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Abstract. The nonlinear stability and local existence of compressible vortex sheets for the two-
dimensional isentropic elastic fluid are established in the usual Sobolev spaces. The problem has a
characteristic free boundary, and the Kreiss–Lopatinskĭı condition is satisfied only in a weak form.
This paper completes the previous works [6, 7] of the first three authors where the weakly linear
stability of the rectilinear vortex sheets is proved by means of an upper triangularization technique.
Our proof is based on certain higher-order energy estimates and an appropriate modification of the
Nash–Moser iteration. In particular, the estimate for the normal derivatives of the characteristic
variables can be recovered from that for the linearized divergences and vorticities.

1. Introduction

This paper continues and completes the previous works [6, 7] by the first three authors on
the study of stability for vortex sheets in the two-dimensional compressible elastodynamics. In
particular, we prove the nonlinear stability, and hence the local existence for the configuration of
vortex sheets.

The physical relevance of the model, the motivation to include elasticity and to study their
stabilizing property can be found in [6, 7] and the references therein. In this introduction we will
recall the problem of compressible vortex sheets for elastodynamics, state the main result after
transforming the free boundary problem into a fixed domain, and briefly discuss our approach.

1.1. Formation of Compressible Vortex Sheets. The two-dimensional isentropic motion of
elastodynamics can be described by the following equations (see Dafermos [14, Chapter 2]):

∂tρ+ ∂`(ρv`) = 0, (1.1a)

∂t(ρvi) + ∂`(ρv`vi) = ∂`Ti`, (1.1b)

(∂t + v`∂`)Fij = ∂`viF`j , (1.1c)

for i, j = 1, 2, where ∂t := ∂
∂t and ∂` := ∂

∂x`
, for ` = 1, 2, denote the partial differentials, ρ is the

density, v = (v1, v2)> ∈ R2 is the velocity, F = (Fij) ∈ M2×2 is the deformation gradient, and
T = (Tij) ∈M2×2 is the Cauchy stress tensor. We note that the Einstein summation convention is
used in (1.1) and will also be adopted in the rest of this paper, and we denote by Mm×n the vector
space of real m× n matrices.

We consider the compressible neo-Hookean materials (see Ciarlet [9, p. 189]), for which the
Cauchy stress tensor T reads

T = λρFF> − p(ρ)I2, (1.2)
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where λ > 0 is the Hookean constant and Im denotes the identity matrix of order m. Pressure p(ρ)
is a C∞ and strictly increasing function on (0,+∞) so that the sound speed c = c(ρ) satisfies

c(ρ) :=
√
p′(ρ) > 0 for ρ > 0. (1.3)

When λ = 0, the material becomes a thermoelastic fluid (see [14, p. 39]) and equations (1.1a)–
(1.1b) are reduced to the compressible isentropic Euler equations in gas dynamics. Since we are
concerned with the effect of elasticity to the evolution of materials, we set without loss of generality
that λ = 1.

System (1.1) is supplemented by divergence constraints

div(ρFj) := ∂`(ρF`j) = 0 for j = 1, 2, (1.4)

where Fj stands for the j-th column of F . With (1.4), (1.1c) can be reformulated in the following
divergence form:

∂t(ρFij) + ∂`(ρFijv` − viρF`j) = 0 for i, j = 1, 2,

which is convenient when calculating the jump conditions for weak solutions (as in [6, 7]). It is
worth pointing out that constraints (1.4) are involutions to system (1.1), meaning that if constraints
(1.4) hold initially, then they are preserved by the evolution; see Dafermos [13] and Hu–Wang [17].
By using (1.3)–(1.4), in smooth regions, system (1.1) can be rewritten equivalently as

∂tU +A1(U)∂1U +A2(U)∂2U = 0, (1.5)

where U := (ρ, v1, v2, F11, F21, F12, F22)> ∈ R7 is the unknown vector, and

Ai(U) :=


vi ρe>i 0 0

c(ρ)2

ρ ei viI2 −Fi1I2 −Fi2I2

0 −Fi1I2 viI2 0

0 −Fi2I2 0 viI2

 for i = 1, 2, (1.6)

with e1 := (1, 0)> and e2 := (0, 1)>. System (1.5) is symmetrizable hyperbolic for ρ > 0 due to
(1.3).

