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Abstract. Consider a two-dimensional stratified solitary wave propagating through a body of
water that is bounded below by an impermeable ocean bed. In this work, we study how such a
wave can be recovered from data consisting of the wave speed, upstream and downstream density
and velocity profile, and the trace of the pressure on the bed. In particular, we prove that this
data uniquely determines the wave, both in the (real) analytic and Sobolev regimes.

1. Introduction

The work of the present paper originates from a very applied problem: tracking the movement
of waves far at sea. One of the primary ways in which this is currently done is through the
use of recording devices capable of reading the subsurface pressure in the ocean. Inherent to
this approach are a number of highly nontrivial mathematical statements. For instance, we may
reasonably ask: How much information can really be gleaned about the flow from just the trace
of the pressure on the ocean bed? Is it possible to totally reconstruct a passing traveling wave
from this data? Addressing some of these issues is the main objective of this paper. We are
particularly concerned with the role density stratification may play and whether one can perform
this reconstruction in a low regularity regime.

Let us first discuss the situation for constant density fluids. If one takes the linearized free
surface Euler equations for a small-amplitude gravity wave, it is simple to show that the surface
profile can be expressed in terms of the pressure trace; indeed, this mapping is a Fourier multiplier
whose symbol is referred to as the (linear) pressure transfer function (see, e.g., [4, 18, 24, 25]).
More concretely, for a sinusoidal wave with wavenumber k, the connection between the the dy-
namic pressure p and the surface displacement η can be written as

(1.1) p = ρg
cosh(khm)

cosh(kd)
η,

where hm is the height of the pressure meter above the bottom, d is the mean depth, and the
dynamic pressure p is defined to be the difference between the pressure and the hydrostatic
pressure, that is,

p = P − Patm − ρg(d− hm).

For pressure data obtained from the sea-bed, hm = 0 and hence (1.1) becomes

p =
ρg

cosh(kd)
η,
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which, in the zero depth limit d→ 0, recovers the hydrostatic approximation

(1.2) p = ρgη.

The linear pressure transfer function (1.1) works very well in the deep water regime. However,
it is also well known that nonlinear effects play an important role in the surface reconstruction
problem for shallow water waves or for waves in the surf zone (see [3, 4, 29], for instance).
Experiments suggest that the predictions of linear models such as (1.1) may diverge sharply from
observation [5]. For waves of large or even moderate amplitude, the discrepancy can be significant
[4, 29]. Another issue with the linear theory is that, due to its reliance on Fourier series techniques,
it can only treat periodic traveling waves.

These limitations have motivated a recent push to obtain reconstruction formulas that account
for nonlinear effects and which apply to solitary waves. Nonlinear nonlocal equations relating the
trace of the dynamic pressure on the bed to the surface profile of a solitary wave were established
by several groups of researchers (see [11, 14, 27]). Notably, these papers work directly from the free
surface Euler equations without further approximation. In [9, 10], the authors obtained implicit
but exact and tractable relations for periodic traveling waves and performed straightforward nu-
merical procedures to derive the free surface from the pressure at the bed. In [12], Constantin used
a strong maximum principle argument completely different from the aforementioned approach to
derive some improved estimates for the wave height of periodic traveling waves.

The above body of work focuses on irrotational steady waves propagating through constant
density water. Actual waves in the ocean, however, frequently exhibit a heterogeneous density due
to salinity or temperature gradients. This density stratification generates vorticity within the flow
as the effects of gravity and inertia are experienced differently by heavier and lighter fluid particles.
Moreover, a heterogeneous density distribution can permit large-amplitude waves to propagate
in the bulk even while the surface remains relatively undisturbed. These so-called internal waves
have been observed in oceanic areas for many years (cf., e.g. [28], or the compendium in [23]).

The vorticity that naturally accompanies stratification poses a serious mathematical challenge:
nearly all of the irrotational theory is built on tools (e.g., conformal mappings, nonlocal reformu-
lations via Dirichlet–Neumann operators, variational principles, etc.) that do not have obvious
analogues in the rotational regime. As a consequence, rigorous results on large-amplitude rota-
tional or stratified waves have begun to appear in the literature only quite recently (see, for e.g.
[13, 32, 37, 38, 7, 8]). Assuming the vorticity is constant throughout the fluid domain, which
is the simplest model of a wave-current interaction, Ali and Kalisch [2] derived a relationship in
the long-wave limit that gives a direct map between the surface elevation and the pressure at
the bottom of the fluid and within the bulk of the fluid domain. Later Vasan and Oliveras [30]
obtained an exact reconstruction formula in this regime without approximation.

At present, no one to our knowledge has discovered how to adapt these ideas to the case of
an arbitrary vorticity distribution. Indeed, constant vorticity is a very special (though physically
significant) case that rarely provides much insight into how to attack the general problem. How-
ever, it is worth noting that recently Matioc [26] derived a power series reconstruction formula
given the horizontal velocity along an axis of even symmetry for Stokes waves with C∞ vorticity.

