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Abstract. We consider a vanishing viscosity sequence of weak solutions for the three-
dimensional Navier–Stokes equations of incompressible fluids in a bounded domain. In
a seminal paper [26] Kato showed that for sufficiently regular solutions, the vanishing
viscosity limit is equivalent to having vanishing viscous dissipation in a boundary layer of
width proportional to the viscosity. We prove that Kato’s criterion holds for the Hölder
continuous solutions with the regularity index arbitrarily close to Onsager’s critical ex-
ponent through a new boundary layer foliation and a global mollification technique.

1. Introduction

The motion of an incompressible viscous fluid with constant density is governed by the
following Navier-Stokes equations:

∂tu
ν + div(uν ⊗ uν) +∇P ν = ν4uν ,

divuν = 0,

uν(x, 0) = uν0(x),

(1.1)

where the constant ν > 0 denotes the viscosity of the fluid, the unknown functions uν and
P ν are the velocity field and pressure, respectively. Here the superscript ν is used on all
the unknowns to emphasize the dependence on the viscosity. The Navier-Stokes equations
at zero viscosity ν = 0 formally become the Euler equations:

∂tu+ div(u⊗ u) +∇P = 0,

divu = 0,

u(x, 0) = u0(x),

(1.2)

where u and P are the velocity and pressure of the inviscid fluid, respectively.
An important problem in the study of incompressible hydrodynamics is the vanishing

viscosity limit from the Navier-Stokes equations (1.1) to the Euler equations (1.2), which
is naturally associated with the physical phenomena of turbulence and of boundary layers.
On domains without boundary, such a problem is well-understood: given a strong Euler
solution uE ∈ C1, the Leray–Hopf solutions uν of (1.1) converge strongly in the energy
space L∞t L

2
x to u as ν → 0; see, for exmple, [3].

In the presence of boundary, on the other hand, systems (1.1) and (1.2) considered in
a bounded domain Ω are supplemented with the no-slip boundary condition u|∂Ω = 0 and
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slip boundary condition (u · n)|∂Ω = 0, respectively, with n the unit outward normal of
the boundary ∂Ω. The mismatch of the boundary conditions leads to the phenomenon of
boundary layer separation. Establishing the vanishing viscosity limit in the energy space
L∞t L

2
x in this case is much less understood. A well-known result of Kato [26] states that,

for a strong Euler solution uE , the vanishing viscosity limit

uν → uE in L∞(0, T ;L2(Ω))

holds if and only if

ν

∫ T

0
‖∇uν‖2L2(Γcν) dt→ 0 as ν → 0, (1.3)

where Γcν is a very thin boundary layer of width proportional to ν.
Kato’s theory is by nature conditional. Many of the known results on strong inviscid

limits are also conditioned on special properties of the solutions [1, 3, 11, 12, 27, 28, 38, 40].
Some unconditional strong convergence results do exist, but with additional assumptions
on the data like real analyticity [7], vanishing of the initial vorticity near the boundary [34],
or special symmetry of the flow [29, 32, 33, 36]. These results are for short time and for
laminar flows close to a smooth Euler solution when there is no boundary layer separation
or other characteristic turbulent behavior.

The vanishing viscosity for turbulent flows faces serious challenges and remains widely
open. Little is known about the inviscid limit even when a strong Euler solution exists for
a short time. Therefore it is natural to consider the weak Euler solutions for the vanishing
viscosity limit. One type of such weak Euler solutions is the measure valued solutions [17].
In some recent works [14,19] the authors describe sufficient conditions in terms of interior
structure functions under which the weak (L2

t,x) solutions uE of the Euler equations can

be obtained as weak L2
t,x limits of uν . In [13], the authors further extend the result of [14]

to allow certain interior vorticity concentration.
The classical result of Kato [26] indicates that the anomalous energy dissipation leads

to the failure of the inviscid limit to a strong (C1) Euler solution; while the issue that
weak Euler solutions may arise from the inviscid limit is closely related to Onsager’s
conjecture (see, for example [5,19] and the references therein). It has been made a precise
statement that the critical Onsager’s Hölder regularity exponent is 1/3, below which the
Euler equations become non-conservative [4, 15, 16, 24, 25], while above 1/3 the energy
conservation can be justified [9, 10, 20, 22]. In the works of [2, 18] the authors derive
sufficient conditions for Cα solutions under which the global viscous dissipation vanishes
in the inviscid limit for Leray–Hopf solutions uν , with an emphasis on the behavior or
solutions near the boundary. In particular in [18] a Kato-type criterion on the vanishing
of the energy dissipation rate in a thin boundary layer of thickness O(νβ) is proposed,
among other regularity conditions, where β = 3

4 + ε near the critical Onsager threshold

α = 1
3 + ε. Note that the boundary layer in the result of [18] is thicker than that of

Kato [26].
The main goal of this paper is to bridge the gap between the original result of Kato [26]

for strong C1 Euler solutions and the result of [18] for weak Cα Euler solutions. Specifically,
we will show that under certain ν-dependent assumptions on the family of solutions of
(1.1), a Kato-type result with boundary layer of thickness O(ν) holds for weak Euler
solutions up to Onsager-critical spatial regularity α = 1

3+. See Table 1 below.
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NS solution uν Euler solution uE boundary layer

Kato [26] Leray–Hopf C1(Ω) O(ν)

Drivas–Nguyen [18]
C

1/3+
loc (Ω) with

boundary regularity
C

1/3+
loc (Ω) O(ν3/4+)

Our result
C

1/3+
loc (Ω) with

boundary regularity
C

1/3+
loc (Ω) O(ν)

Table 1. Comparison of results

Let us recall the classical existence results of Leray [31] and Hopf [23]. For a divergence-
free function u0 ∈ L2, problem (1.1) has a weak solution u ∈ C

(
0, T ;L2

)
∩L2

(
0, T ;H1(Ω)

)
in a bounded smooth domain Ω for any T <∞. Additionally, u is divergence-free and the
following energy inequality holds

1

2

∫
Ω
|uν |2dx+ ν

∫ t

0

∫
Ω
|∇uν |2dxds ≤ 1

2

∫
Ω
|uν0 |2dx, a.e. t ∈ (0, T ). (1.4)

Such a weak solution is called Leray–Hopf weak solution.
Next we introduce some notation. For some (small) h > 0, we define

Ωh := {x ∈ Ω, dist(x, ∂Ω) > h} and Γh := Ω\Ωh. (1.5)

Also, we introduce the Besov space Bα,∞
p (Ω) which consists of measurable functions with

the norm

‖f‖Bα,∞p (Ω) := ‖f‖Lp(Ω) + sup
y∈R3

‖f(·+ y)− f(·)‖Lp(Ω∩(Ω−{y}))

|y|α
, p ≥ 1, α ∈ (0, 1). (1.6)

We further denote H(Ω) to be the completion in L2(Ω) of the space {v ∈ C∞c (Ω;R3) :
divv = 0}, and recall the following definition of the weak Euler solutions (see, for example
[18]).

