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Abstract. This paper studies the structural implications of constant vorticity for steady three-
dimensional internal water waves in a channel. It is known that in many physical regimes, water
waves beneath vacuum that have constant vorticity are necessarily two dimensional. The situation is
more subtle for internal waves traveling along the interface between two immiscible fluids. When the
layers have the same density, there is a large class of explicit steady waves with constant vorticity
that are three-dimensional in that the velocity field is pointing in one horizontal direction while
the interface is an arbitrary function of the other horizontal variable. We prove the following
rigidity result: every three-dimensional traveling internal wave with bounded velocity for which the
vorticities in the upper and lower layers are nonzero, constant, and parallel must belong to this
family. If the densities in each layer are distinct, then in fact the flow is fully two dimensional. The
proof is accomplished using an entirely novel but largely elementary argument that draws connection
to the problem of uniquely reconstructing a two-dimensional velocity field from the pressure.

1. Introduction

Depth-varying currents are ubiquitous in the ocean. They can arise from wind-wave interaction,
boundary layer effects along the seabed, or tides [29, 36, 20]. Waves riding on currents are essentially
rotational, and the interaction of waves with non-uniform currents is described by the vorticity
[31, 21]. So far most of the theoretical works on water waves with non-zero vorticity pertains to
two-dimensional flows. The early 19th century work of Gerstner [11] furnished a family of exact
solutions with a particular nontrivial vorticity distribution that becomes singular at the free surface
of the highest wave. Much later, Dubreil-Jacotin [10] proved the existence of small-amplitude waves
with a general vorticity distribution. After a surge of activity in this area over the last two decades,
initiated by Constantin and Strauss [9], there is now a wealth of small- and large-amplitude existence
results for water waves with vorticity; see [16] for a survey.

Despite these advances in the two-dimensional case, the understanding of three-dimensional
rotational waves remains comparatively rudimentary. Currently, there are only two regimes in
which existence is known: Lokharu, Seth, and Wahlén [23] have constructed small-amplitude three-
dimensional waves with Beltrami-type flow, and Seth, Varholm, and Wahlén [32] obtained symmetric
diamond waves with small vorticity. The first result is proved using a careful multi-parameter
Lyapunov–Schmidt reduction, while the second involves a delicate fixed-point argument inspired by
related problems in plasma physics.

Another body of important recent work concerns the rigidity of the governing equations: for
certain types of vorticity, the solutions necessarily inherit symmetries of the domain. A number of
authors have obtained results of this type for the Euler equations posed in a fixed domain. Moreover,
it is known that finite-depth surface water waves beneath vacuum with non-zero constant vorticity
are forced to be two dimensional with the vorticity vector pointing in the horizontal direction
orthogonal to that of the wave propagation; see [8, 4, 24, 35] for flows beneath surface wave trains
and surface solitary waves, [37] for general steady waves, and [25] for an extension to non-steady
waves. Flows with geophysical effects are discussed in the survey article [27].
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The present paper aims to investigate the structural ramifications of constant vorticity for steady
three-dimensional internal water waves. An important feature of waves in the ocean is that the
density is heterogeneous due to variations in temperature and salinity. Commonly, this situation
is modeled as two immiscible, superposed layers of constant density fluids. The interface dividing
these regions is a free boundary along which internal waves can travel. Similar to surface waves,
the theoretical study on internal waves has been conducted almost exclusively in two dimensions;
see [16, Section 7]. To the authors’ knowledge the only rigorous existence result for genuinely
three-dimensional steady internal waves is due to Nilsson [30], who constructs small-amplitude
capillary-gravity waves in a channel for which the flow is layer-wise irrotational. The existence of
large-amplitude capillary-gravity waves, or gravity waves of any size, remain open questions. It
is then natural to ask whether the rigidity of surface water waves with constant vorticity has an
internal wave counterpart. As the latter system has many additional parameters, in principle we
might expect it to support a greater variety of flows. For instance, it can be shown if the vorticity is
constant in each layer, then it must be horizontal, but its direction need not be the same in each
layer. On the other hand, if the vorticity vectors are parallel and nonvanishing, we are able to prove
a rigidity result that completely characterizes the possible flow patterns.

It is important to observe that, while the previous non-existence results for one-layer fluids
mentioned above provide a starting point for our argument, the internal interface fundamentally
alters the analysis. Indeed, there exist infinitely many internal waves with constant vorticity — albeit
of a very specific form — a rather dramatic warning that the two regimes are substantially different
and new ideas will be needed. The one-fluid works rely in large part on repeated applications of
the maximum principle or Liouville-type theorems. Such arguments give some limited information
about the structure of three-dimensional internal waves with constant vorticity, but far from a
complete characterization. As we discuss in Section 1.3, making further progress requires studying
subtle questions about the uniqueness of the two-dimensional free boundary Euler equations on an
overlapping region with identical pressures but differing constant densities.