Unique determinability with stratification. Despite the success in seeking exact formulas
for the pressure transfer functions in the previously mentioned works, a fundamental question
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still awaits to be resolved: is this surface reconstruction from pressure problem mathematically
well-defined? Namely, knowing the wave speed and the upstream/downstream wave profile, is
the free surface uniquely determined by the trace of the pressure on the bed? In [20], Henry first
came up with an affirmative answer for rotational solitary waves, provided that the vorticity and
pressure are real analytic. The analyticity condition is needed because he employs a Cauchy–
Kowalevski argument. Matioc [26] considered a similar problem where the horizontal velocity is
specified along an axis of even symmetry for the wave and the vorticity is C∞.

Our main results pertain to the question of unique determinability of a stratified steady wave
from the trace of the pressure on the bed. Mathematically, stratification plays a somewhat similar
role in the governing equation for steady waves as vorticity. This suggests that Henry’s method
can be adapted to analytically stratified flows. Following this strategy, we prove that, if two
stratified traveling waves share the same wave speed, analytic streamline density function, and
pressure trace on the bed, then they must coincide exactly; see Theorem 3.1 and Corollary 3.7.

However, analyticity is a very strong assumption that is particularly ill-suited to stratified
waves. Water columns in the ocean are frequently observed to have nearly constant density
outside of thin transition layers called pycnoclines. Thus, as it passes through a pycnocline, the
density experiences something close to a jump discontinuity. Indeed, a common practice is to
view these waves as being a layering of multiple immiscible fluids each with its own constant
density. In this model, the density distribution is piece-wise analytic, allowing us to iterate the
Cauchy–Kowalevski approach of Henry and determine all of the free surfaces (cf. Corollary 3.2).

The more interesting question in the stratified regime, therefore, is whether one has unique
determinability for a continuous but not necessarily analytic density (e.g., the existence theory
for periodic stratified waves in [32] is formulated for density of class C1,α, and for solitary waves
[7, 8] assumes that density is C2,α). For this case, Henry’s argument does not seem to apply and
so an entirely new idea is needed. In Theorem 3.4, we confirm that unique determinability still
holds in the Sobolev space setting. Our method is based on reformulating the problem as an
elliptic equation on a strip which can be treated using the theory of strong unique continuation
(cf. Theorem 3.3). In fact, this approach can be used for constant density rotational waves as
well, hence Theorem 3.4 generalizes Henry’s work to the Sobolev regularity regime (see Remark
3.6).

2. Formulation

In this section, we present several formulations of the steady stratified water wave system, each
tailored to one of the problems we later consider. Their equivalence is fairly straightforward to
show (cf., e.g., [6, Lemma A.2] where it is proved for much weaker regularity solutions).

Notation. Before we proceed, let us first outline some conventions. For k ∈ N and α ∈ [0, 1],
and an open subset U ⊂ R2, we denote

Ck+α(U) :=
{
u ∈ Ck(U) : ‖u‖Ck+α <∞

}
, Ck+α(U) :=

{
u ∈ Ck(U) : ‖u‖Ck+α <∞

}
,

which are Banach spaces under the Ck,α norm. Likewise, the set of real analytic functions with
domain U will be written as Cω(U).
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Figure 1. Example with two fluid layers, Ω1 and Ω2.

In what follows, we will often encounter functions defined on sets U ⊂ R2 of the form U =
U1 ∪ U2, for disjoint open sets U1 and U2 with ∂U1 ∩ ∂U2 6= ∅. In such cases, we may write
u ∈ Ck,α(U1) ∩ Ck,α(U2) to indicate that u restricted to Ui has a unique extension to Ui of class
Ck,α(Ui), for i = 1, 2. Note that such a u need not be in Ck,α(U), however, as these extensions
can disagree on ∂U1 ∩ ∂U2.

For k ∈ N and r ∈ [1,∞], and supposing that U has Lipschitz continuous boundary, we define

‖u‖Wk,r(U) :=
∑
|β|≤k

‖∂βu‖Lr(U),

and denote by W k,r(U) the closure of C∞(U) under this norm.

Finally, we may add a subscript of “per” to any of these spaces to indicate that we are restricting
to functions that are even and 2π-periodic in their first argument.

2.1. Eulerian formulation. Consider a two-dimensional traveling wave in a stratified water
propagating to the right with speed c > 0 and acted upon by gravity. We work in a moving
reference so that the resulting system is independent of time and the wave occupies the a priori
unknown domain Ω ⊂ R2. The flow is then described mathematically by a velocity field (u, v) :
Ω→ R2, a density function % : Ω→ R+, and a pressure P : Ω→ R.

Ocean waves typically exhibit thin transition layers where density varies sharply. For this, we
begin by studying the layered model wherein Ω is partitioned into finitely many immiscible fluid
regions

(2.1) Ω =
N⋃
i=1

Ωi, Ωi := {(x, y) ∈ Ω : ηi−1(x) < y < ηi(x)}

where the density %i := %|Ωi is smooth in each layer. Here we index so that η0 := −d, ηN := η
and Ωi lies beneath Ωi+1, for i = 1, . . . N −1; see Figure 2.1. Note that this is implicitly assuming
that the free surfaces all have graph geometry. Also notice that the continuously stratified wave
simply corresponds to the case when N = 1. We will use the convention that, for a quantity f
with domain Ω, fi := f |Ωi .
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Adapting the layer-wise model means in particular that the governing equations are satisfied
in the classical sense in each Ωi, but (u, v) and % need not be continuous across the internal
interfaces. By contrast, P will be continuous throughout the fluid domain. Here, smoothness can
be measured in either the sense of Hölder continuity or Sobolev regularity.