Definition 1.1. Let Ω ⊂ R3 be a bounded domain with C2 boundary. We say the
pair (u, P ) is a weak Euler solution to (1.2) on Ω × (0, T ) if u ∈ Cw(0, T ;H(Ω)), P ∈
L1

loc(Ω× (0, T )) and for all test vector fields ϕ ∈ C∞0 (Ω× (0, T )) it holds that∫ T

0

∫
Ω

(u · ∂tϕ+ u⊗ u : ∇ϕ+ P∇ · ϕ) dxdt = 0.

Our main result is stated in the following theorem.

Theorem 1.1. Let Ω ⊂ R3 be a bounded domain with C2 boundary. Let {uν}ν>0 be
a sequence of Leray–Hopf weak solutions to (1.1) with initial data uν0 and suppose that
uν0 → u0 in L2(Ω) as ν → 0. Assume in addition that

uν is uniformly in ν bounded in L3 (0, T ;Bα,∞
3 (Ων)) for some α ∈

(
1

3
, 1

)
, (1.7){

uν is uniformly in ν bounded in L4 (0, T ;L∞ (Γ4ν)) ,

P ν is uniformly in ν bounded in L2 (0, T ;L∞ (Γ4ν)) .
(1.8)
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Then, if

lim
ν→0

ν

∫ T

0

∫
Γ4ν

|∇uν |2dxdt = 0, (1.9)

we have that the global viscous dissipation vanishes, i.e.,

lim
ν→0

ν

∫ T

0

∫
Ω
|∇uν |2dxdt = 0, (1.10)

and moreover, uν converges locally in L3(0, T ;L3(Ω)), up to some subsequence, to a weak
solution of the Euler equations (1.2).

Remark 1.1. Condition (1.9) recovers Kato’s criterion (1.3), but now in the framework
of weak solutions with Cα regularity, where α can be taken arbitrarily close to Onsager’s
critical exponent, cf. (1.7).

Remark 1.2. As pointed out in [18], violation of conditions (1.7) – (1.9) is responsible for
global dissipation to persist in the vanishing viscosity limit. More precisely, violation of
(1.7) corresponds to a failure of uniform interior regularity, which is required for anomalous
dissipation in domains without boundaries; see, for example [10]. On the other hand,
conditions (1.8)–(1.9) provide new mechanisms for anomalous dissipation in wall-bounded
flows. In fact several numerical investigations [37,39] have been carefully performed, where
formation and shedding of vortex sheet of width ν at the boundary is confirmed, suggesting
the possible failure of the Kato-type near-wall dissipation criterion (1.9). On the other
hand, in [6] Cadot et al. conduct experiments for flows in Taylor-Couette cells with smooth
walls, and found that for sufficiently large Reynolds number, the energy dissipation in the
boundary layer decreases with Reynolds number which satisfies (1.9), while the energy
dissipation in the bulk becomes dominant and stabilizes to a constant.

Remark 1.3. Also pointed out in [18], the sufficient conditions (1.7)–(1.9) may still seem
stronger than necessary, especially when a smooth background Euler solution exists. In-
stead, in this case the uniform equicontinuity at the boundary alone is enough to conclude
the convergence [18, Theorem 4]. A result like that could give a more precise description
of what sort of objects can cause anomalous dissipation at the boundary. It would be
interesting to know if under the weak regularity setting the vanishing of the near-wall
dissipation (1.9) can be replaced by such a type of condition, although this is not what
we pursue here in this paper.

The basic idea in [18] is separation and regularization: applying a cut-off function
to separate the boundary from the interior domain, and mollifying the interior velocity
field. This introduces two length scales: the thickness h of the boundary layer and the
mollification scale ε. With this localization, the resolved dissipation is bounded by

νε2(α−1)

∫ t

0
‖uν‖2Bα,∞3 (Ωh);

see [18, Section 2.1]. Recalling the natural constraint that ε ≤ h, imposing appropriate
interior regularity assumption on the solution, and setting h ∼ νβ, the above estimate
translates to ν1+2β(α−1). In order for this to vanish at the inviscid limit ν → 0 one has to
require that

1 + 2β(α− 1) > 0, (1.11)
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which, at Onsager’s critical regularity α = 1
3+, returns to β = 3

4+.
The obvious obstacle in the above approach to get to the O(ν) boundary layer thickness

lies in the strong constraint between the two scales ε and h. In other words, if one can find
a way to “free up” the choice for ε so as to improve the mollification, then it is reasonable
to hope to obtain a thinner boundary layer.

Motivated by a recent work of the authors [8], where a global mollification was intro-
duced, we design a new localization technique with additional treatment near the bound-
ary. In particular, we will start with a boundary layer of the type as in [18] and perform
a further foliation within that boundary layer, mollify the solution with different scales
in each leaf of the foliation, and then glue everything together by a partition of unity.
Such a new type of mollification generates additional cancellation effects in estimating
the resolved dissipation, allowing one to reach the O(ν) boundary layer. Moreover, using
the same idea, we also show that as the solution becomes more regular (corresponding to
increasing α), the regularity requirement (1.8) near the boundary can be relaxed, and the
the boundary layer in (1.9) is allowed to be thinner, cf. Theorem 5.1.

The rest of the paper is organized as follows. In Section 2 we briefly recall some needed
analytical results, and introduce the boundary layer foliation. In Section 3 we define the
mollification and use that to regularize the system. By testing the resolved system with
suitable test functions we prove the balance of the resolved energy, from which we proceed
in Section 4 to give the proof of Theorem 1.1. Finally in Section 5 we extend the result of
Theorem 1.1 to the case when solutions are more regular.

2. Preliminaries

In this section, we recall some commutator and pressure estimates, and introduce the
boundary layer foliation.