1.1. Formulation. Consider a three-dimensional traveling wave moving along the interface dividing
two immiscible fluids of finite depth and under the influence of gravity. Fix a Cartesian coordinate
system (x, y, z), where z is the vertical direction and the wave propagates in the xy-plane. The
fluids are bounded above and below by rigid walls1 at heights z = −h1 and z = h2, for h1, h2 > 0.
Adopting a frame of reference moving with the wave renders the system time independent. Suppose
then that the interface between the layers is given by the graph of a C1 function η = η(x, y). The
fluid domain is thus Ω := Ω1 ∪ Ω2, where the upper layer Ω2 and lower layer Ω1 take the form

Ω1 :=
{

(x, y, z) ∈ R3 : −h1 < z < η(x, y)
}

Ω2 :=
{

(x, y, z) ∈ R3 : η(x, y) < z < h2
}
.

See Figure 1 for an illustration.
For water waves, it is physically reasonable to model the flow in each region as inviscid and

incompressible with constant densities ρ1, ρ2 > 0. The motion in Ωi is described by the (relative)
velocity field ui := (ui, vi, wi) and pressure Pi. In the bulk, we impose the steady incompressible
Euler equations:

ρi(ui · ∇)ui = −∇Pi + ρig,(1.1a)
∇ · ui = 0,(1.1b)

1This model is referred to as channel flow or the rigid lid approximation. It is physically motivated by the fact
that the displacements of pycnoclines in the ocean is often much larger than the amplitude of the air–sea interface.
One could alternatively take the upper boundary of Ω2 to be a free surface at constant pressure. This system has
been studied by many authors, see, for example, [7, 6, 33, 19, 34]. Our results do not obviously extend to this two free
surface regime.
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Figure 1. The two-fluid system.

where g := (0, 0,−g) is the (constant) gravitational acceleration vector. The first of these mandates
the conservation of momentum, while the second is the incompressibility condition. The boundary
conditions at the interface are the continuity of normal velocity and pressure:

uiηx + viηy = wi on z = η(x, y),(1.1c)
P1 = P2 on z = η(x, y).(1.1d)

On the upper and lower rigid boundaries, the kinematic boundary conditions are

(1.1e)
w1 = 0 on z = −h1
w2 = 0 on z = h2.

These say simply that the velocity field is tangential to the rigid walls. Throughout this paper, we
consider classical solutions for which ui ∈ C1(Ωi;R3), Pi ∈ C1(Ωi), and η ∈ C1(R2). In order to
ensure there is a positive separation between the interface and the walls, we further assume that
−h1 < inf η and sup η < h2.

Recall that the vorticity in the layer Ωi is defined to be the vector field

(1.2) ωi := ∇× ui = (∂ywi − ∂zvi, ∂zui − ∂xwi, ∂xvi − ∂yui).

Taking the curl of the momentum equation (1.1a), we find that each ωi satisfies the so-called steady
vorticity equation

(1.3) (ui · ∇)ωi = (ωi · ∇)ui in Ωi.

Suppose now that the vorticity in each layer is a nonzero constant

(1.4) ωi = (αi, βi, γi) for i = 1, 2.

Then the advection term on the left-hand side of (1.3) vanishes identically, while the vortex stretching
term on the right-hand side becomes a constant directional derivative of u:

(1.5) (ωi · ∇)ui = 0 in Ωi.

Thus, the velocity ui is constant in the direction of ωi. As (1.1) is invariant under rotation about
the z-axis, we can without loss of generality assume that ω2 = (0, β2, γ2), that is, the vorticity of
the upper fluid lies in the yz-plane.

From the vector identity

(u · ∇)u + u× ω = (∇ · u)u +
1

2
∇(|u|2),

one can rewrite (1.1a) as

(1.6) ui × ωi = ∇Hi
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where

(1.7) Hi :=
1

2
|ui|2 +

Pi
ρi

+ gz

is called the Bernoulli function. From (1.6) we see that Hi is constant along the vortex lines.

1.2. Main results. Our first result imposes a dimensionality constraint on the vorticity: if u1 and
u2 are uniformly bounded, then both vorticity vectors ω1 and ω2 are necessarily two-dimensional
and lie in the xy-plane. A theorem of this type was first proved by Constantin [4] for gravity waves
beneath vacuum assuming the free boundary is two-dimensional. Wahlén [37] obtained an analogous
theorem for steady gravity and capillary-gravity water waves without this assumption. Martin [25]
later showed the same holds for the time-dependent case. Adapting Wahlén’s argument to the
two-layer case requires some new analysis due to the more complicated behavior at the interface,
but we ultimately prove that the vorticity is likewise constrained in the internal wave setting; see
Proposition 2.1.