As the governing equations for traveling water waves we use the incompressible Euler system,
which consists of the conservation of mass,

(2.2a) (u− c)%x + v%y = 0, in Ωi,

conservation of momentum

(2.2b)

{
%(u− c)ux + %vuy + Px = 0

%(u− c)vx + %vvy + Py + g% = 0
in Ωi,

and incompressibility

(2.2c) ux + vy = 0, in Ωi.

Here g > 0 the gravitational constant of acceleration. The density stratification will be assumed
to be stable, meaning that

(2.3) y 7→ %(·, y) is non-increasing.

The motion of the interfaces is driven by the kinematic boundary condition:

(2.4a) v = (u− c)∂xηi, on {y = ηi(x)}.

Note that this includes the air-sea interface. Also implicit above is the fact that

vi
ui − c

=
vi+1

ui+1 − c
on {y = ηi(x)},

which is equivalent to requiring that the normal component of the velocity be continuous over
each interfaces. Since the ocean bed is impermeable, the normal velocity there must vanish:

(2.4b) v = 0, on {y = −d}.

Finally, for the pressure we require

(2.4c) P = Patm, on {y = η(x)},

where Patm is the (constant) atmospheric pressure.

It will be important for later reformulations to assume that there is no horizontal stagnation
in the flow:

(2.4d) sup
Ω

(u− c) < 0.

Looking at (2.2b), it is clear that (2.4d) prohibits a certain degeneracy in the system. In particular,
it guarantees that the level curves of the relative velocity field have graph geometry.

A solitary wave is a solution of the above system that is localized in space in the sense that it
satisfies the following asymptotic conditions

(2.5) (u, v)→ (̊u, 0), ηi → η̊i, %→ %̊ as |x| → ∞, uniformly in y.
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Here ů = ů(y) and %̊ = %̊(y) are given function that describe the upstream velocity profile and
density distribution, respectively, while η̊i are the asymptotic heights for the interface streamlines.
Naturally, we require that −d < η̊1 < . . . < η̊N = 0.

Problem 2.1 (Eulerian formulation). Let a wave speed c > 0, volumetric mass flux p0 < 0, and
mean ocean depth d > 0 be given. Fix α ∈ (0, 1).

A periodic solution of the traveling water wave problem consists of a velocity field (u, v), density
%, pressure P , and interface profiles η1, . . . , ηN with the regularity

(2.6) u, v, % ∈ C0,α
per (Ωi) ∩ C1,α

per (Ωi), ηi ∈ C2,α
per (R), P ∈ C0,α(Ω) ∩ C1,α

per (Ωi),

and collectively satisfying (2.2)–(2.4).

Given upstream heights −d < η̊1 < . . . < η̊N := 0, upstream velocity profile ů : [−d, 0] → R
and upstream density distribution %̊ : [−d, 0] → R with ůi, %̊i ∈ C1,α([̊ηi−1, η̊i]), a solitary wave
solution consists of a velocity field (u, v), density %, pressure P , and interface profiles η1, . . . , ηN
with the regularity

(2.7) u, v, % ∈ C0,α(Ωi) ∩ C1,α(Ωi), ηi ∈ C2,α(R), P ∈ C0,α(Ω) ∩ C1,α(Ωi),

and collectively satisfying (2.2)–(2.5).

2.2. Stream function formulation. Observe that the conservation of mass (2.2a) and incom-
pressibility (2.2c) ensure that we may define a function ψ = ψ(x, y) by

(2.8) ψx = −√%v, ψy =
√
%(u− c) in Ωi.

This is the pseudo (relative) stream function for the flow, but throughout this paper we will simply
refer to it as the stream function. From (2.8) and (2.4d), we see that the no stagnation condition
translates to

(2.9) ψy < 0 in Ωi.

The level sets of ψ are called the streamlines; by (2.8) and (2.2a), it is clear that they are
precisely the integral curves of the relative velocity field. Thus, in particular, (2.4a)–(2.4b) directly
imply that the free surface, internal interfaces, and ocean bed are all streamlines. Since (2.8) only
determines ψ up to a constant in each Ωi, we may take ψ to be continuous in Ω, and set ψ = 0
on the air–sea interface. Then ψ = −p0 on the bed {y = −d}, where p0 is the (relative) pseudo-
volumetric mass flux :

(2.10) p0 :=

∫ η(x)

−d

√
%(x, y) [u(x, y)− c] dy,

which is a (strictly negative) constant. Likewise, we define

(2.11) pi :=

∫ ηi(x)

−d

√
%(x, y) [u(x, y)− c] dy,

so that {y = ηi(x)} coincides with the level set {ψ = −pi}.
The conservation of mass (2.2a) implies that there exists a function ρ : [p0, 0]→ R+ such that

(2.12) %(x, y) = ρ(−ψ(x, y)) in Ωi.
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We refer to ρ as the streamline density function. In the periodic setting, we will always think of
ρ as being given. For solitary waves, as we explain below, one can determine ρ by examining the
flow upstream or downstream.