Let U be smooth on each side of a smooth hypersurface Γ (t) := {x ∈ R2 : x2 = ϕ(t, x1)}, that
is,

U(t, x) =

{
U+(t, x), in Ω+(t) := {x ∈ R2 : x2 > ϕ(t, x1)},
U−(t, x), in Ω−(t) := {x ∈ R2 : x2 < ϕ(t, x1)},

where U+(t, x) and U−(t, x) are smooth functions in Ω+(t) and Ω−(t), respectively. We are inter-
ested in vortex sheets for which the tangential velocity suffers a jump across Γ (t). Similar to the
previous paper [6], the Rankine–Hugoniot conditions of the vortex sheet solutions are reduced to

[vν ] = 0, ∂tϕ = v+
ν , [ρ] = 0 on Γ (t), (1.7)

together with

F±1ν = F±2ν = 0 on Γ (t), (1.8)

where [f ] denotes the jump of quantity f across Γ (t), and

ν = (−∂1ϕ, 1)>, v±ν = v± · ν, F±jν = F±j · ν.

See Truesdell–Toupin [34, Section 185] for a thorough discussion. From (1.7) and (1.8), the bound-
ary matrix on Γ (t), namely

Abdy := diag
(
∂tϕI7 − ν`A`(U+),−∂tϕI7 + ν`A`(U

−)
)∣∣
Γ (t)

,

is singular, which means that the free boundary Γ (t) is characteristic. In this sense, a vortex sheet
solution is a characteristic discontinuity. Moreover, the boundary matrix Abdy has 2 negative, 2
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positive, and 10 zero eigenvalues. We need one boundary condition for determining the unknown
front, so the correct number of boundary conditions is three, according to the well-posedness
theory for hyperbolic boundary value problems. As a matter of fact, identities (1.8) are involutions
inherited from the initial data (cf. Proposition 1.1), so they are regarded as constraints on the
initial data rather than boundary conditions for the vortex sheet problem.

As is discussed in [6], there exist trivial vortex sheet solutions

U(t, x1, x2) =

{
(ρ̄, v̄, 0, F+

11, 0, F+
12, 0)>, x2 > 0,

(ρ̄, −v̄, 0, F−11, 0, F−12, 0)>, x2 < 0,
(1.9)

where ρ̄ > 0, v̄ > 0, F±11, and F±12 are constants. Every rectilinear elastic vortex sheet (namely
piecewise-constant vortex sheet) is of this form through the Galilean transformation. For simplicity

we assume that F+
11 = −F−11 = F11 and F+

12 = −F−12 = F12.
A standard first step in treating a free boundary problem is to convert the problem in a fixed

domain. For this purpose, we introduce

U±] (t, x) := U(t, x1, Φ
±(t, x)), (1.10)

where the lifting functions Φ± are taken as in Francheteau–Métivier [15] to satisfy

∂tΦ
± + v±1 ∂1Φ

± − v±2 = 0, ±∂2Φ
± ≥ κ > 0, (1.11)

when x2 ≥ 0, and
Φ+ = Φ− = ϕ, when x2 = 0, (1.12)

for some constant κ > 0. Then we need to solve the following initial-boundary value problem for
U±] in a fixed domain:

L(U±, Φ±) := L(U±, Φ±)U± = 0, x2 > 0, (1.13a)

B(U+, U−, ϕ)|x2=0 = 0, (1.13b)

(U+, U−, ϕ)|t=0 = (U+
0 , U

−
0 , ϕ0), (1.13c)

where we have dropped the index “]” for convenience, L(U,Φ) and B are given by

L(U,Φ) := I7∂t +A1(U)∂1 + Ã2(U,Φ)∂2, (1.14)

B(U+, U−, ϕ) :=

 [v1]∂1ϕ− [v2]

∂tϕ+ v+
1 |x2=0∂1ϕ− v+

2 |x2=0

[ρ]

 , (1.15)

with

Ã2(U,Φ) :=
1

∂2Φ
(A2(U)− ∂tΦI7 − ∂1ΦA1(U)) .

By (1.8) and (1.11), we obtain that the boundary matrix of problem (1.13), i.e.,

diag
(
− Ã2(U+, Φ+), −Ã2(U−, Φ−)

)
,

has constant rank on {x2 ≥ 0} if and only if

F±2j = F±1j∂1Φ
± for j = 1, 2, if x2 ≥ 0. (1.16)

In the new variables, equations (1.4) become

∂Φ
±

` (ρ±F±`j ) = 0 for j = 1, 2, if x2 > 0, (1.17)

where we denote the partial differentials with respect to the lifting function Φ by

∂Φt := ∂t −
∂tΦ

∂2Φ
∂2, ∂Φ1 := ∂1 −

∂1Φ

∂2Φ
∂2, ∂Φ2 :=

1

∂2Φ
∂2. (1.18)
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The following proposition indicates that identities (1.16)–(1.17) are involutions for vortex sheet
problem (1.11)–(1.13). The proof follows from a straightforward computation and hence is omitted.