The main contribution of the present work concerns the structure of the velocity field and free
surface profile. Under remarkably general conditions, Wahlén [37] proves that for a gravity wave
beneath vacuum, if the vorticity is constant, then the flow must be entirely two dimensional: ui
lies in the xz-plane and depends only on (x, z), while η = η(x). In other words, genuinely three-
dimensional steady surface gravity water waves with non-zero constant vorticity do not exist. Wahlén
also proves the same holds for capillary-gravity waves provided the velocity field and free surface
profile are uniformly bounded in C1, and a Taylor sign condition on the pressure holds. Earlier
work by Constantin [4], Constantin and Kartashova [8], and Martin [24] obtain analogous results
for gravity and capillary-gravity waves under the more restrictive assumption that η is periodic,
while Martin treats time-dependent [25] and viscous waves [26] again with a Taylor sign condition;
see also the survey in [27]. The moral of this body of work is that in order to find genuinely
three-dimensional steady rotational waves beneath vacuum, one must allow for a more complicated
vorticity distribution.

However, constant vorticity internal waves are not obliged to be two dimensional. Indeed, a little
thought readily leads us to a profusion of explicit three-dimensional solutions to (1.1). Consider the
Boussinesq limit where ρ1 = ρ2. In this case, the interface can equivalently be viewed as a vortex
sheet submerged in a single fluid of constant density. Then, taking

(1.8) ui = (βiz + ki, 0, 0) for i = 1, 2, η = H(y)

gives a steady wave for any H ∈ C1(R; (−h1, h2)). Note that the corresponding vorticity vectors
ωi = (0, βi, 0) are parallel. We can visualize (1.8) as two shear flows defined in Ω, which when
ρ1 = ρ2 will have the same (hydrostatic) pressure. Any streamline in the xz-plane can be viewed
as a material interface above which we have the first fluid and below the second. When v1, v2 ≡ 0,
we can smoothly vary which streamline is the interface as we change y, permitting there to be
three-dimensional structure. Essentially, the difference between the situation here and the one-layer
case lies in the dynamic condition (1.1d). When the fluid is bounded above by vacuum, the pressure
must be constant along the interface, whereas for internal waves it need only be continuous.

Members of the family of solutions (1.8) can be thought of as trivially three-dimensional shear
flows when ηy 6≡ 0. Our main theorem shows that they are in fact the only possible configuration
for three-dimensional waves with constant parallel vorticity and bounded velocity.

Theorem 1.1 (Rigidity). Every solution of the steady internal wave problem (1.1) for which
(i) ω1 and ω2 are constant, parallel, and nonzero, and
(ii) ‖u1‖C0 , ‖u2‖C0 <∞,

is either a trivially three-dimensional shear flow of the form (1.8) or two dimensional. If ρ1 6= ρ2,
then the wave is necessarily two dimensional.
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One can interpret this theorem as the statement that the solutions to (1.1) inherit the symmetry
of the channel domain in which the problem is posed. Related rigidity results for the two-dimensional
Euler equations have been obtained by Hamel and Nadirashvili [13, 14], who prove that all solutions
in a strip, half plane, or the whole plane with no stagnation points are shear flows (that is, the
vertical velocity vanishes identically and the horizontal velocity depends only on z). Under the
same no-stagnation assumption, these authors also find that steady Euler configurations confined to
circular domains must be radially symmetric [15]. Allowing the presence of stagnation points, Gómez-
Serrano, Park, Shi, and Yao [12] show that smooth stationary solution with compactly supported
and nonnegative vorticity must be radial. In Theorem 1.1 we avoid making any restrictions on the
velocity beyond boundedness, though we only treat the constant vorticity case. Notably, as in [37],
we make no a priori assumptions on the far-field behavior of the wave. Thus in the non-Boussinesq
case ρ1 6= ρ2, nontrivial solitary waves, periodic waves, fronts — and all other more exotic waveforms
— are excluded all at once. We also mention that it is possible to rule out capillary-gravity internal
waves through arguments similar to the one-fluid regime; see Theorem 3.1.

Lastly, let us note that after a preprint of the present paper had appeared online, Martin [28]
independently obtained a set of rigidity results for internal waves with constant parallel vorticity.
He considered the dynamical problem, where ω1 and ω2 are assumed to be parallel and constant in
space and time, and allowed for the upper boundary to be either free or a rigid lid. He is also able to
treat the viscous case. On the other hand, for all of these results, Martin requires that ∇P1−∇P2 be
non-vanishing along the internal interface. This assumption has the flavor of a Taylor sign condition,
which is appropriate for the time-dependent problem but less natural for the traveling waves studied
here. In particular, it excludes the entire family of trivially three-dimensional shear flows (1.8) with
ρ1 = ρ2, since ∇P1 and ∇P2 coincide everywhere in that case. Our results are somewhat smaller in
scope, but avoid any such hypotheses on the pressure.