2.1. Commutator estimates. Recall the standard mollification for the function f

fε(x) :=

∫
Bε(0)

f(x− y)ηε(y)dy, ∀ x ∈ Ωε, (2.1)

with ηε being the standard mollifier of width ε. A straightforward calculation gives

∇fε(x) = −
∫
Bε(0)

ηε(y)∇y(f(x− y)− f(x))dy =
1

ε

∫
B1(0)

∇η(y)(f(x− εy)− f(x))dy,

and hence, for f ∈ Bα,∞
r with r ∈ [1,∞],

‖∇fε‖Lr(Ωε) ≤ εα−1‖f‖Bα,∞r (Ω). (2.2)

Similarly,

‖fε − f‖Lr(Ωε) ≤ Cεα‖f‖Bα,∞r (Ω). (2.3)

Lemma 2.1. Let f ∈ Bα,∞
r1 (Ω), g ∈ Bα,∞

r2 (Ω), and let 1 ≤ r, r1, r2 < ∞, 1
r1

+ 1
r2

= 1
r .

Then there exists some C > 0 such that the following holds

‖(f ⊗ g)ε − fε ⊗ gε‖Lr(Ωε) ≤ Cε2α‖f‖Bα,∞r1 (Ω)‖g‖Bα,∞r2 (Ω). (2.4)

Proof. Inequality (2.4) is nothing but the commutator estimate in [10]. Here we give an
outline of the proof.
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Let δf(x, y) := f(x− y)− f(x). By (2.1) we compute for every x ∈ Ωε,

(f ⊗ g)ε − fε ⊗ gε

=

∫
Bε(x)

δf(x, y)⊗ δg(x, y)ηε(y)dy −

(∫
Bε(x)

δf(x, y)ηε(y)dy

)
⊗

(∫
Bε(x)

δg(x, y)ηε(y)dy

)

≤

(∫
Bε(x)

|δf(x, y)|r1ηε(y)dy

) 1
r1

(∫
Bε(x)

|δg(x, y)|r2ηε(y)dy

) 1
r2

+
∣∣fε − f ∣∣ |gε − g|.

(2.5)
Integrating (2.5) over Ωε gives∫

Ωε

∣∣∣(f ⊗ g)ε − fε ⊗ gε
∣∣∣r dx

≤ C
(∫

R3

ηε(y)

∫
Ωε
|δf(x, y)|r1dxdy

) r
r1

(∫
R3

ηε(y)

∫
Ωε
|δg(x, y)|r1dxdy

) r
r2

+ C
∥∥fε − f∥∥rLr1 ‖gε − g‖rLr2 .

This together with (1.6) and (2.3) conclude the desired (2.4). �

2.2. Pressure estimates. The pressure P ν appeared in (1.1) can be deduced from the
velocity uν via the Poisson equation

−4P ν = divdiv(uν ⊗ uν).

From [21, Lemma 2], we have the following lemmas.

Lemma 2.2. Let p ∈ (1,∞). Assume that uν ∈ L2p(Ω) and P ν |∂Ω ∈ Lp(∂Ω). Then the
pressure P ν ∈ Lp(Ω). In addition, the following estimate holds,

‖P ν‖Lp(Ω) ≤ C
(
‖P ν |∂Ω‖Lp(∂Ω) + ‖uν‖2L2p(Ω)

)
. (2.6)

Lemma 2.3 (Hardy-type embedding [30]). Let p ∈ [1,∞) and f ∈W 1,p
0 (Ω). Then∥∥∥∥ f(x)

dist(x, ∂Ω)

∥∥∥∥
Lp(Ω)

≤ C‖∇f‖Lp(Ω),

where C depends on p and Ω.

2.3. Boundary layer foliation. For α ∈ (1
3 ,

5
6), we define the following sequence

β∗0 = 0 and β∗n =
1

2(1− α)

(
1 +

1

3
β∗n−1

)
, n = 1, 2, 3, · · ·. (2.7)

Clearly, {β∗n} is bounded and strictly increasing, and

β∗∞ := lim
n→∞

β∗n =
3

5− 6α
> 1 if

1

3
< α <

5

6
.

Hence there exists some finite number

N :=


N(α), α ∈

(
1

3
,
1

2

]
,

1, α ∈
(

1

2
,
5

6

)
,

(2.8)
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such that
0 = β∗0 < β∗1 < β∗2 < · · · < β∗N−1 ≤ 1 < β∗N . (2.9)

In light of (2.7)–(2.9), we define, for any α ∈ (1
3 , 1), an increasing sequence {βn}Nn=1 such

that

0 = β0 < β1 < β2 < · · · < βN−1 < βN := 1 and (2.10)

βn <
1

2(1− α)

(
1 +

1

3
βn−1

)
, (2.11)

where N is given in (2.8).
The purpose of introducing the sequence {βn} is to design the following decomposition

of the boundary layer. Note that, when n = 1, (2.11) reads β1 <
1

2(1−α) , which agrees

with (1.11). Next we decompose the inner region of Ω as

V1 := Ω2νβ1 , Vn := Ω2νβn − Ω2νβn−1+2νβn when 2 ≤ n ≤ N ; (2.12)

see Figure 1.

2νβn−1

2νβn

Vn

n ≥ 2

2νβ1
V1

Figure 1. Decomposition of Ω

It is easy to check that, for ν small enough,

meas (Vn) ≤ Cνβn−1 , meas (Vk ∩ Vm) ≤

{
Cνβmax{k,m} if |k −m| = 1,

0 if |k −m| > 1;
(2.13)

see Figure 2.
With the above decomposition, we have the following proposition.

Proposition 2.1. Let {ξn}Nn=1 be a C1 partition of unity subordinate to {Vn}Nn=1 such
that

spt ξn ⊂ Vn, 0 ≤ ξn ≤ 1,

N∑
n=1

ξn = 1. (2.14)
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2νβn

2νβn

2νβn−1

2νβn+1
2νβn+1

2νβn+2

∂Ω ∂Ω ∂Ω

Vn

Vn+1

Vn+2

νβn+2 + νβn+1 < νβn ⇒ Vn ∩ Vn+2 = ∅,

|Vn ∩ Vn+1| ∼ νβn+1n ≥ 2

Figure 2. Foliation of ∂Ω

Then, it follows that, for 0 ≤ n ≤ N ,

∇ (ξn + ξn+1)2 = 0 if x ∈ Vn ∩ Vn+1, and ∇ξn = 0 if x ∈ Vn\ ∪i 6=n Vi, (2.15)

where we define

VN+1 :=

(
N⋃
n=1

Vn

)c
and V0 := ∅. (2.16)

Proof. From (2.14) and (2.13) we know that

(ξn + ξn+1)
∣∣
Vn∩Vn+1

≡ 1, ξn
∣∣
Vn\∪i 6=nVi

≡ 1.