Proposition 1.1. For every sufficiently smooth solution of problem (1.11)–(1.13) on time interval
[0, T ], constraints (1.16)–(1.17) hold for all t ∈ [0, T ] provided that they are satisfied initially.

1.2. Main Result and Discussion. In the straightened variables, the piecewise constant vortex
sheet (1.9) corresponds to

U± :=
(
ρ̄, ±v̄, 0, ±F11, 0, ±F12, 0

)>
, ϕ := 0, Φ± := ±x2. (1.19)

For proving the nonlinear stability of elastic vortex sheets, we only need to show the existence
of solutions to problem (1.11)–(1.13) on account of transform (1.10). The main result of this paper
is stated as follows.

Theorem 1.1. Let T > 0 and s0 ≥ 14 be an integer. Suppose that the background state (1.19)
satisfies one of the following stability conditions:

v̄2 > 2c(ρ̄)2 + F 2
11 + F 2

22, (1.20)

or 

0 < v̄2 < F 2
11 + F 2

22,

v̄2 6= F 2
11 + F 2

22

4
, v̄2 6=

(
(F 2

11 + F 2
22 + c(ρ̄)2)1/2 − (F 2

11 + F 2
22)1/2

)2

4
,

v̄2 6= F 2
11 + F 2

22 + c(ρ̄)2

4
, v̄2 6= (F 2

11 + F 2
22)(F 2

11 + F 2
22 + 2c(ρ̄)2)

4(F 2
11 + F 2

22 + c(ρ̄)2)
.

(1.21)

Suppose further that the initial data U±0 and ϕ0 satisfy constraints (1.16)–(1.17) and the compatibil-

ity conditions up to order µ (cf. Defintion 4.1), and that (U±0 −U±, ϕ0) ∈ Hs0+1/2(R2
+)×Hs0+1(R)

has a compact support. Then there exists a positive constant ε such that, if

‖U±0 − U
±‖Hs0+1/2(R2

+) + ‖ϕ0‖Hs0+1(R) ≤ ε,

then problem (1.11)–(1.13) admits a solution (U±, Φ±, ϕ) on the time interval [0, T ] satisfying

(U± − U±, Φ± − Φ±) ∈ Hs0−8((0, T )× R2
+), ϕ ∈ Hs0−7((0, T )× R).

The theorem above asserts that, unlike the two-dimensional compressible Euler flow for which
the vortex sheets are stable only for large Mach numbers, the appearance of elasticity stabilizes
the system even in the subsonic zone, confirming the expectation from the linear analysis [6, 7].
In particular, when linearizing at the rectilinear vortex sheet, a stabilizing subsonic zone larger
than the one given by (1.21) was discovered in [6] by a delicate spectral analysis of the Lopatinskĭı
determinant for the corresponding constant coefficient problem combined with an upper triangula-
tion scheme for the energy estimates. Further perturbing away from the constant states leads to a
linear problem with variable coefficients which admits a richer spectral structure. Para-differential
calculus thus becomes an effective way in place of the Fourier analysis. However, understanding
the spectrum of the para-linearized system is much more challenging due to the degeneracy of the
Kreiss–Lopatinskĭı condition and the characteristic boundary. The upper triangularization method
turns out to be particularly useful for treating the additional degenerate boundary points (referred
to as poles) as well as gaining improved regularity of the outgoing modes; see the discussion in [7].
On the other hand, it is the complicated interaction between the poles and the other degenerate
points (namely the roots) that imposes extra constraints in the subsonic region for stability.

Proceeding from linear to nonlinear stability and thus local existence can usually be achieved
by an iterative argument. Our proof shall follow the general procedure (and thus format of pre-
sentation) in the spirit of Coulombel–Secchi [12]. A common feature shared by various types of



NONLINEAR STABILITY OF VORTEX SHEETS IN 2D ELASTODYNAMICS 5

compressible vortex sheets is that the free boundary is characteristic and the Kreiss–Lopatinskĭı
condition holds only in a weak sense; see, e.g., [4–7, 11, 27]. Therefore the standard fixed-point
argument cannot be applied since there is a loss of regularity from the source terms to the solution
in the estimates for the linearized equations. Instead, we will appeal to the Nash–Moser itera-
tion framework and construct solutions to the nonlinear problem (1.11)–(1.13) via the convergence
of the scheme. Such type of approach has been successfully applied to other related problems
[1, 4, 5, 12, 15, 18, 22, 24, 26, 30–33, 35]. Also refer to Alinhac–Gérard [2, Chapter III.C] and
Secchi [29] for a general description.