1.3. New ingredients in the proof. The idea of the proof can be explained as follows. Thanks
to Proposition 2.1, when ω1 and ω2 are parallel, the velocity fields are two-dimensional: ui =
(ui(x, z), Vi, wi(x, z)) where Vi are constants. The same also holds for the pressures, but a priori η
may depend on both (x, y). If the interface is not independent of y, then the projections Ω̃i of Ωi

into the xz-plane will have non-empty intersection with non-empty interior, and on that set we have
two solutions of the two-dimensional Euler equations. Because each point in Ω̃1 ∩ Ω̃2 corresponds
to one or more points on the interface, the dynamic condition applies throughout. The key insight
of Wahlén is that, for waves beneath vacuum, this forces the pressure to be constant, and hence
by analyticity, it is constant throughout the fluid. As this is not possible, he concludes that for
surface waves, the interface must be flat in y. For internal waves, however, the dynamic condition
tells us merely that there exists a pressure P = P (x, z) that is real analytic on Ω̃1 ∪ Ω̃2 and whose
restriction to Ω̃1 is P1 and whose restriction to Ω̃2 is P2. One certainly cannot infer from this that
the flow is two-dimensional, as the abundance of three-dimensional solutions of the form (1.8) shows
quite clearly.

The central question therefore turns to one of uniqueness of steady solutions of the two-dimensional
Euler equations with a prescribed pressure, but allowing for potentially different densities and different
constant vorticities. We have in addition that the kinematic condition (1.1c) holds on the intersection
region, which forces a relation between the slopes of the two velocity fields there. Through a novel
but elementary argument, we prove that the streamlines (integral curves) of the vector fields (u1, w1)

and (u2, w2) coincide on Ω̃1 ∩ Ω̃2. Finally, from the real analyticity of the velocity and pressure and
Liouville’s theorem, we are ultimately able to conclude that the pressure must be hydrostatic, and
thus the wave is of the form (1.8). We emphasize that this analysis is completely new, as the many
subtle issues stemming from the possibility of “overlapping” projected regions of two-dimensional
waves is specific to the two-layer setting.
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2. Proof of the main result

We begin by stating the following result on the two-dimensionality of the vorticity.

Proposition 2.1. Consider a solution to the steady internal wave problem (1.1) such that ‖u1‖C0 , ‖u2‖C0 <
∞ and ω1 and ω2 are nonzero constant vectors. Then necessarily the third components of ω1 and
ω2 both vanish.

This proposition can be established in a similar way to the one-fluid case [4, 37], and relies on
the structure of the velocity field near the rigid walls. For the reader’s convenience we provide a
self-contained proof in Appendix A.

A key observation, both for proving the above result and the main theorem we consider below, is
that each component of the velocity is harmonic:

(2.1) ∆ui = ∆vi = ∆wi = 0 in Ωi.

This follows simply by taking the curl of equation (1.2) and using incompressibility (1.1b). As just
one important consequence, ui, vi, and wi are all real-analytic functions. Taking the divergence of
the momentum equation (1.1a), we likewise find that the pressure Pi solves a Poisson equation with
real-analytic forcing, and hence it too is real analytic. These facts will be crucial to our analysis at
several points. In particular, they provide a means to globalize identities that hold on open subsets
to the entirety of the fluid domain.

Let us now turn to the proof of rigidity result in Theorem 1.1, characterizing three-dimensional
internal waves with constant vorticity. Recall that we have, without loss of generality, chosen axes
so that ω2 lies in the yz-plane. Proposition 2.1 then guarantees that the vorticity in each layer takes
the form

(2.2) ω1 = (α1, β1, 0), ω2 = (0, β2, 0).

Note that the assumption ω1 and ω2 are parallel is equivalent to α1 = 0. More generally, though,
the particularly simple form of ω2 allows us further characterize the flow pattern in the upper layer.

Lemma 2.2. Let the assumptions of Proposition 2.1 hold. Then, u2 and P2 are independent of y,
and v2 is constant. Likewise, u1 and P1 are constant along lines parallel to ω1, while α1u1 + β1v1 is
constant.

Proof. We will only present the argument for the upper fluid as the lower fluid follows through
essentially the same reasoning. From (2.2), (1.4) and (1.5) it follows that

∂yu2 = ∂yv2 = ∂yw2 = 0, ∂xv2 = ∂zv2 = 0.

In particular, ∇v2 = 0, and thus v2 is a constant throughout Ω2. The y-directional momentum
equation then becomes

∂yP2 = 0 in Ω2.

