows up in finite time, which completes the
proof of Theorem 3.4.

�

Now we give the following series of theorems that provide some cases for wave breaking
in finite time.

Theorem 3.9. Let σ 6= 0 and (u, ρ) be the solution of (1.4) with initial data (u0, ρ0−1) ∈
Hs(R)×Hs−1(R), s > 3/2, and T the maximal time of existence.

(i) When σ > 0, assume that there is some x0 ∈ R such that

ρ0(x0) = 0, u0,x(x0) = inf
x∈R

u0,x(x),

and one of the following two conditions holds,

‖(u0, ρ0 − 1)‖2H1×L2 <
1

2 (1 + 2A2 + σ + 2|3− σ|)
, (3.49)

u0,x(x0) < − C1√
σ
, (3.50)

where C1 is defined in (3.13). Then the corresponding solution to system (1.4)
blows up in finite time in the following sense: there exists a T1 with

0 < T1 ≤
2
σ

+
8 + 8|u0,x(x0)|

1− 2 (1 + 2A2 + σ + 2|3− σ|) ‖(u0, ρ0 − 1)‖2H1×L2

, (3.51)

0 < T1 ≤ −
2

σu0,x(x0) +
√
−σ3/2C1u0,x(x0)

, (3.52)

respectively, such that

lim inf
t→T−1

(
inf
x∈R

ux(t, x)
)

= −∞.
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(ii) When σ < 0, assume that there is some x0 ∈ R such that

u0,x(x0) >
C2√
−σ

, (3.53)

where C2 is defined in (3.14). Then the corresponding solution to system (1.4)
blows up in finite time in the following sense: there exists a T2 with

0 < T2 ≤ −
2

σu0,x(x0)−
√

(−σ)3/2C2u0,x(x0)
(3.54)

such that

lim inf
t→T−2

(
sup
x∈R

ux(t, x)
)

=∞.

Remark. If σ = 1, then the assumption u0(x0) = inf
x∈R

u0,x(x) is unnecessary and (3.49)

and (3.50) can be improved [41].

Proof. (i) When σ > 0, similar to the proof of Lemma 3.5, it suffices to consider s ≥ 3.
We consider along the trajectory q1(t, x2) defined in (1.5) and (3.38). In this way, we can
write the transport equation of ρ in (1.4) along the trajectory of q1(t, x2) as

dρ (t, ξ(t))
dt

= −ρ (t, ξ(t))ux (t, ξ(t)) . (3.55)

From the assumption of the theorem we see

m(0) = ux (0, ξ(0)) = inf
x∈R

u0,x(x) = u0,x(x0).

Hence we can choose ξ(0) = x0 and then ρ0 (ξ(0)) = ρ0(x0) = 0. Thus from (3.55) we
see that

ρ (t, ξ(t)) = 0 for every t ∈ [0, T ). (3.56)
Differentiating equation (3.16) with respect to x, evaluating the result at x = ξ(t) and
using (3.37) and (3.56) we deduce from Lemma 3.7 that

m′(t) = −σ
2
m2(t) +

3− σ
2

u2 (t, ξ(t)) +A (px ∗ ux) (t, ξ(t))

− p ∗
(

3− σ
2

u2 +
σ

2
u2
x +

1
2
ρ2

)
(t, ξ(t))

= −σ
2
m2(t) + f (t, q1(t, x1)) . (3.57)

In the case of (3.49), we modify the estimate (3.24) to be

A|px ∗ ux|(t, x) ≤ 1
2
A ‖ux‖L2 ≤

1
8

+
1
2
A2 ‖ux‖2L2 (3.58)

for (t, x) ∈ [0, T )× R. The same process to (3.28) leads to

f(t, x) ≤ −1
2

+
3
8

+
2A2 + σ + |3− σ|

4
‖ux‖2L2 +

|3− σ|
2
‖u‖2L2 +

1
4
‖ρ− 1‖2L2

= −1
8

+
1 + 2A2 + σ + 2|3− σ|

4
‖(u0, ρ0 − 1)‖2H1×L2

:= −c1 < 0,

for (t, x) ∈ [0, T )× R. The last inequality is due to assumption (3.49). Then

m′(t) ≤ −σ
2
m2(t)− c1 ≤ −c1 < 0, t ∈ [0, T ), (3.59)
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so m(t) is strictly decreasing in [0, T ).
If the solution (u, ρ) to (1.4) exists globally in time, i.e. T =∞, we will show that this

leads to a contradiction. Let

t1 =
1 + |u0,x(x0)|

c1
.