Therefore (2.15) follows trivially by differentiating the above. �

3. Regularization and Resolved Energy Balance

In this section, we define the mollification and regularize the system, and then derive
the balance of the resolved energy.

For n = 1, . . . , N , define

fn(x, t) :=


∫
ηνβn (x− y)f(y, t)dy, x ∈ Vn ∩ V c

n+1,∫
ηνβn+1 (x− y)f(y, t)dy, x ∈ Vn ∩ Vn+1.

(3.1)

From (2.13) we know that

fn = fn+1 on Vn ∩ Vn+1. (3.2)

From (2.2)-(2.3), it holds that, for p ∈ [1,∞),

‖∇fn‖Lp(Vn) ≤

{
Cνβn(α−1)‖f‖Bα,∞p (Ων), x ∈ Vn ∩ V c

n+1,

Cνβn+1(α−1)‖f‖Bα,∞p (Ων), x ∈ Vn ∩ Vn+1,
(3.3)
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and

‖fn − f‖Lp(Vn) ≤

{
Cναβn‖f‖Bα,∞p (Ων), x ∈ Vn ∩ V c

n+1,

Cναβn+1‖f‖Bα,∞p (Ων), x ∈ Vn ∩ Vn+1.
(3.4)

With (3.1), we deduce from (1.1) that

∂tuνn + div(uν ⊗ uν)n +∇P νn = ν4uνn, ∀ x ∈ Vn (n = 1, . . . , N).

Multiplying it by ξn and summing up imply that

∂t

(
N∑
n=1

ξnuνn

)
+

N∑
n=1

ξndiv(uν ⊗ uν)n +
N∑
n=1

ξn∇P νn = ν
N∑
n=1

ξn4uνn, ∀ x ∈ Ω2ν . (3.5)

To deal with the boundary contribution, we introduce a smooth cut-off function θ(x) in
Ω such that,

0 ≤ θ(x) ≤ 1, θ(x) = 1 if x ∈ Ω4ν , θ(x) = 0 if x /∈ Ω2ν , and |∇θ| ≤ 4ν−1. (3.6)

Next we wish to test (3.5) by θ(x)
(∑N

n=1 ξnu
ν
n

)
to derive the resolved energy balance.

However, this test function fails to be solenoidal, and hence cannot be used as a legitimate
test field for Leray-Hopf solutions. Therefore, to make our argument work we must appeal
to the following theorem:

Theorem 3.1 (Theorem 1, [35]). Assume that Ω is an open, bounded domain with C2

boundary ∂Ω, and u is a Leray–Hopf solution of (1.1). Then there exists a pressure field
P ∈ Lr(0, T ;W 1,s(Ω)) with

3

s
+

2

r
= 4,

4

3
< s <

3

2
, (3.7)

such that for all ϕ ∈ C∞0 ((0, T )× Ω),∫ T

0

∫
Ω

(u · ∂tϕ+ u⊗ u : ∇ϕ+ Pdivϕ+ νu ·∆ϕ) dxdt = 0.

This way we can multiply (3.5) by θ(x)
(∑N

n=1 ξnu
ν
n

)
and integrate over Ω × [0, T ],

leading to

1

2

∫
Ω
θ

(
N∑
n=1

ξnuνn

)2

(x, T ) dx− 1

2

∫
Ω
θ

(
N∑
n=1

ξnuνn

)2

(x, 0) dx

=

∫ T

0

∫
Ω
θ

(
N∑
n=1

ξnuνn

)(
N∑
n=1

ξnν4uνn −
N∑
n=1

ξndiv(uν ⊗ uν)n −
N∑
n=1

ξn∇P νn

)
dxdt.

(3.8)

The main result of this section is the following.

Proposition 3.1 (Resolved energy balance). Under the same hypotheses as in Theorem
1.1, it holds that

lim
ν→0

∫ T

0

∫
Ω
θ

(
N∑
n=1

ξnuνn

)(
N∑
n=1

ξnν4uνn −
N∑
n=1

ξndiv(uν ⊗ uν)n −
N∑
n=1

ξn∇P νn

)
dxdt = 0.

(3.9)
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Proposition 3.1 is a direct consequence of Lemmas 3.1 – 3.3 below.

Lemma 3.1 (Resolved dissipation). Under the same hypotheses as in Theorem 1.1, we
have

lim
ν→0

∫ T

0

∫
Ω
θ

(
N∑
n=1

ξnuνn

)(
N∑
n=1

ξnν4uνn

)
dxdt = 0. (3.10)

Proof. Owing to (2.13) and (2.14), we find

ξkξm = 0 if |k −m| ≥ 2. (3.11)

Integration by parts then gives

ν

∫ T

0

∫
Ω
θ

(
N∑
n=1

ξnuνn

)(
N∑
n=1

ξn4uνn

)
dxdt = ν

N∑
k,m=1

∫ T

0

∫
Ω
θξkξmu

ν
k4uνm dxdt

= −ν
∑

|k−m|≤1

∫ T

0

∫
Ω
θξkξm∇uνk∇uνm dxdt− ν

∑
|k−m|≤1

∫ T

0

∫
Ω
∇θξkξmuνk∇uνm dxdt

− ν
∑

|k−m|≤1

∫ T

0

∫
Ω
θ∇(ξkξm)uνk∇uνm dxdt.

(3.12)

The terms on the right side of (3.12) are treated as follows. First, it follows from (1.7),
(2.13), (2.14), (3.3) that, if |k −m| = 0,∣∣∣∣ν ∫ T

0

∫
Ω
θξ2
k∇uνk∇uνk dxdt

∣∣∣∣ =

∣∣∣∣∣ν
∫ T

0

(∫
Vk∩Vk+1

+

∫
Vk∩V ck+1

)
θξ2
k∇uνk∇uνk dxdt

∣∣∣∣∣
≤ Cν

∫ T

0

(
‖ξ2
k‖L3(Vk∩Vk+1)‖∇uνk‖

2
L3(Vk∩Vk+1) + ‖ξ2

k‖L3(Vk∩V ck+1)‖∇uνk‖
2
L3(Vk∩V ck+1)

)
dt

≤ Cν
(
ν

1
3
βk+1

∫ T

0
‖∇uνk‖

2
L3(Vk∩Vk+1) dt+ ν

1
3
βk−1

∫ T

0
‖∇uνk‖

2
L3(Vk∩V ck+1) dt

)
≤ Cν

(
ν

1
3
βk+1+2βk+1(α−1) + ν

1
3
βk−1+2βk(α−1)

)∫ T

0
‖uν‖2Bα,∞3 (Ων) dt (3.13)

≤ Cν1+ 1
3
βk−1+2βk(α−1).