Conservation of energy can be expressed via Bernoulli’s theorem, which states that the quantity

(2.13) E := P +
%

2

(
(u− c)2 + v2

)
+ g%y,

is constant along streamlines (notice, though, that E is continuous in Ωi but typically not across
the interior interfaces). This allows us to define the so-called Bernoulli function β by

(2.14)
dE

dψ
(x, y) = −β(ψ(x, y)), in Ωi.

The dynamics in the interior of each layer is then captured by Yih’s equation [39]

(2.15a) ∆ψ − gyρ′(−ψ) + β(ψ) = 0 in Ωi.

Note that if in some layer Ωi the flow is irrotational and ρi is a constant, then (2.15a) reduces to
Laplace’s equation for ψ.

Lastly, for the stream function formulation to be equivalent to the full Euler system, it is
necessary that E satisfies certain jump conditions on the free surfaces. On the air–sea interface,
P = Patm and hence (2.13) gives immediately that

(2.15b) |∇ψ|2 + 2g%N (y + d) = Q, on {y = η(x)},

where Q = 2(E+%d)|y=η. Likewise, for the interior interfaces we use the fact that P is continuous

in Ω when evaluating E from above and below on {y = ηi(x)}. This results in

(2.15c) |∇ψi+1|2 − |∇ψi|2 + 2g(ρi+1 − ρi)(ηi + d) = Qi on {y = ηi(x)},

with Qi := 2(Ei+1 + gρi+1 − Ei − gρi)|y=ηi .

For solitary waves, the form at infinity strongly constrains the global structure. First, observe
that (2.5) implies that

(2.16) ∇⊥ψ =
√
%(u− c, v)→

√
%̊(̊u− c, 0), ηi → η̊i as |x| → ∞, uniformly in y.

Using this to evaluate the upstream limits of (2.15b) and (2.15c) allows us to determine Q and
Qi directly in terms of the other asymptotic quantities:

Q = %̊(0)(c− ů(0))2 + 2g%̊(0)d

Qi =
√
%̊i+1(ηi)(c− ůi+1(ηi))

2 −
√
%̊i(ηi)(c− ůi(ηi))2 + 2g(%̊i+1(ηi)− %̊i(ηi))(ηi + d).

(2.17)

Moreover, given ů and %̊, one can uniquely determine the Bernoulli function β and streamline
density function ρ. This is a consequence of the fact that (2.16) decides the upstream height of

every streamline. That is, if we denote the upstream limit of the stream function by ψ̊ = ψ̊(y),

and let h̊(p) be the limiting height above the bed of the streamline {ψ = −p}, by definition we
have

(2.18) ψ̊(̊h(p)− d) = −p for all p ∈ [p0, 0], h(p0) = 0.
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Using the implicit function theorem, this furnishes a unique h̊ with h̊ ∈ C0,α([p0, 0]) and h̊i ∈
C2,α((pi−1, pi)) ∩ C1,α([pi−1, pi]). But then it becomes clear that ρ and %̊ are related by

(2.19) ρ(p) = %̊(̊h(p)− d).

Indeed, one can just as easily think of ρ and say ů as being the given asymptotic data. Similarly,
evaluating E upstream, it is possible to explicitly compute that β must take the form

(2.20) β(−p) = ρp(p)

(
g(̊h(p)− d) +

1

2
(̊u(̊h(p)− d)− c)2

)
+ ρ(p)(̊u(̊h(p)− d)− c)̊u′(̊h(p)− d).

This is derived, for example, in [8, Remark 2.1]. Finally, the wave speed, depth, upstream velocity,
and upstream density are all coupled together by the requirement that

(2.21) h̊(0) = d.

Remark 2.2. It is clear that there are many alternative ways to formulate the solitary wave
problem depending on what asymptotic data we wish to take as given. For example, letting h̊
and ρ be fixed, we can define Qi using (2.17), ů by (2.18), and %̊ by (2.19).

Remark 2.3. It is worthwhile to look at the special case where ů = 0, which simplifies many of
the above expressions. For instance, (2.18) can be solved explicitly:

(2.22) h̊(p) =

∫ p

p0

1

c
√
ρ(s)

ds.

The coupling of the wave speed and density (2.21) then takes the form

(2.23) d =

∫ 0

p0

1

c
√
ρ(s)

ds,

while the constants Q, Qi are

(2.24) Q = %Nc
2 + 2g%Nd, Qi = (%i+1 − %i)

(
c2 + 2g̊h

)
.

Finally, from (2.20), we see that β in this setting is simply

(2.25) β(−p) = ρ′(p)

[
1

2
c2 + g(̊h− d)

]
.