Integrating (4.4) over [0, t1] yields

m(t1) = m(0) +
∫ t1

0

m′(t)dt ≤ |u0,x(x0)| − c1t1 = −1.

Hence we know
m(t) ≤ −1 for t ∈ [t1, T ). (3.60)

Also we know from (4.4) that m′(t) ≤ −σ2m
2(t) on [t1, T ), which leads to

− d

dt

(
1

m(t)

)
≤ −σ

2
, t ∈ [t1, T ).

Integrating both sides and knowing that m(t1) ≤ −1 yield

− 1
m(t)

− 1 ≤ − 1
m(t)

+
1

m(t1)
≤ −σ

2
(t− t1), t ∈ [t1, T ).

Therefore

m(t) ≤ 2
σ(t− t1)− 2

→ −∞, as t→ t1 +
2
σ
.

Thus T ≤ t1 + 2
σ , which is a contradiction to T = ∞. This proves that T < ∞ and

completes the proof of (3.51).
Next, to prove (3.52), using the upper bound of f in (3.29) we see that

m′(t) ≤ −σ
2
m2(t) +

1
2
C2

1 t ∈ [0, T ).

By assumption (3.50), m(0) = u0,x(x0) < −C1/
√
σ, we see that m′(0) < 0 and m(t) is

strictly decreasing over [0, T ). Set

δ =
1
2
− 1

2

√
C1

−u0,x(x0)
√
σ
∈
(

0,
1
2

)
.

Using that m(t) < m(0) = u0,x(x0) < 0, we obtain

m′(t) ≤ −σ
2
m2(t) +

1
2
C2

1 ≤ −
σ

2
m2(t)

[
1− (1− 2δ)4

]
≤ −δσm2(t), t ∈ [0, T ).

A similar argument as in the previous case yields

m(t) ≤ u0,x(x0)
1 + δσu0,x(x0)t

→ −∞ as t→ − 1
δσu0,x(x0)

.

Hence

T ≤ − 1
δσu0,x(x0)

,

which proves (3.52).
15



(ii) Similarly as in (i), we consider the functions m̄(t) and η(t) as defined in (3.18), and
we take the trajectory q1(t, x1) with x1 defined in (3.20). Then we have

m̄′(t) = −σ
2
m̄2(t) +

1
2
ρ2 (t, η(t)) + f (t, q1(t, x1)) ≥ −σ

2
m̄2(t) + f (t, q1(t, x1)) .

(3.61)
Using the lower bound of f as in (3.31) we have

m̄′(t) ≥ −σ
2
m̄2(t)− 1

2
C2

2 t ∈ [0, T ).

By assumption (3.53), m̄(0) ≥ u0,x(x0) > C2/
√
−σ, we see that m̄′(0) > 0 and m̄(t) is

strictly increasing over [0, T ). Set

θ =
1
2

+
1
2

√
C2

u0,x(x0)
√
−σ
∈
(

1
2
, 1
)
.

Using that m̄(t) > m̄(0) ≥ u0,x(x0) > 0, we obtain

m̄′(t) ≥ −σ
2
m2(t)− 1

2
C2

2 ≥ −
σ

2
m2(t)

[
1− (2θ − 1)4

]
≥ −θσm2(t), t ∈ [0, T ).

Therefore

m̄(t) ≥ u0,x(x0)
1 + θσu0,x(x0)t

→∞ as t→ − 1
θσu0,x(x0)

.

Hence

T ≤ − 1
θσu0,x(x0)

,

which proves (3.54). �

Corollary 3.10. If σ = 3 and A = 0 then all solutions of (1.4) with initial data (u0, ρ0 −
1) ∈ Hs(R)×Hs−1(R), s > 3

2 satisfying u0 6≡ 0 and ρ0(x0) = 0 for some x0 ∈ R, blow
up in finite time.