Following the argument as in [37, Lemma 3] using the real analyticity of P2 we can show that P2 is
independent of y in the upper fluid layer Ω2. In fact we see that P2 is independent of y in a region
sufficiently close to the top boundary {z = h2}. Therefore for any y1 6= y2, there exists a minimal
z∗ ≤ h2 such that

P2(x, y1, z) = P2(x, y2, z) for z∗ ≤ z ≤ h2.
Clearly we know that z∗ ≥ max{η(x, y1), η(x, y2)}. Using the real analyticity of z 7→ P2(x, y1, z)−
P2(x, y2, z) we see that z∗ = max{η(x, y1), η(x, y2)}, which indicates that P2 is independent of y in
Ω2. The result for (u2, w2) follows in a similar way. �

We can now proceed to the proof of the main result.
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Figure 2. Projection to Ω̃1.

Proof of Theorem 1.1. Thanks to Lemma 2.2 and the assumption that ω1 and ω2 are parallel and
non-vanishing, we have that v1 and v2 are constants; let them be denoted V1 and V2, respectively.
Moreover, u1, P1,u2, and P2 are independent of y, so we can write

u1(x, y, z) = ũ1(x, z), P1(x, y, z) = P̃1(x, z),

u2(x, y, z) = ũ2(x, z), P2(x, y, z) = P̃2(x, z),

where ũi and P̃i are defined on the projection

(2.3) Ω̃i := {(x, z) : (x, y, z) ∈ Ωi for some y ∈ R} ,
of Ωi on the xz-plane, for i = 1, 2. It is easy to see that in fact

(2.4) Ω̃1 = {(x, z) : −h1 < z < f1(x)} , Ω̃2 = {(x, z) : f2(x) < z < h2} ,
where

f1(x) := sup
y∈R

η(x, y), and f2(x) := inf
y∈R

η(x, y).

By definition f2(x) ≤ f1(x). The boundedness of η implies that −h1 < f1(x) ≤ h2 and −h1 ≤
f2(x) < h2. It is elementary that f1 is then lower semicontinuous while f2 is upper semicontinuous.
The projected planes Ω̃i are both open and connected subsets of R2, for i = 1, 2.

Arguing by contrapositive, suppose that ηy 6≡ 0. Then Ω̃1 ∩ Ω̃2 6= ∅ and there exists some point
(x0, y0) such that z0 := η(x0, y0) ∈ (f2(x0), f1(x0)). The dynamic boundary condition (1.1d) yields

P̃1(x0, z0) = P̃2(x0, z0).

A continuity argument implies that for each z between z0 and f1(x0) there exists some y(z) such
that z = η(x0, y(z)). Therefore on the line segment joining (x0, z0) and (x0, f1(x0)) we have

P̃1(x0, z) = P̃2(x0, z).

See Figure 2. Now from the lower semicontinuity of f1 and the upper semicontinuity of f2 we
know that for x sufficiently close to x0 it holds that f2(x) < η(x, y0) < f1(x). Repeating the
previous argument it follows that there exists an open subset of Ω̃1 in which P̃1(x, z) = P̃2(x, z).
The analyticity of P̃i then forces P̃1 = P̃2 on Ω̃1 ∩ Ω̃2, and thus P̃1 and P̃2 are analytic extensions of
each other in the entire strip Ω̃ := {(x, z) : −h1 < z < h2}.

Recall that we say the pressure in Ω̃i is hydrostatic provided ∇(P̃i + ρigz) vanishes identically.
Suppose that either P̃1 or P̃2 is hydrostatic. Then uniqueness of the analytic extension implies both
are hydrostatic and hence ρ1 = ρ2. The incompressibility of ũ1 and ũ2 permit us to define stream
functions ψ̃i by ∇⊥ψ̃i := (ũi, w̃i). The Bernoulli equation (1.6) now reads

βi(−w̃i, 0, ũi) = ∇
[

1

2
(ũ2i + V 2

i + w̃2
i )

]
in Ωi,
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which in turn leads to
1

2

(
ũ2i + w̃2

i

)
+ βiψ̃i = Qi in Ω̃i

for some constant Qi. On the bed, w̃1 ≡ 0 and ψ̃1 is constant, and so ũ1 is likewise constant there.
Thus,

w̃1z = ũ1x = 0 on {z = −h1},
and, because w̃1 is harmonic, it must therefore be that w̃1 ≡ 0 in Ω̃1. The same argument applied
on the lid shows that w̃2 ≡ 0 in Ω̃2. Note that the argument differs from the one in the proof of
Proposition 2.1 since here the third component of the vorticity is zero. Incompressibility then implies
that ũ1 = U1(z) and ũ2 = U2(z), meaning we have a shear flow. The constant vorticity then forces
ũi = βiz + ki as in (1.8).

Evaluating the kinematic condition using this fact gives

(β1η + k1)ηx + V1ηy = 0 for all (x, y) ∈ R2.

If V1 6= 0, this is Burgers’ equation with y playing the role of the evolution variable. Because the only
global classical solutions are constants, this forces the interface to be perfectly flat. On the other
hand, if V1 = 0, we can simply integrate the equation in x to see that η( · , y) is likewise constant. In
either case, then, the wave is completely shear with no variation in the x-direction.