This is a well known fact about solitary stratified waves, but an elementary derivation is given in
[6]. Notice that (2.25) suggests that, for solitary waves, it is more natural to prescribe ρ and h̊.

2.3. Height function formulation. The stream function formulation has the advantage of being
a scalar equation, but it is still posed in an a priori unknown domain. For that reason, it is useful
to consider changes of variables that map Ω to a fixed domain. Of course, one should expect this
to come at the cost of additional nonlinearity in the resulting PDE. In the absence of stagnation
(2.4d), a natural choice is to adopt semi-Lagrangian variables:

(x, y) 7→ (q, p) := (x,−ψ).

These coordinates have a long history in the literature on existence of stratified water waves, dating
back to their introduction by Dubreil-Jacotin [16]. Note that, because the internal interfaces and
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free surface are level sets of ψ, each layer Ωi maps to a strip Ri := {(q, p) : p ∈ (pi−1, pi)}.
Similarly, R :=

⋃
iR is the image of Ω.

In place of ψ, we work with the new unknown

h = h(q, p) := y + d,

which denotes the height above the bed of the point with x-coordinate q that lies on the streamline
{ψ = −p}. Notice that h is continuous in R, though its derivatives will in general not be. One
can show that Yih’s equation (2.15a) is equivalent to the quasilinear elliptic problem

(2.26a) (1 + h2
q)hpp + hqqh

2
p − 2hqhphpq − g(h− d)ρph

3
p = −h3

pβ(−p) in Ri.
The Bernoulli condition on the top (2.15b) likewise becomes

(2.26b) 1 + h2
q + h2

p(2gρh−Q) = 0 on {p = 0},
while the jump conditions on the internal interfaces translate to

(2.26c)
1 + (∂qhi+1)2

(∂phi+1)2
− 1 + (∂qhi)

2

(∂phi)2
+ 2g(ρi+1 − ρi)h = Qi on {p = pi}.

Here we are adapting our previous convention by writing hi := h|Ri . The no stagnation condition
(2.4d) expressed in terms of h becomes

(2.26d) hp > 0 in R,
while, simply from its definition, it is clear that

(2.26e) h = 0 on {p = p0}.
The derivation of this system can be found in many places (see, e.g., [32, 35]).

In the solitary wave setting, the behavior upstream is completely captured by the limiting
height function h̊ defined in the previous subsection:

(2.27) h→ h̊ as |q| → ∞, uniformly in p.

The constants Q and Qi can be computed by evaluating (2.26b) and (2.26c) at q = ±∞:

(2.28) Q = h̊p(0)−2 + 2gρ(0)d, Qi =
1

(∂p̊hi+1)(pi)2
− 1

(∂p̊hi)(pi)2
+ 2g(ρi+1(pi)−ρi(pi))h(pi).

Just as before, there is a strong interrelation between β, ρ, h̊, ů, and %̊. As we are working in the
semi-Lagrangian variables, the most natural choice when approaching (2.26a) is to think of ρ and

h̊ in the solitary wave case, or ρ, β, Q, and Qi for periodic waves.

To summarize, we have the following problem statement.

Problem 2.4 (Height equation formulation). Fix α ∈ (0, 1), ocean depth d > 0, and mass fluxes
p0, . . . , pN . Let a streamline density function ρ : [p0, 0]→ R+ be given with ρi ∈ C1,α([pi−1, pi]).

For a given Bernoulli function β with βi ∈ C0,α([|pi|, |pi−1|]), and constants Q, Qi, a periodic
solution of the height equation formulation of the traveling water wave problem consists of a
function h with the regularity

(2.29) h ∈ C0,α
per (R), hi ∈ C1,α

per (Ri) ∩ C2,α
per (Ri)

that satisfies (2.26).
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For a given upstream height h̊ with h̊ ∈ C0,α([p0, 0]) and h̊i ∈ C1,α([pi−1, pi])∩C2,α((pi−1, pi)),
a solution of the height equation formulation of the solitary water wave problem consists of a
function h with the regularity

(2.30) h ∈ C0,α(R), hi ∈ C1,α(Ri) ∩ C2,α(Ri)

that satisfies (2.26) along with the asymptotic condition (2.27), where β is determined by (2.20),
while Q and Qi are defined via (2.28).

3. Determinability

The objective of this section is to establish that the pressure reconstruction problem is math-
ematically well-defined. That is, we prove in various regimes that the wave speed, streamline
density function, Bernoulli function, and the trace of the pressure on the bed together uniquely
determine a steady stratified water wave. In particular, among all solitary waves with a given
form at infinity, to each pressure trace there corresponds precisely one surface profile.

The main insight underlying the argument is that, due to Bernoulli’s law, the trace of the
pressure on the bed gives Neumann data for the height function. Since we already know that the
height is 0 on the bed, together this amounts to a complete set of Cauchy data.

To see this, first observe that, in the semi-Lagrangian coordinates, Bernoulli’s law (2.13) be-
comes

(3.1) E = P +
1 + h2

q

2h2
p

+ gρ(h− d).