Proof. Let T > 0 be the maximal existence time of such a solution. Define

m(t) := ux (t, ξ(t)) = inf
x∈R

(ux(t, x)) , t ∈ [0, T ),

and consider along the trajectory q1(t, x). Taking x = x1(t) as in (3.20) with ξ(0) = x0

so that ρ (t, ξ(t)) = 0, we obtain from Lemma 3.7 and (3.57) that

m′(t) +
3
2
m2(t) ≤ 0 a.e. on [0, T ). (3.62)

But m(0) < 0 and m(t) is absolutely continuous, so m(t) is strictly decreasing. Solving
the above differential inequality we have

m(t) ≤ 2m(0)
2 + 3m(0)t

→ −∞, as t→ − 2
3m(0)

.

Therefore T ≤ − 2
3m(0) . �

The following theorem provides another condition for blowup of ux.
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Theorem 3.11. Let 0 < σ ≤ 3 and (u, ρ) be the solution of (1.4) with initial data (u0, ρ0−
1) ∈ Hs(R)×Hs−1(R), s > 3

2 , and T the maximal time of existence. Assume that

u0 is odd, ρ0 is even, u0,x(0) < 0, and ρ0(0) = 0. (3.63)

Then the corresponding solution to the system (1.4) blows up in finite time. More precisely,
there exists a T0 with 0 < T0 ≤ − 2

σu0,x(0) such that

lim inf
t→T−0

(
inf
x∈R

ux(t, x)
)

= −∞.

Proof. Similar to the proof of Lemma 3.5, it suffices to consider s ≥ 3. Since u0 is odd
and ρ0 is even, the corresponding solution (u(t, x), ρ(t, x)) satisfies that u(t, x) is odd and
ρ(t, x) is even with respect to x for given 0 < t < T . Hence, u(t, 0) = 0 and ρx(t, 0) = 0.
Thanks to the transport equation of ρ in (1.4), we have{

ρt(t, 0) + ρ(t, 0)ux(t, 0) = 0,
ρ(0, 0) = 0.

Thus ρ(t, 0) = 0. Evaluating (3.17) at (t, 0) and denoting M(t) = ux(t, 0) we obtain

M ′(t) +
σ

2
M2(t) = A

(
∂2
xp ∗ u

)
(t, 0)− p ∗

(
3− σ

2
u2 +

σ

2
u2
x +

1
2
ρ2

)
(t, 0). (3.64)

Notice that u(t, x) is odd and p(x) is even, so(
∂2
xp ∗ u

)
(t, 0) = 0.

Using 0 < σ ≤ 3,

M ′(t) +
σ

2
M2(t) ≤ 0. (3.65)

Hence
M(t) ≤M(0) = u0,x(0) < 0, for t ∈ [0, T ),

and

− 1
M(t)

+
1

M(0)
≤ −σ

2
t,

and then

ux(t, 0) = M(t) ≤ 2M(0)
2 + σM(0)t

→ −∞, as t→ − 2
σM(0)

(3.66)

which indicates that the maximal existence time T ≤ − 2
σu0,x(0) and hence completes the

proof of the theorem. �

4. BLOW-UP RATE

We now address the question of the blow-up rate of the slope to a breaking wave for
system (1.4).

Theorem 4.1. Let σ 6= 0. If T <∞ is the blow-up time of the solution (u, ρ) to (1.4) with
initial data (u0, ρ0 − 1) ∈ Hs(R) ×Hs−1(R) with s > 3/2 satisfying the assumption of
Theorem 3.9. Then

lim
t→T−

[(
inf
x∈R

ux(t, x)
)

(T − t)
]

= − 2
σ
, for σ > 0, (4.1)

lim
t→T−

[(
sup
x∈R

ux(t, x)
)

(T − t)
]

= − 2
σ
, for σ < 0, (4.2)
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Proof. We may again assume s = 3 to prove the theorem.
In the case σ > 0, from (3.57) we have

m′(t) = −σ
2
m2(t) + f (t, q1(t, x1)) .

Using (3.32) and denote

K = 1 +
2 +A2 + |σ|+ 2|3− σ|

4
‖(u0, ρ0 − 1)‖2H1×L2 , (4.3)

we know
−σ

2
m2(t)−K ≤ m′(t) ≤ −σ

2
m2(t) +K. (4.4)

Choose 0 < ε < σ/2. Since m(t)→ −∞ as t→ T−, we can find t0 ∈ (0, T ) such that

m(t0) < −
√

2σK +
K

ε
.