If |k −m| = 1,∣∣∣∣−ν ∫ T

0

∫
Ω
θξkξm∇uνk∇uνm dxdt

∣∣∣∣
≤ Cν

∫ T

0
‖∇uνk‖L3(Vk∩Vm)‖∇uνm‖L3(Vk∩Vm)‖ξkξm‖L3(Vk∩Vm) dt

≤ Cν1+βmax{k,m}( 1
3

+2(α−1))
∫ T

0
‖uν‖2Bα,∞3 (Ων) dt

≤ Cν1+βmax{k,m}(2α− 5
3).

(3.14)
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Thanks to (1.7) and (2.10), we know that

1 +
1

3
βk−1 + 2βk(α− 1) > 0, and 1 + βmax{k,m}

(
2α− 5

3

)
> 1− βmax{k,m} ≥ 0.

Hence, from (3.13)-(3.14) we conclude

lim
ν→0

∣∣∣∣∣∣
∑

|k−m|≤1

ν

∫ T

0

∫
Ω
θξkξm∇uνk∇uνm dxdt

∣∣∣∣∣∣
≤ lim

ν→0

 ∑
|k−m|=0

+
∑

|k−m|=1

∣∣∣∣ν ∫ T

0

∫
Ω
θξkξm∇uνk∇uνm dxdt

∣∣∣∣
≤ C lim

ν→0

∑
|k−m|≤1

(
ν1+ 1

3
βk−1+2βk(α−1) + ν1+βmax{k,m}(2α− 5

3)
)

= 0.

(3.15)

Second, observe from (3.6) that θ = 0 if x /∈ Ω2ν ∩ Γ4ν . Then, utilizing (3.4), (1.7),
(3.6), and the Hardy-type inequality, it follows that, for small ν,∑
|k−m|≤1

ν

∫ T

0

∫
Ω
∇θξkξmuνk∇uνm dxdt = ν

∫ T

0

∫
Ω2ν∩Γ4ν

∇θξ2
Nu

ν
N∇uνN dxdt

≤
(
ν

∫ T

0

∫
Ω2ν∩Γ4ν

|∇uνN |
2 dxdt

) 1
2
(
ν

∫ T

0
‖∇θ‖2L6(Ω2ν∩Γ4ν)‖uνN − u

ν‖2L3(VN ) + ‖uν∇θ‖2L2(Γ4ν)

) 1
2

≤
(
ν

∫ T

0

∫
Ω
|∇uνN |

2 dxdt

) 1
2
(
ν

∫ T

0
ν2α− 5

3 ‖uν‖2Bα,∞3 (Ων) + ‖∇uν‖2L2(Γ4ν)

) 1
2

≤ C
(
ν1+(2α− 5

3
) + ν

∫ T

0

∫
Γ4ν

|∇uνN |
2 dt

) 1
2

. (3.16)

Thanks to (1.7) and (1.9), we take ν → 0 in (3.16) to get

lim
ν→0

∣∣∣∣∣∣
∑

|k−m|≤1

ν

∫ T

0

∫
Ω
∇θξkξmuνk∇uνm dxdt

∣∣∣∣∣∣ = 0. (3.17)

Finally, thanks to Proposition 2.1 and (3.2), we infer that∑
|k−m|≤1

ν

∫ T

0

∫
Ω
θ∇(ξkξm)uνk∇uνm dxdt

=
N∑
k=1

ν

∫ T

0

(∫
Vk∩Vk−1

+

∫
Vk∩Vk+1

)
θ∇(ξ2

k)uνk∇uνk dxdt

+

N−1∑
k=1

ν

∫ T

0

∫
Vk∩Vk+1

θ∇(ξkξk+1)
(
uνk+1∇uνk + uνk∇uνk+1

)
dxdt (3.18)

=
N∑
k=1

ν

∫ T

0

(∫
Vk∩Vk−1

θ∇(ξ2
k)uνk∇uνk dx+

∫
Vk∩Vk+1

θ∇(ξ2
k)uνk+1∇uνk+1 dx

)
dt
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+
N−1∑
k=1

ν

∫ T

0

∫
Vk∩Vk+1

θ∇(2ξkξk+1)uνk+1∇uνk+1 dxdt

=

N−1∑
k=1

ν

∫ T

0

∫
Vk∩Vk+1

θ∇
(
ξ2
k + ξ2

k+1 + 2ξkξk+1

)
uνk+1∇uνk+1 dxdt = 0,

where the second equality is due to (3.2), and the third equality comes from relabeling
and (2.15).

As a result of (3.12), (3.15), (3.17) and (3.18), we conclude (3.10). �

Lemma 3.2 (Bulk energy flux). Under the same hypotheses as in Theorem 1.1, we have

lim
ν→0

∫ T

0

∫
Ω
θ

(
N∑
n=1

ξnuνn

)(
N∑
n=1

ξndiv(uν ⊗ uν)n

)
dxdt = 0. (3.19)

Proof. By (3.11), integration by parts leads to∫ T

0

∫
Ω
θ

(
N∑
n=1

ξnuνn

)(
N∑
n=1

ξndiv(uν ⊗ uν)n

)
dxdt

=
∑

|k−m|≤1

∫ T

0

∫
Ω
θξkξmu

ν
kdiv(uν ⊗ uν)m dxdt

=
∑

|k−m|≤1

∫ T

0

∫
Ω

(
uνm ⊗ uνm − (uν ⊗ uν)m

)
: ∇(θξkξmu

ν
k) dxdt

−
∑

|k−m|≤1

∫ T

0

∫
Ω
uνm ⊗ uνm : ∇(θξkξmu

ν
k) dxdt.