Evaluating this on the flat bed and using the definition of the Bernoulli function β (2.14) leads to

(3.2) E|y=−d = E|ψ=p0 = E|ψ=0 −
∫ 0

p0

β(−p) dp.

As before, the form of the flow in the far field (2.5) allows us to compute that the Bernoulli
constant E|ψ=0 is

(3.3) E|ψ=0 = E|y=η = Patm +
1

2
ρ(0)(c− ů(0))2.

Therefore, from (2.26e) and (3.1)–(3.3), we infer that

P (q, p0) +
1

2h2
p(q, p0)

− gρ(p0)d = Patm +
1

2
ρ(0)(c− ů(0))2 −

∫ 0

p0

β(−p) dp.

Finally, the absence of stagnation (2.4d) implies hp > 0, so we conclude

(3.4) hp(q, p0) =

[
2

(
Patm +

1

2
ρ(0)(c− ů(0))2 + gρ(p0)d−

∫ 0

p0

β(−p) dp− P (q, p0)

)]−1/2

.

Thus the normal derivative of h on {p = p0} is known as soon as the streamline density ρ,
Bernoulli function β, limiting downstream/upstream horizontal velocity on the free surface, and
the pressure data on the sea-bed are specified.
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3.1. Analytic setting. We have seen that, treating the pressure trace as given, (2.26e) and (3.4)
amount to Cauchy data. It is therefore useful to transform the elliptic height equation (2.26) into
a first-order system that can be approached via Cauchy–Kowalevski. Define

(3.5) F :=
hq
hp
, G :=

1

hp
, H := h.

From (2.4d) and the identity 1/hp =
√
ρ(c− u) we know that these quantities are well-defined.

We can then reformulate the height equation (2.26) as

(3.6)



Fp =
F

G

[
GFq + FGq +Gβ(−p)−Ggρp(H − d)

F 2 +G2

]
− Gq

G
,

Gp =
GFq + FGq +Gβ(−p)−Ggρp(H − d)

F 2 +G2
,

Hp =
1

G
,

with the following “initial” conditions posed at p = p0

F (q, p0) = H(q, p0) = 0.

Here G(·, p0) is uniquely determined by the pressure trace P (·, p0) via (3.4).

Theorem 3.1. Let (u, v, η, P ) with regularity given in (2.7) be a solitary wave solution to Prob-
lem 2.1 with given real analytic %̊, ů and wave speed c. Assume that the wave speed exceeds the
horizontal fluid velocity u < c throughout the fluid. Then u, v, η are real analytic. Moreover η is
uniquely determined by the pressure function P on the flat bed in the sense that if η, η̃ are two
solutions with the same pressure trace on {y = −d}, then η ≡ η̃.

Proof. From the equivalence between the Eulerian and the height function formulations, it suffices
to show that the corresponding height function h ∈ C2,α(R) to equation (2.26) is real analytic
and is uniquely determined by the bottom pressure. The Cauchy–Kowalevski theorem applied to
system (3.6) implies the existence and uniqueness of F,G,H, which are real analytic in some open
neighborhood N of the bed {p = p0}. Hence, in view of (3.5), h, hp, hq are also real analytic in
N . On the other hand, under the regularity hypotheses above, all solutions of the height equation
(2.26) are real analytic in R (cf. [36, Theorem 5.1]). Therefore the unique continuation of real
analytic functions ensures the uniqueness of the solution h to (2.26) with Neumann data on the
bottom given by the pressure from (3.4). 2

The above determinability result can be easily extended to layer-wise smooth flows. Note that
the interior interfaces are streamlines, hence they correspond to straight lines {p = pi} in the
semi-Lagrangian variables. The first-order system (3.6) will hold in each strip Ri. Beginning
in the strip directly above the bed, we can argue as in Theorem 3.1 and Corollary 3.7 to show
that h ∈ Cω(R1) and is determined there uniquely by the prescribed data. By construction, h
is continuous over the interface and indeed q 7→ h(q, ·) is real analytic. On the other hand, the
jump condition (2.26c) allows us to determine ∂ph2(·, p1). Thus we have a full set of Cauchy data
for the first-order problem in R2. Applying Cauchy–Kowalevski once more allows us to conclude
h ∈ Cω(R2). Iterating this procedure, we get the following result.



12 R. M. CHEN AND S. WALSH

Corollary 3.2. Fix the wave speed c. Let (u, v, η, P ) with

ui, vi, Pi ∈ C1,α(Ωi), ηi ∈ C2,α(R)

be a solitary wave solution to Problem 2.1 with given %̊, ů ∈ Cω([ηi−1, ηi]). Assume that the
wave speed exceeds the horizontal fluid velocity u < c throughout the fluid. Then ui, vi, ηi are real
analytic and ηi is uniquely determined by the pressure function P on the flat bed.

3.2. Sobolev setting. In this section, we considerably strengthen the above results by relaxing
the analyticity requirement to a more physically reasonable degree of smoothness. Our argument
is built off of the following result on the strong unique continuation for a general elliptic equation
set in the plane.