As the converse of these inferences is obviously true, the conclusions of the previous two paragraphs
can be stated succinctly as:

(2.5) P̃1 or P̃2 hydrostatic ⇐⇒ P̃1 and P̃2 hydrostatic ⇐⇒


ũ1 = β1z + k1, w̃1 ≡ 0,

ũ2 = β2z + k2, w̃2 ≡ 0,

η = H(y),

ρ1 = ρ2.

Our goal in the remainder of the proof is therefore to show that at least one of P̃1 and P̃2 is
hydrostatic.

The kinematic condition in the projected domain states that{
ũ1(x, z)ηx(x, y) + V1ηy(x, y) = w̃1(x, z)

ũ2(x, z)ηx(x, y) + V2ηy(x, y) = w̃2(x, z),

where (x, z) ∈ Ω̃1 ∩ Ω̃2 and y is any point such that z = η(x, y). Observe that this can be rewritten
in terms of the stream functions as

(2.6)

V1ηy(x, y) = ∂x

(
ψ̃1(x, η(x, y))

)
V2ηy(x, y) = ∂x

(
ψ̃2(x, η(x, y))

)
.

Let us look at two possibilities. First suppose that V1 = V2 = 0. Thus from (2.6), we see that
each graph η( · , y) is a streamline for both ũ1 and ũ2. It follows that the Poisson bracket of ψ̃1 and
ψ̃2 vanishes identically in Ω̃1 ∩ Ω̃2. We claim that in fact ψ̃1 and ψ̃2 must be locally functionally
dependent. Indeed, by real analyticity, the zero-set of |∇ψ̃1|2|∇ψ̃2|2 is either the entirety of Ω̃1 ∩ Ω̃2

or a closed, nowhere dense subset. In the first case, we would of course have that the flow is
hydrostatic, so assume that the latter is true. Then we can find an open set U ⊂ Ω̃1 ∩ Ω̃2 on which
|∇ψ̃1|, |∇ψ̃2| 6= 0. It follows that there exists some real-analytic function Λ such that ψ̃1 = Λ(ψ̃2) on
U . Taking the Laplacian of both sides then gives the identity

β1 = Λ′′(ψ̃2)|∇ψ̃2|2 + Λ′(ψ̃2)β2 on U .

We see then that either Λ′′(ψ̃2) ≡ 0, or else |∇ψ̃2|2 is constant along the streamlines in some
open subset V ⊂ U . In the first case, λ := Λ′(ψ̃2) is constant on V, and so by real analyticity,
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(ũ1, w̃1) = λ(ũ2, w̃2) on all of U . We can thus extend ũ1 and w̃1 as real-analytic (indeed, harmonic)
functions defined on the entire closure of Ω̃ with ũ1 = λũ2 and w̃1 = λw̃2 on Ω̃2. The Phragmén–
Lindelöf principle and boundary conditions then force w̃1 ≡ 0, so by incompressibility ũ1x ≡ 0. Thus
P̃1 is hydrostatic, and we can appeal to (2.5) to show that the wave is trivial.

Assume next that |∇ψ̃2|2 is constant along the streamlines in V. Bernoulli’s law then implies
that the dynamic pressure p2 := P̃2 − ρ2gz is also constant along the streamlines in V, that is,
∇p2 · ∇⊥ψ̃2 = 0 in V. By construction, ∇⊥ψ̃2 = (ũ2, w̃2) has no stagnation points in Ω̃2. So by
analyticity we have ∇p2 · ∇⊥ψ̃2 = 0 in Ω̃2. In particular, p2, and thus P̃2, is constant on z = h2,
which by the argument above forces P̃2 to be hydrostatic.

Next consider the situation where at least one of V1 and V2 is non-vanishing; for definiteness,
say V1 6= 0. Unlike the previous case, the graphs of η( · , y) are no longer streamlines, however (2.6)
implies that for any y ∈ R,

V2ψ̃1 − V1ψ̃2 is constant on {η(x, y) : x ∈ R}.

As we have assumed ηy 6≡ 0, we may let (x0, z0) ∈ Ω̃1 ∩ Ω̃2 be given such that z0 = η(x0, y0)
and ηy(x0, y0) 6= 0. Let (a, b) be an open interval containing y0 on which η(x0, · ) is monotone.
Integrating the kinematic condition (2.6) from x = x0 to x = M and from y = a to y = b gives

V1

∫ M

x0

(η(x, b)− η(x, a)) dx =

∫ M

x0

∫ b

a
∂x

(
ψ̃1(x, η(x, y))

)
dy dx

=

∫ b

a
ψ̃1(M,η(M,y)) dy −

∫ b

a
ψ̃1(x0, η(x0, y)) dy.