Sincem(t) is absolutely continuous on [0, T ). It is then inferred from the above differential
inequlity that m(t) is strictly decreasing on [t0, T ) and hence

m(t) < −
√

2σK +
K

ε
< −

√
K

ε
, t ∈ [t0, T ).

Then (4.4) implies that

σ

2
− ε < d

dt

(
1

m(t)

)
<
σ

2
+ ε, a.e. t ∈ [t0, T ).

Integrating the above relation on (t, T ) with t ∈ [t0, T ) and noticing that m(t) → −∞ as
t→ T−, we obtain (σ

2
− ε
)

(T − t) ≤ − 1
m(t)

≤
(σ

2
+ ε
)

(T − t).

Since ε ∈ (0, σ/2) is arbitrary, in view of the definition of m(t), the above inequality
implies (4.1).

When σ < 0, from (3.61) we have

m̄′(t) ≥ −σ
2
m̄2(t)−K,

where K is defined in (4.3). Since m̄(t) → ∞ as t → T−, we can choose a t0 ∈ (0, T )
such that

m̄(t0) >
√
−2σK.

Therefore we have m̄(t) is strictly increasing on [t0, T ) and

m̄(t) > m̄(t0) >
√
−2σK > 0.

Using the transport equation for ρ we have that

ρ′ (t, η(t)) = −m̄(t)ρ (t, η(t)) .

Hence
ρ (t, η(t)) = ρ (t0, η(t0)) e−

R t
t0
m̄(τ)dτ

, t ∈ [t0, T ).
Then

ρ2 (t, η(t)) ≤ ρ2 (t0, η(t0)) , t ∈ [t0, T ).
Therefore using (3.61) again we have

−σ
2
m̄2(t)− 1

2
ρ2 (t0, η(t0))−K ≤ m̄′(t) ≤ −σ

2
m̄2(t) +

1
2
ρ2 (t0, η(t0)) +K. (4.5)
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Now let

K̄ =
1
2
ρ2 (t0, η(t0)) +K

and choose 0 < ε < −σ/2. We can pick a t1 ∈ [t0, T ) such that

m̄(t1) >

√
−2σK̄ +

K̄

ε
.

Then

m̄(t) > m̄(t1) >

√
−2σK̄ +

K̄

ε
>

√
K̄

ε
.

Hence (4.5) implies that

σ

2
− ε < d

dt

(
1

m̄(t)

)
<
σ

2
+ ε, a.e. t ∈ [t1, T ).

Integrating the above relation on (t, T ) with t ∈ [t1, T ) and noticing that m̄(t) → ∞ as
t→ T−, we obtain (σ

2
− ε
)

(T − t) ≤ − 1
m̄(t)

≤
(σ

2
+ ε
)

(T − t).

Since ε ∈ (0,−σ/2) is arbitrary, in view of the definition of m̄(t), the above inequality
implies (4.2). �

5. GLOBAL EXISTENCE

In this section we provide a sufficient condition for the global solution of system (1.4)
in the case when 0 < σ < 2.

Theorem 5.1. Let 0 < σ < 2 and (u, ρ) be the solution of (1.4) with initial data (u0, ρ0−
1) ∈ Hs(R)×Hs−1(R), s > 3/2, and T the maximal time of existence. If

inf
x∈R

ρ0(x) > 0, (5.1)

then T = +∞ and the solution (u, ρ) is global.

We need the following lemmas to prove the above theorem.

Lemma 5.2. Let 0 < σ < 2 and (u, ρ) be the solution of (1.4) with initial data (u0, ρ0 −
1) ∈ Hs(R) × Hs−1(R), s > 3/2, and T the maximal time of existence. Assume that
infx∈R ρ0(x) > 0.