(3.20)

We claim

lim
ν→0

∑
|k−m|≤1

∫ T

0

∫
Ω

(
uνm ⊗ uνm − (uν ⊗ uν)m

)
: ∇(θξkξmu

ν
k) dxdt = 0. (3.21)

In fact, we notice from (1.7), (1.8), (3.6), (1.4), (3.4), and the Hardy-type inequality that∣∣∣∣∣∣
∑

|k−m|≤1

∫ T

0

∫
Ω

(
uνm ⊗ uνm − (uν ⊗ uν)m

)
: (∇θ)ξkξmuνk dxdt

∣∣∣∣∣∣
≤ C

(∫ T

0

∫
Γ2ν∩Ων

∣∣uνN ∣∣4 dxdt)
1
2
(∫ T

0

∫
Γ4ν∩Ω2ν

|∇θ(uνN − u
ν + uν)|2 dxdt

) 1
2

≤ C
(
ν

∫ T

0
‖uν‖4L∞(Γ4ν) dt

) 1
2
(∫ T

0
ν−

5
3 ‖uνN − u

ν‖2L3 dt+

∫ T

0

∫
Γ4ν

|∇θuν |2 dxdt
) 1

2

≤ Cν
1
2

(∫ T

0
ν(2α− 5

3
)‖uν‖2Bα,∞3 (Ων) dt+

∫ T

0

∫
Γ4ν

|∇uν |2 dxdt
) 1

2

(3.22)
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≤ C
(
ν1+(2α− 5

3
) + ν

∫ T

0

∫
Γ4ν

|∇uν |2 dxdt
) 1

2

.

This, together with (1.7) and (1.9), implies that

lim
ν→0

∑
|k−m|≤1

∫ T

0

∫
Ω

(
uνm ⊗ uνm − (uν ⊗ uν)m

)
: (∇θ)ξkξmuνk dxdt = 0. (3.23)

Next, from (2.14), (1.7), (3.3), and Lemma 2.1 we have∑
k

∫ T

0

∫
Ω

(
uνk ⊗ uνk − (uν ⊗ uν)k

)
: θξ2

k∇uνk dxdt

≤ C
∑
k

∫ T

0
‖uνk ⊗ uνk − (uν ⊗ uν)k‖

L
3
2 (Vk∩Vk+1)

‖∇uνk‖L3(Vk∩Vk+1) dt

+ C
∑
k

∫ T

0
‖uνk ⊗ uνk − (uν ⊗ uν)k‖

L
3
2 (Vk∩V ck+1)

‖∇uνk‖L3(Vk∩V ck+1) dt

≤ C
∑
k

∫ T

0

(
ν2βk+1α+βk+1(α−1) + ν2βkα+βk(α−1)

)
‖uν‖3Bα,∞3 (Ων) dt

≤ C
∑
k

νβk(3α−1).

Similarly,∣∣∣∣∣∣
∑

|k−m|=1

∫ T

0

∫
Ω

(
uνm ⊗ uνm − (uν ⊗ uν)m

)
: θξkξm∇uνk dxdt

∣∣∣∣∣∣ ≤ C
∑

|k−m|=1

νβmax{m,k}(3α−1).

The above two inequalities and (1.7) guarantee that

lim
ν→0

∣∣∣∣∣∣
∑

|k−m|≤1

∫ T

0

∫
Ω

(
uνm ⊗ uνm − (uν ⊗ uν)m

)
: θξkξm∇uνk dxdt

∣∣∣∣∣∣ = 0. (3.24)

By Proposition 2.1, the same deduction as (3.18) yields that∑
|k−m|≤1

∫ T

0

∫
Ω

(
uνm ⊗ uνm − (uν ⊗ uν)m

)
: θ∇(ξkξm)uνk dxdt

=
N−1∑
k=1

∫ T

0

∫
Vk∩Vk+1

(
uνk+1 ⊗ uνk+1 − (uν ⊗ uν)k+1

)
: θ∇

(
ξ2
k + ξ2

k+1 + 2ξkξk+1

)
dxdt

= 0. (3.25)

As a result of (3.23)–(3.25), we conclude (3.21).
It remains to control the last integral appeared in (3.20). By the fact divuνn = 0, we

deduce that, if |k −m| = 0,∑
|k−m|=0

∫ T

0

∫
Ω
uνm ⊗ uνm : ∇(θξkξmu

ν
k) dxdt =

1

2

N∑
k=1

∫ T

0

∫
Ω
|uνk|

2uνk · ∇(θξ2
k) dxdt
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=
1

2

N∑
k=1

∫ T

0

∫
Vk

|uνk|
2ξ2
ku

ν
k · ∇θ dxdt+

1

2

N∑
k=1

∫ T

0

∫
Vk

θ|uνk|
2uνk · ∇(ξ2

k) dxdt

=
1

2

N∑
k=1

∫ T

0

∫
Vk

|uνk|
2ξ2
ku

ν
k · ∇θ dxdt+

1

2

N∑
k=1

∫ T

0

∫
Vk−1∩Vk

θ|uνk|
2uνk · ∇(ξ2

k) dxdt

+
1

2

N∑
k=1

∫ T

0

∫
Vk∩Vk+1

θ|uνk+1|
2uνk+1 · ∇(ξ2

k) dxdt (3.26)

=
1

2

N∑
k=1

∫ T

0

∫
Vk

|uνk|
2ξ2
ku

ν
k · ∇θ dxdt+

1

2

N−1∑
k=1

∫ T

0

∫
Vk∩Vk+1

θ|uνk|
2uνk · ∇(ξ2

k + ξ2
k+1) dxdt

+
1

2

∫ T

0

(∫
V0∩V1

θ|uν1 |
2uν1 · ∇(ξ2

1) dx+

∫
VN∩VN+1

θ|uνN |
2uνN · ∇(ξ2

N ) dx

)
dt

=
1

2

N∑
k=1

∫ T

0

∫
Vk

|uνk|
2ξ2
ku

ν
k · ∇θ dxdt−

N−1∑
k=1

∫ T

0

∫
Vk∩Vk+1

θ|uνk|
2uνk · ∇(ξkξk+1) dxdt,

where the third equality is due to (3.2) and (2.15); and if |k −m| = 1,

∑
|k−m|=1

∫ T

0

∫
Ω
uνm ⊗ uνm : ∇(θξkξmu

ν
k) dxdt

=

N−1∑
k=1

∫ T

0

∫
Vk∩Vk+1

uνk+1 ⊗ uνk+1 : ∇(2θξkξk+1u
ν
k+1) dxdt

=
N−1∑
k=1

∫ T

0

∫
Vk∩Vk+1

|uνk+1|
2uνk+1 · ∇(θξkξk+1) dxdt (3.27)

=
N−1∑
k=1

∫ T

0

∫
Vk∩Vk+1

(
|uνk+1|

2uνk+1 · ∇θ(ξkξk+1) + θ|uνk+1|
2uνk+1 · ∇(ξkξk+1)

)
dxdt

=

N−1∑
k=1

∫ T

0

∫
Vk∩Vk+1

(
|uνk|

2uνk · ∇θ(ξkξk+1) + θ|uνk|
2uνk · ∇(ξkξk+1)

)
dxdt.