Theorem 3.3. [1, Theorem 1] Given a bounded connected open set Ω ⊂ R2. Let u ∈W 1,2(Ω) be
a weak solution to the elliptic equation

Lu := (aijuxi + aju)xj + biuxi + cu = 0 in Ω,

where

(i) L is uniformly elliptic in the sense that there exists a K > 0 such that

0 < K−1|ζ|2 ≤ aij(x)ζiζj ≤ K|ζ|2, for all ζ ∈ R2, and for a.e. x ∈ Ω; and

(ii) aij ∈ L∞(Ω), ai, bi ∈ Lq(Ω), c ∈ Lq/2(Ω) for some q > 2.

Then the operator L has the strong unique continuation property in the sense that if a solution u
has a zero of infinite order at a point x0 ∈ Ω, i.e., there exists δ > 0 such that for every integer
N ≥ 0 ∫

Br(x0)
|u|2 dx ≤ cNrN , for all r < δ,

then u ≡ 0 in Ω.

With this result in place, we can now state and prove our main theorem on determinability.

Theorem 3.4. Fix the wave speed c. Let r > 2 and (u, v, η, P ) with

ui, vi, Pi ∈W 2,r(Ωi), and ηi ∈W 3− 1
r
,r(R)

be a solution of Problem 2.1 representing a solitary water wave with given %̊i, ůi ∈W 2,r([̊ηi−1, η̊i]).
Then η is uniquely determined by the trace of the pressure P on the bed.

Again the above theorem can be proved through considering the height equation formulation
(2.26). Note that as discussed in the previous subsection, hp(·, p0) is determined by P (·, p0)
through (3.4), and thus Theorem 3.4 is equivalent to the following statement about unique deter-
minability of h from the pressure trace (see [6, Lemma A.2]).

Theorem 3.5. Let r > 2 and h ∈ W 1,r(R) with hi ∈ W 3,r(Ri) be a solution of (2.26). Assume
that the stable streamline density stratification ρi ∈ W 2,r([pi−1, pi]) and the Bernoulli function
βi ∈W 1,r([|pi|, |pi−1|]), and ∂phi > 0. Then h is uniquely determined by the normal derivative hp
on the flat bed.
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Proof. Let h and h̃ be two solutions to (2.26) with identical Neumann data on the bed:

hp(·, p0) = h̃p(·, p0) on R.

The difference u := h− h̃ satisfies an elliptic equation (see also [31])

L u := (aijuxi)xj + biuxi + cu = 0 in R,

where

a11 := 1 + h2
q , a12 = a21 = −hphq, a22 = h2

p,

b1 := h̃pp(hq + h̃q)− 2hph̃pq − hphpq + hqhpp,

b2 := h̃qq(hp + h̃p)− 2h̃qh̃pq + β(−p)(h2
p + hph̃p + h̃2

p)− gρp(h̃− d(h̃))(h2
p + hph̃p + h̃2

p)

− hqhpq + hphqq

c := −gρph3
p,

and

u = up = 0, on {p = p0}.
The goal is to show that u vanishes identically in the entire strip R. We will achieve this through
an induction process.

First, we prove that u1(= u|R1) ≡ 0 on the bottom strip R1. The above boundary condition
guarantees that u can be extended to a W 1,r function defined on the lower half-plane {p < p0}
that vanishes in {p < p0}. Also, since h1, h̃1 ∈ W 3,r(R1), from the trace theorem (see [19]) and
the fractional Sobolev embedding theorem (cf., e.g., [15, Theorem 8.2]) we know that the traces

(3.7) ∇2h1,∇2h̃1 ∈W 1/2,r({p = p0}) ⊂ C0, r−2
2r ({p = p0}).

Similarly, we can make sense of the traces ∂pρ1 and β1 on {p = 0} and {p = p0}. This way, the

functions h1, h̃1, ρ1 and β1 can all be extended below R1 while maintaining their regularity and
ensuring ∂ph1 > 0 in the strong sense. Therefore, from the divergence structure of the operator
L , we see that the extended u1 also satisfies L u1 = 0. This, combined with Sobolev embedding,
implies that the coefficients in L satisfy the the conditions of Theorem 3.3, and hence L has
the strong unique continuation property. Note that Theorem 3.3 is a local result. Thus we may
apply it on any finite portion of R1 to show that the restriction of u1 there vanishes identically.
It follows that u1 ≡ 0 on the entire R1.

Now suppose uk ≡ 0 on Rk, for some 1 ≤ k ≤ N . We see that uk+1 satisfies the same equation
L uk+1 = 0. In order to apply the previous argument, it suffices to show that uk+1 satisfies the
homogeneous Dirichlet and Neumann conditions on {p = pk}. This amounts to proving that hk+1

and h̃k+1 share the same Dirichlet and Neumann data on {p = pk}. From induction, uk ≡ 0 on
Rk, and hence

hk(·, pk) = h̃k(·, pk), ∂phk(·, pk) = ∂ph̃k(·, pk).