(i) If 0 < σ ≤ 1 then∣∣∣∣ inf
x∈R

ux(t, x)
∣∣∣∣ ≤ 1

infx∈R ρ0(x)
C4e

C3t, (5.2)∣∣∣∣sup
x∈R

ux(t, x)
∣∣∣∣ ≤ 1

infx∈R ρ
σ

2−σ
0 (x)

C
1

2−σ
4 e

C3t
2−σ , for t ∈ [0, T ). (5.3)

(ii) If 1 ≤ σ < 2 then∣∣∣∣ inf
x∈R

ux(t, x)
∣∣∣∣ ≤ 1

infx∈R ρ
σ

2−σ
0 (x)

C
1

2−σ
4 e

C3t
2−σ , (5.4)∣∣∣∣sup

x∈R
ux(t, x)

∣∣∣∣ ≤ 1
infx∈R ρ0(x)

C4e
C3t, for t ∈ [0, T ). (5.5)
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The constants C3 and C4 are defined as follows where

C3 = 2 +
2 +A2 + |σ|+ 2|3− σ|

4
‖(u0, ρ0 − 1)‖2H1×L2 . (5.6)

C4 = 1 + ‖u0,x‖2L∞ + ‖ρ0‖2L∞ . (5.7)

Proof. Similar as before, a density argument indicates that it suffices to prove the desired
results for s ≥ 3. Thus we have

inf
x∈R

ux(t, x) < 0, sup
x∈R

ux(t, x) > 0, t ∈ [0, T ).

as before.
(i) First we will derive an estimate for |infx∈R ux(t, x)|. Define m(t) and ξ(t) as in

(3.36) and consider along the characteristcs q1 (t, x1(t)) as in (1.5) and (3.20). Thus from
(3.33),

m(t) ≤ 0 for t ∈ [0, T ). (5.8)

Letting ζ(t) = ρ (t, ξ(t)) and evaluating (3.17) and the second equation of system (1.4) at
(t, ξ(t)) we have

m′(t) = −σ
2
m2(t) +

1
2
ζ2(t) + f (t, q1(t, x1)) ,

ζ ′(t) = −ζm, (5.9)

for t ∈ [0, T ) where f is defined in (3.23). The second equation above implies that ζ(t)
and ζ(0) are of the same sign.

Now we want to construct a Lyapunov function for our system, as in [20]. Since here
we have a free parameter σ, we couldn’t find a uniform Lyapunov function. Instead, we
will split the case 0 < σ ≤ 1 and the case 1 < σ < 2. From the assumption of the theorem
we know that ζ(0) = ρ (0, ξ(0)) > 0.

When 0 < σ ≤ 1 we define the following Lyapunov function

w1(t) = ζ(0)ζ(t) +
ζ(0)
ζ(t)

(
1 +m2(t)

)
, (5.10)

which is always positive for t ∈ [0, T ). Differentiating w1(t) and using (5.9) we obtain

w′1(t) = ζ(0)ζ ′ − ζ(0)
ζ2

(1 +m2)ζ ′ +
2
ζ
ζ(0)mm′ (5.11)

=
2ζ(0)m

ζ

[
1− σ

2
m2 +

1
2

+ f (t, q1(t, x1))
]

≤ ζ(0)
ζ

(1 +m2)
[
|f (t, q1(t, x1))|+ 1

2

]
≤ C3w1(t),

where we have used (5.8) and the bound (3.32) for f . Hence

w1(t) ≤ w1(0)eC3t =
[
ζ2(0) + 1 +m2(0)

]
eC3t

≤
(
1 + ‖u0,x‖2L∞ + ‖ρ0‖2L∞

)
eC3t = C4e

C3t. (5.12)

Recalling that ζ(t) and ζ(0) are of the same sign, we have

ζ(0)ζ(t) ≤ w1(t), and |ζ(0)| |m(t)| ≤ w1(t).
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Then from (5.12) we have∣∣∣∣ inf
x∈R

ux(t, x)
∣∣∣∣ = |m(t)| ≤ w1(t)

ζ(0)
≤ 1

infx∈R ρ0(x)
C4e

C3t, for t ∈ [0, T ),

which proves (5.2).
If 1 ≤ σ < 2, we may define the Lyapunov function to be

w2(t) = ζσ(0)
ζ2(t) + 1 +m2(t)

ζσ(t)
. (5.13)

Then a quick computation shows that

w′2(t) =
2ζσ(0)m

ζσ

[
σ − 1

2
ζ2 +

σ

2
+ f (t, q1(t, x1))

]
(5.14)

≤ ζσ(0)
ζσ

(1 +m2)
[
|f (t, q1(t, x1))|+ σ

2

]
≤ C3w2(t).