Combining the above calculations together and applying Lemma 2.3 we have

∑
|k−m|≤1

∫ T

0

∫
Ω
uνm ⊗ uνm : ∇(θξkξmu

ν
k) dxdt

=
1

2

N∑
k=1

∫ T

0

∫
Vk

|uνk|
2ξ2
ku

ν
k · ∇θ dxdt+

N−1∑
k=1

∫ T

0

∫
Vk∩Vk+1

|uνk|
2uνk · ∇θ(ξkξk+1) dxdt

≤ C

∫ T

0

∫
Γ2ν∩Ων

|uνk|
2|uνk · ∇θ| dxdt (3.28)
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≤ C

(
ν

∫ T

0
‖uν‖L∞(Γ4ν) dt

)1/2(∫ T

0

∫
Γ4ν

|∇uν |2 dxdt
)1/2

.

From (1.8) and (1.9) we conclude that

lim
ν→0

∑
|k−m|≤1

∫ T

0

∫
Ω
uνm ⊗ uνm : ∇(θξkξmu

ν
k) dxdt = 0. (3.29)

Taking (3.20)–(3.21), and (3.29) into account, we complete the proof of Lemma 3.2. �

Lemma 3.3. Under the same hypotheses as in Theorem 1.1, we have

lim
ν→0

∫ T

0

∫
Ω
θ

(
N∑
n=1

ξnuνn

)(
N∑
n=1

ξn∇P νn

)
dxdt = 0. (3.30)

Proof. The proof is a slight modification of that in Lemma 3.2, and hence we omit it
here. �

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1.

4.1. Vanishing of global dissipation. We aim to prove the validity of (1.10). The
combination of (1.4) with (3.8) generates

0 ≤ 2ν

∫ T

0

∫
Ω
|∇uν |2

≤

∫
Ω
|uν0 |2 −

∫
Ω
θ

(
N∑
n=1

ξn(uν0)n

)2
+

∫
Ω
θ

∣∣∣∣∣
N∑
n=1

ξnuνn

∣∣∣∣∣
2

−
∫

Ω
|uν |2


+ 2

∫ T

0

∫
Ω
θ

(
N∑
n=1

ξnuνn

)(
N∑
n=1

ξnν4uνn −
N∑
n=1

ξndiv(uν ⊗ uν)n −
N∑
n=1

ξn∇P νn

)
=: I + II + III.

(4.1)

First, from Proposition 3.1 it follows that

lim
ν→0

III = 0. (4.2)

Next, basic properties of mollifier ηνβ ensure that∫
Ω
θξ2

1 |uν1 |
2dx ≤

∫
V1

|uν1 |
2 ≤

∫
Ω
|uν |2.

Then,

II =
∑

2<k+m

∫
Ω
θξkξmu

ν
k u

ν
m +

∫
Ω
θξ2

1u
ν
1

2 −
∫

Ω
|uν |2

≤
∑

2<k+m

∫
Ω
θξkξmu

ν
k u

ν
m

≤ C
(∫

Vk∩Vm
|uνk|

2

) 1
2
(∫

Vk∩Vm
|uνm|2

) 1
2

≤ C
∫

Γ
2νβ1

|uν |2dx,

(4.3)
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and hence the uniform bound of uν in L∞(0, T ;L2) implies that

lim
ν→0

II ≤ C lim
ν→0

∫
Γ
2νβ1

|uν |2dx = 0. (4.4)

Finally, since∣∣∣∣∫
Ω
|u0|2 −

∫
Ω
θξ2

1 |(uν0)1|2
∣∣∣∣ =

∣∣∣∣∫
Ω
|u0|2 −

∫
Ων

β1
ξ2

1 |(uν0)1|2
∣∣∣∣

≤
∫

Ω\Ωνβ1
|u0|2 +

∫
Ων

β1
(1− ξ2

1)|(uν0)1|2 +

∣∣∣∣∫
Ων

β1

(
|u0|2 − |(uν0)1|2

)∣∣∣∣
≤ 2‖u0‖L2(Γ

2νβ1
) + C‖u0‖L2(Ω)‖u0 − (uν0)1‖L2(Ων

β1 )

≤ 2‖u0‖L2(Γ
2νβ1

) + C
(
‖u0 − (u0)1‖L2(Ων

β1 )
+ ‖u0 − uν0‖L2(Ων

β1 )

)
→ 0 as ν → 0,

then the strong convergence of uν0 to u0 in L2 guarantees that

lim
ν→0

∣∣∣∣∫
Ω
|uν0 |2 −

∫
Ω
θξ2

1 |(uν0)1|2
∣∣∣∣ = 0.

This allows us to deduce that

lim
ν→0
|I| = lim

ν→0

∣∣∣∣∣∣
∫

Ω
|uν0 |2 −

N∑
k,m=1

∫
Ω
θξkξm(uν0)k (uν0)m

∣∣∣∣∣∣
≤ lim

ν→0

∣∣∣∣∫
Ω
|uν0 |2 −

∫
Ω
θξ2

1 |(uν0)1|2
∣∣∣∣+

∑
2<k+m

lim
ν→0

∣∣∣∣∫
Ω
θξkξm(uν0)k (uν0)m

∣∣∣∣ = 0,

(4.5)

where in the last equality we have used∑
2<k+m

lim
ν→0

∣∣∣∣∫
Ω
θξkξm(uν0)k (uν0)m

∣∣∣∣ = 0,

which comes from (4.3)–(4.4). As a result of (4.1)–(4.2) and (4.4)–(4.5), we obtain the
desired (1.10).