Continuity of the h and h̃ implies that hk+1(·, pk) = h̃k+1(·, pk), and thus

uk+1 = 0, on {p = pk}.
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From (2.26c) we see that

1 + (∂qhk+1)2

(∂phk+1)2
=

1 + (∂qhk)
2

(∂phk)2
− 2g(ρk+1 − ρk)h+Qk, on {p = pk},

and the same holds for h̃k+1. Further using the fact that hq and h̃q are continuous, and ∂phk+1,

∂ph̃k+1 > 0 it follows that

∂puk+1 = 0, on {p = pk}.
Therefore we can apply the unique continuation argument to conclude that uk+1 ≡ 0 in Rk+1,
and hence complete the proof. 2

Remark 3.6. (i) Note that by Sobolev embedding, the height function hi ∈ C2,(r−2)/r(Ri) and
hence these are classical solutions of the height equation. Likewise, the velocity field and pressure
in Theorem 3.4 also exhibit classical regularity in each layer. It is well-known that the height
equation (2.26) can be written in divergence form which allows us to assume that h ∈ W 1,r(R),
and this in particular guarantees that h is continuous in the whole domain. However, in (3.7)
we use strongly the fact that hi ∈ W 3,r(Ri) when extending the height function over the lower
boundary of Ri, and therefore our method requires the W 3,r regularity in each layer.

(ii) Theorem 3.5 easily applies to the case of a continuously stratified fluid: one can simply
adapt the argument for the determinability of the bottom fluid region in the above proof for the
continuously stratified case.

(iii) Indeed from a mathematical point of view, h can be uniquely determined by hp on {p = pi}
for any 1 ≤ i ≤ N − 1. What one can do is to first obtain the uniqueness of h in Ri by extending
the solution below {p = pi} as before, and iterating the same argument to prove the uniqueness
of h in {p ≥ pi}. Then apply the unique continuation in Ri−1 by extending the difference

ui−1 = hi−1− h̃i−1 above {p = pi} to prove that ui−1 ≡ 0. Then repeat the process downward till
R1.

(iv) The same argument applies to the regime considered by Henry [20], namely constant density
flow with a general vorticity distribution. In that case, the height equation is

(3.8)


(1 + h2

q)hpp + hqqh
2
p − 2hqhphpq = −h3

pγ(−p), p0 < p < 0,
1 + h2

q + h2
p(2gh−Q) = 0, p = 0,

h = 0, p = p0,

where γ is the vorticity function. Clearly γ plays a nearly identical role as β does in (2.26a), and
so the arguments above go through with only minor alteration.

3.3. Periodic waves. To complete the theory we also consider the periodic setting. In contrast
to the case of solitary waves, there has been a fairly robust existence theory for large-amplitude
periodic steady stratified waves developed in recent years (cf. [32, 17, 22, 21, 33, 34]).

Since both the Cauchy–Kowalevski and the unique continuation theory are local, they can be
applied just as well on a periodic domain. Thus, in order to adapt the argument of Theorem
3.1 and Theorem 3.4 to periodic traveling waves, it remains only to show that the pressure trace
on the bed furnishes Neumann data for h there. Unfortunately, because this setting lacks an
upstream state, we will need some additional information.
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More precisely, observe that by combining (3.1) with (3.2) for a general Bernoulli function β,
we obtain the identity

(3.9) hp(q, p0) =

[
2

(
E|ψ=0 −

∫ 0

p0

β(−p) dp+ gρ(p0)d− P (q, p0)

)]−1/2

.

So long as we know E|ψ=0, we can proceed as before. This leads to the following results.

Corollary 3.7. Let (u, v, η, P ) ∈ C1,α
per (Ω) × C1,α

per (Ω) × C2,α
per (R) × C1,α

per (Ω) be a periodic solution
to Problem 2.1 with a stable streamline density function ρ ∈ Cω([p0, 0]), Bernoulli function β ∈
Cω([0, |p0|]), and with wave speed c. Then u, v, η ∈ Cωper(R). Moreover, η is uniquely determined
by the trace of the pressure P on the bed and the value of E on the free surface.

Corollary 3.8. Let r > 2 and (u, v, η, P ) with

ui, vi, Pi ∈W 2,r
per(Ri) ∩W 1,r

per(Ri), and ηi ∈W
3− 1

r
,r

per (R)

be a periodic solution to Problem 2.1 with a stable streamline density stratification ρ ∈W 2,r([p0, 0]),
a Bernoulli function β ∈W 1,r([0, |p0|]), and with the wave speed c. Then η is uniquely determined
by the trace of the pressure P on the bed and the value of E on the free surface.

Remark 3.9. The above results should be appreciated from a theoretic viewpoint rather than a
practical one. In field experiments it is quite difficult to record E|ψ=0, though mathematically it
can be determined, for instance, from any one of the following:

(i) the value of u at the crest and the height of the crest; or
(ii) the value of u at the trough and the height of the trough; or

(iii) the average value of the kinetic energy ρ(0)
2 |(u− c, v)|2 on the surface.

For (i), we just evaluate Bernoulli’s law at the crest (where v = 0). Likewise, for (ii), we evaluate
Bernoulli at the trough. For (iii), we take the mean value on the surface and use the fact that η
has mean 0.
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