Thus

w2(t) ≤ w2(0)eC3t =
[
ζ2(0) + 1 +m2(0)

]
eC3t

≤
(
1 + ‖u0,x‖2L∞ + ‖ρ0‖2L∞

)
eC3t = C4e

C3t. (5.15)

Applying Young’s inequality ab ≤ ap/p+ bq/q to (5.13) with

p =
2
σ
, and q =

2
2− σ

we have

w2(t)
ζσ(0)

=
[
ζ
σ(2−σ)

2

]2/σ
+

[
(1 +m2)

2−σ
2

ζ
σ(2−σ)

2

]2/(2−σ)

≥ σ

2

[
ζ
σ(2−σ)

2

]2/σ
+

2− σ
2

[
(1 +m2)

2−σ
2

ζ
σ(2−σ)

2

]2/(2−σ)

≥ (1 +m2)
2−σ

2 ≥ |m(t)|2−σ.
Therefore∣∣∣∣ inf

x∈R
ux(t, x)

∣∣∣∣ ≤ [w2(t)
ζσ(0)

] 1
2−σ

≤ 1

infx∈R ρ
σ

2−σ
0 (x)

C
1

2−σ
4 e

C3t
2−σ , t ∈ [0, T ),

which proves (5.4).
(ii) Next we try to control |supx∈R ux(t, x)|. Similarly as before, we consider m̄(t),

η(t), q1 (t, x2(t)) as in (3.18) and (3.38). Then (5.9) becomes

m̄′(t) = −σ
2
m̄2(t) +

1
2
ζ̄2(t) + f (t, q1(t, x2)) ,

ζ̄ ′(t) = −ζ̄m̄, (5.16)

for t ∈ [0, T ), where ζ̄(t) = ρ (t, η(t)). From (3.33) we have

m̄(t) ≥ 0, for t ∈ [0, T ). (5.17)

When 0 < σ ≤ 1, the corresponding Lyapunov function is

w̄1(t) = ζ̄σ(0)
ζ̄2(t) + 1 + m̄2(t)

ζ̄σ(t)
. (5.18)
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Then from (5.14) and (5.17) we see that

w̄′1(t) ≤ C3w̄1(t), then w̄1(t) ≤ C4e
C3t.

Hence by the similar argument as before we get

w̄1(t)
ζ̄σ(0)

≥ |m̄(t)|2−σ.

Therefore∣∣∣∣sup
x∈R

ux(t, x)
∣∣∣∣ ≤ [ w̄1(t)

ζ̄σ(0)

] 1
2−σ

≤ 1

infx∈R ρ
σ

2−σ
0 (x)

C
1

2−σ
4 e

C3t
2−σ , t ∈ [0, T ),

which is (5.3).
When 1 ≤ σ < 2, consider the Lyapunov function

w̄2(t) = ζ̄(0)ζ̄(t) +
ζ̄(0)
ζ̄(t)

(
1 + m̄2(t)

)
. (5.19)

From (5.11) and (5.17),

w̄′2(t) ≤ C3w̄1(t), then w̄1(t) ≤ C4e
C3t.

Thus ∣∣∣∣sup
x∈R

ux(t, x)
∣∣∣∣ = |m̄(t)| ≤ w̄1(t)

ζ̄(0)
≤ 1

infx∈R ρ0(x)
C4e

C3t, for t ∈ [0, T ),

which proves (5.5). �

Remark 5.3. In fact when σ ≤ 1, w1(t) can always serve as a Lyapunov function to control
|infx∈R ux(t, x)| to give the estimate (5.2). Similarly when σ ≥ 1, we can always use w̄2

to estimate |supx∈R ux(t, x)| as in (5.5).

Proof of Theorem 5.1. Assume on the contrary that T < ∞ and the solution blows up in
finite time. It then follows from Theorem 3.3 that∫ T

0

|ux(t, x)|L∞ dt =∞. (5.20)

However from the assumptions of the theorem and Lemma 5.2 we have

|ux(t, x)| <∞

for all (t, x) ∈ [0, T )×R, a contradiction to (5.20). Thus T = +∞ and the solution (u, ρ)
is global.

�
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