4.2. Convergence to Euler solutions. Under the assumptions in Theorem 1.1 and
Lemma 2.2, there exist some functions (u, P ) such that, upon to some subsequence,

uν ⇀ u in L3(0, T ;Bσ,∞
3 (Ων)) ∩ L∞(0, T ;L2(Ω)), P ν ⇀ P in L

3
2 (0, T ;L

3
2 (Ω)). (4.6)

Thanks to (4.6) and (1.4), we have

∂tu
ν = ν4uν −∇P ν − div(uν ⊗ uν) ∈ L

3
2 (0, T ;W−1, 3

2 (Ω)),

and moreover,

uν → u in L3(0, T ;L3(Ων)) ∩ C
(
[0, T ], L2

weak(Ω)
)
, (4.7)

owing to the compactness results. In addition, it follows from (1.4) that, as ν → 0,∣∣∣∣∫ T

0

∫
Ω
ν∇uν · ∇ϕ

∣∣∣∣ ≤ Cν 1
2

(
ν

∫ T

0
‖∇uν‖2L2(Ω)

) 1
2

→ 0. (4.8)
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Having (4.6)–(4.8) in hand, we easily check that u solves Euler equations (1.2) in Ω×(0, T ).

5. Boundary Layers for Smoother Solutions

The boundary layer Γ4ν in (1.9) of Theorem 1.1 in fact holds for all α > 1
3 . The

emphasis of the previous analysis lies in determining the boundary layer for solutions near
the critical Onsager’s regularity. On the other hand, when the solutions are more regular,
the hypotheses in Theorem 1.1 can be relaxed, and the boundary layer can be even thinner,
as is shown in the following theorem.

Theorem 5.1. Let Ω ⊂ R3 be a bounded domain with C2 boundary. Let {uν}ν>0 be
a sequence of Leray–Hopf weak solutions to (1.1) with initial data uν0 and suppose that
uν0 → u0 in L2(Ω) as ν → 0. Assume in addition that (1.7) holds, andu

ν is uniformly in ν bounded in L4 (0, T ;Lp (Γ4ν)) ,

P ν is uniformly in ν bounded in L2
(

0, T ;L
p
2 (Γ4ν)

)
,

(5.1)

with p > 6
3α−1 . Let a > 1 be such that

a <
3

5− 6α
, when

1

3
< α <

5

6
; a <∞, when

5

6
≤ α < 1. (5.2)

If

lim
ν→0

ν

∫ T

0

∫
Γ4νa

|∇uν |2dxdt = 0, (5.3)

then, the global viscous dissipation vanishes, i.e., (1.10) holds true. Moreover, uν converges
locally in L3(0, T ;L3(Ω)), up to a subsequence, to a weak solution of Euler equations (1.2).

Remark 5.1. As α → 1
3

+
, Theorem 5.1 recovers Theorem 1.1. But as α increases, we

can relax the regularity requirement on the boundary, cf. (5.1), and the thickness of the
boundary layer becomes νa with a > 1. In particular, as α → 1−, the thickness becomes
arbitrarily small.

Proof. The idea of the proof is very similar to the one explained before, and hence we will
only focus on the ingredients different from those in the proof of Theorem 1.1.

First of all, we modify the construction of the increasing and finite sequence {βn}Nn=1

in Section 2.3 as

0 = β0 < β1 < · · · < βN−1 ≤ 1 < βN <


3

5− 6σ
, if α ∈

(
1

3
,
5

6

)
,

∞, if α ∈
[

5

6
, 1

)
,

(5.4)

and

βn <
1

2(1− α)

(
1 +

1

3
βn−1

)
.

In fact, here we consider the case of βN = a > 1 which satisfies (5.4), in stead of βN = 1
defined in (2.10).
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The “pealed-off” set VN+1 in (2.16) now becomes

Γνa := VN+1 =

(
N⋃
n=1

Vn

)c
. (5.5)

In addition, the near boundary layer cut-off function θ in (3.6) is modified as

0 ≤ θ(x) ≤ 1, θ(x) = 1 if x ∈ Ω2νa , θ(x) = 0 if x /∈ Ωνa , |∇θ| ≤ 2ν−a. (5.6)

With the above preparations, to complete the proof of Theorem 5.1, we only need to
check the following:

(a) Inequality (3.16) in Lemma 3.1.

In Theorem 5.1, it can be treated as∑
|k−m|≤1

ν

∫ T

0

∫
Ω
∇θξkξmuνk∇uνm

= ν

∫ T

0

∫
Ω2νa∩Γ4νa

∇θξ2
Nu

ν
N∇uνN

≤
(
ν

∫ T

0

∫
Ω
|∇uνN |

2

) 1
2
(
ν

∫ T

0
νa(2α− 5

3
)‖uν‖2Bα,∞3 (Ωνa ) + ‖∇uν‖2L2(Γ2νa )

) 1
2

≤ C
(
ν1+a(2α− 5

3
) + ν

∫ T

0

∫
Γ4νa

|∇uνN |
2

) 1
2

→ 0,

(5.7)

provided

1 + a

(
2α− 5

3

)
> 0,

which is valid owing to (5.4).

(b) Inequality (3.22) in Lemma 3.2.

In Theorem 5.1, we estimate (3.22) as the following:∣∣∣∣∣∣
∑

|k−m|≤1

∫ T

0

∫
Ω

(
uνm ⊗ uνm − (uν ⊗ uν)m

)
: ∇θξkξmuνk

∣∣∣∣∣∣
≤ C

(∫ T

0

∫
Γ4νa∩Ω2νa

∣∣uνN ∣∣4)
1
2
(∫ T

0
ν−

5
3
a‖uνN − u

ν‖2L3 +

∫ T

0

∫
Γ4νa

|∇θuν |2
) 1

2

≤ C
(
ν
a(1− 4

p
)
∫ T

0
‖uν‖4Lp(Γ8νa )

) 1
2
(∫ T

0
νa(2α− 5

3
)‖uν‖2Bσ,∞3 (Ωνa ) +

∫ T

0

∫
Γ4νa

|∇uν |2
) 1

2

≤ C(T )ν
1
2
a(1− 4

p
+2α− 5

3
)

+ Cν
1
2

(a(1− 4
p

)−1)
(
ν

∫ T

0

∫
Γ4νa

|∇uν |2
) 1

2

→ 0,

(5.8)
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provided

a

(
1− 4

p
+ 2α− 5

3

)
> 0 and a

(
1− 4

p

)
− 1 ≥ 0,

which holds true due to (5.2) and (5.4).

(c) Inequality (3.28) in Lemma 3.2.

This can be achieved from a similar argument to that in deriving (5.8). �
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