The right-hand side above is bounded uniformly in M since∣∣∣∣∫ b

a
ψ̃1(M,η(M,y)) dy

∣∣∣∣ ≤ (b− a)‖ψ̃1‖C0 . ‖ũ1‖C0 .

Therefore, we must have that infx≥x0 |η(x, b)− η(x, a)| = 0, as otherwise, the left-hand side integral
would diverge as M →∞. That is, the distance between the graphs η( · , y1) and η( · , y2) is in fact 0

for all y1, y2 ∈ (a, b). It follows that V2ψ̃1−V1ψ̃2 is constant in the set W that is bounded above and
below by the graphs of η( · , b) and η( · , a). But since ηy(x0, y0) 6= 0, the inverse function theorem
applied to (x, y) 7→ (x, η(x, y)) ensures that some open neighborhood U 3 (x0, z0) lies in the interior
of W.

From here, it is easy to see that the flow must be hydrostatic. If V2 = 0, by analyticity we would
have that (ũ2, w̃2) ≡ (0, 0), meaning β2 = 0 and the flow is hydrostatic. If V2 6= 0, then we can write
ψ1 = Λ(ψ2) for an affine function Λ. The argument from the previous case shows that this forces
the pressure to be hydrostatic. �

3. Discussion

We conclude with some informal discussion of some simple extensions, as well as two open problems
stemming from the arguments above.

Capillary-gravity internal waves. One can also consider the question of rigidity for capillary-
gravity internal waves, meaning the effects of surface tension on the interface are included in the
model. Mathematically, this entails replacing the dynamic condition (1.1d) with

(3.1) P2 − P1 = σ
(1 + η2y)ηxx − 2ηxηyηxy + (1 + η2x)ηyy

(1 + η2x + η2y)
3/2

on z = η(x, y),

where σ > 0 is the coefficient of surface tension. The right-hand side above is the mean curvature of
the free boundary, and hence (3.1) enforces the Young–Laplace law for the pressure jump.
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Thanks to Proposition 2.1 and Lemma 2.2, a straightforward adaptation of the proof of [37,
Theorem 2] quickly yields the following result on the nonexistence of constant vorticity internal
capillary-gravity waves.

Theorem 3.1 (Capillary-gravity waves). Any solution to the steady internal capillary-gravity wave
problem (1.1a)–(1.1c), (1.1e), (3.1) satisfying

(i) ω1 and ω2 are constant, parallel, and nonzero,
(ii) ‖u1‖C1 , ‖u2‖C1, ‖η‖C2 <∞, and
(iii) sup (P1z − P2z)|z=η < 0,

is necessarily two dimensional.

Notice that the sign requirement on P1z − P2z along the interface is consistent with the two-fluid
Rayleigh–Taylor criterion due to Lannes [22], though it is not equivalent to well-posedness like in
the one-fluid case.

Non-parallel vorticities. Second, it is natural to ask whether Theorem 1.1 can be extended to
the case ω1 and ω2 are non-parallel. For instance, suppose that they are orthogonal with ω1 aligned
along the x-axis and ω2 aligned along the y-axis. In view of Lemma 2.2, this would imply that

u1 = (U1, ṽ1(y, z), w̃1(y, z)) u2 = (ũ2(x, z), V2, w̃2(x, z)) ,

P1 = P̃1(y, z) P2 = P̃2(x, z),

for constants U1 and V2. We conjecture that this is not possible if ρ1 6= ρ2, and even in the Boussinesq
setting it can only be that the flow in both layers is shear — that is, ∇η, w̃1, and w̃2 vanish identically,
while ũ1 and ṽ2 are independent of the horizontal variables. Indeed, the dynamic boundary condition
on the interface would then give

P̃1(y, η(x, y)) = P̃2(x, η(x, y)) for all (x, y) ∈ R2,

which coupled with the kinematic conditions appears to be overdetermined. However, the argument
for the parallel vorticity case do not apply directly, as we cannot project into a common two-
dimensional domain.

Pressure reconstruction. Lastly, in the proof of Theorem 1.1, we were confronted with the
possibility that on some open subset U ⊂ R2, there are two solutions to the incompressible steady
Euler equations with (potentially different) constant densities and vorticities. That is, the elliptic
problem

(3.2)


∆ψ + β = 0

∇
(

1

2
|∇ψ|2 − βψ + gz +

1

ρ
P

)
= 0

in U .

was satisfied by the triples (ψ1, ρ1, β1) and (ψ2, ρ2, β2). In the context of the proof of Theorem 1.1, we
had additional information about the level sets of ψ1 and ψ2 due to the kinematic condition (for the
three-dimensional problem), which was how we ultimately found that this situation could not occur
unless ρ1 = ρ2 and ψ1 was an affine function of ψ2. However, one could reasonably ask whether the
same conclusion follows simply from (3.2) if say ψ1 and ψ2 share a common streamline. This question
is of considerable independent interest, both mathematically and to hydrodynamical applications.
On the one hand, (3.2) is a parameter-dependent Poisson problem coupled with an unusual gradient
constraint. Thus unique solvability falls into the broader category of unique continuation of elliptic
PDE. On the other hand, determining (ψ, ρ, β) from (3.2) amounts to recovering the flow from
pressure data, which has been the subject of a number of papers in the applied literature. Constantin
[5] provided an explicit formula for the surface elevation of a two-dimensional irrotational solitary
wave in finite-depth water in terms of the trace of the pressure on bed. The central observation of
that work is that one can derive from the pressure on the bed and Bernoulli’s principle Cauchy data
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for an elliptic equation describing the flow. Henry [17] extended this idea to general real-analytic
vorticity (assuming the absence of stagnation points) using the Dubreil-Jacotin formulation of the
steady water wave problem and Cauchy–Kovalevskaya theory. Chen and Walsh [1] later proved an
analogous result with vorticity of Sobolev regularity and allowed for density stratification using
strong unique continuation techniques. A recovery formula for constant vorticity waves was recently
obtained by Clamond, Labarbe, and Henry [34]. See also [2, 18, 3] for ealier results of this variety.
Pressure recovery for (3.2) is simpler in that we require constant vorticity and have pressure data on
an open set, rather than the boundary. However, it is important that we do not specify a priori the
values of ρ or β, which is a large departure from these earlier works.
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Appendix A. Dimension reduction for the vorticity

For completeness, we give here the proof of the dimension reduction result for the vorticity, which
generalizes Constantin’s argument for the single-fluid case in [4].

Proof of Proposition 2.1. Seeking a contradiction, suppose that one of γi is not zero, say, γ1 6= 0; the
argument for the other case γ2 6= 0 can be treated the same way. Then from the third component of
the vorticity equation (1.5) we see that w1 is constant in the direction of ω1, which is transverse to
the lower boundary at z = −h1. From the kinematic condition (1.1e), it follows that w1 vanishes
identically on the open neighborhood N := {(x, y, z) : −h1 < z < inf η} of the bed. As it is real
analytic, this forces

w1 ≡ 0 in Ω1.

Reconciling this with (1.4), (1.1b) and (1.1a), we then have

∂zu1 = β1, ∂zv1 = −α1,(A.1)
∂xu1 + ∂yv1 = 0,(A.2)
∂zP1 = −ρ1g(A.3)

in Ω1. By integrating (A.1), we infer that

(A.4) u1 = ū1(x, y) + β1z, v1 = v̄1(x, y)− α1z,

in N for some functions ū1 and v̄1. The reduced incompressibility condition (A.2) then implies that

∂xū1 + ∂yv̄1 = 0,

which ensures the existence of a reduced stream function ψ̄1 = ψ̄1(x, y) defined on N such that
∇⊥ψ̄1 = (−∂yψ̄1, ∂xψ̄1) = (ū1, v̄1). Rewriting the two horizontal momentum equations (1.1a) in
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terms of ψ̄1, differentiating the result with respect to z and then using (A.3), we see that in N , ψ̄1

satisfies

(A.5)


β1∂x∂yψ̄1 − α1∂

2
y ψ̄1 = 0

−β1∂2xψ̄1 + α1∂x∂yψ̄1 = 0

∆ψ̄1 − γ1 = 0

in N ,

where the last equation comes from (1.2). We consider two cases.
Case 1: α2

1 + β21 = 0. From (A.1) and (1.4) it follows that

(A.6) ∂zu1 = ∂zv1 = 0, ∂xv1 − ∂yu1 = γ1.

We also find from (A.4) and (2.1) that in the neighborhood N , u1 = ū1 and v1 = v̄1 are harmonic
functions with domain R2. The boundedness of u1, and thus the boundedness of (ū1, v̄1), allows one
to appeal to the Liouville theorem for harmonic functions to conclude that u1 and v1 are constants.
However this contradicts that fact that γ1 6= 0.

Case 2: α2
1 + β21 6= 0. In this case, direct computation from (A.5) yields that the second-order

derivatives of ψ̄1 are all constant:

(A.7) ∂2xψ̄1 = − α2
1γ1

α2
1 + β21

=: A1, ∂x∂yψ̄1 = − α1β1γ1
α2
1 + β21

=: B1, ∂2y ψ̄1 = − β21γ1
α2
1 + β21

=: C1,

from which one can solve for ū1 and v̄1
ū1 = −B1x− C1y + a1, v̄1 = A1x+B1y + b1

for some constants a1 and b1. Thus

(A.8) u1 = −B1x− C1y + β1z + a1, v1 = A1x+B1y − α1z + b1.

Again boundedness of u1 forces A1 = B1 = C1 = 0, leading to α1 = β1 = 0, a contradiction. �
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