For showing the convergence of the Nash–Moser iteration scheme, we need to establish the well-
posedness of the variable coefficient linearized problem with suitable tame estimate. In [6, 7], the
basic a priori energy estimate has been derived in the weighted Sobolev space L2

γ with one loss of
derivative from the source terms. Using this estimate and the Moser-type calculus inequalities, we
can control the tangential derivatives by the source terms, the coefficients, and the L∞ norm of
solutions (instead of the W 1,∞ norm in Coulombel–Secchi [12, (37)], cf. (3.28)). In general one has
to study characteristic hyperbolic problems in the anisotropic Sobolev spaces due to the degeneracy
in the normal direction (see Secchi [28] and the references therein). Utilizing such function spaces,
the iteration was carefully carried out to pass from linear to quasilinear problems in [16], resulting
in the well-posedness of the full problem. However, in the present paper, instead of making use of
the anisotropy in different derivatives, we will follow an idea of Trakhinin [32] and compensate the
loss of normal derivatives through the estimates of the linearized divergences and vorticities (see
(3.44) and (3.52)–(3.53) for the definitions). This will in turn allow us to build the well-posedness
in the usual Sobolev spaces.

We remark that the recent paper [8] confirms that the elasticity can stabilize the fluids in three
dimensions. Indeed, it is showed that the linear stability in three-dimensional compressible elastic
fluids is more challenging and the spectrum analysis is different from the two-dimensional case due
to more complicated structures of the system. We also refer the reader to the recent work [23] for
the stabilization effect of elasticity in the study of the structural stability of shock waves in 2D
compressible elastodynamics.

The rest of this paper is organized as follows. Section 2 is devoted to collecting several prelim-
inaries including the notation, weighted Sobolev spaces and norms, and the Moser-type calculus
inequalities in weighted spaces for later use. In Section 3, we show the well-posedness of solutions
to the variable coefficient linearized problem in usual Sobolev spaces, that is, Theorem 3.1. For this
purpose, we first prove the well-posedness of the linearized problem in L2 by applying the duality
argument of [10, 12]. Then we show the estimate of the tangential derivatives, normal derivatives of
the noncharacteristic variables, linearized divergences, and linearized vorticities in Subsections 3.3–
3.6. The proof of Theorem 3.1 is given in Subsection 3.7 by finite induction. Section 4 is devoted to
introducing the compatibility conditions and approximate solutions. In Section 5, we first present
the Nash–Moser iteration scheme for our nonlinear problem by following [4, 12]. Particularly, in
Subsection 5.3, we construct and estimate a suitable modified state for deriving the convergence of
the scheme.

2. Preliminaries

In this section, we shall provide the definitions of weighted Sobolev spaces and norms, and then
introduce the Moser-type calculus inequalities in terms of weighted norms for later use.

First we give the following notation. Letter γ always denotes a parameter with γ ≥ 1. We denote
by C any universal positive constant, by C(·) any generic positive constant depending only on its
listed arguments, and they may change from line to line. The notation A . B (B & A) is used
if A ≤ CB is true for some constant C > 0 independent of γ. Symbol A ∼ B stands for A . B
and B . A. Set Ω = {(t, x1, x2) ∈ R3 : x2 > 0}, and its boundary ∂Ω is identified to R2. For
T ∈ R, write ωT := (−∞, T )×R and ΩT := ωT ×R+. We denote ∇ := (∂t, ∂1) when applying it to
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functions of (t, x1) and ∇ := (∂t, ∂1, ∂2) when applying it to functions of (t, x1, x2). For multi-index
α = (α0, α1, α2) ∈ N3, we define ∂α := ∂α0

t ∂α1
1 ∂α2

2 and |α| := α0 + α1 + α2.For m ∈ N, we
denote ∇m := {∂α : |α| = m}. We remark that, besides the notation above, we also adopt the
same conventional notation in many places of this paper as those in [4, 7, 12, 16].

We now give the definitions of weighted Sobolev spaces and norms. Let s ∈ R, m ∈ N, and
γ ≥ 1. The weighted Sobolev space

Hs
γ(R2) :=

{
u ∈ D′(R2) : e−γtu(t, x1) ∈ Hs(R2)

}
is defined with norm ‖u‖Hs

γ(R2) := ‖e−γtu‖s,γ , where

‖v‖s,γ :=
1

2π

(∫
R2

λ2s,γ(ξ)|v̂(ξ)|2 dξ

)1/2

,

with v̂ being the Fourier transform of v and λ2s,γ(ξ) := (γ2 + |ξ|2)s. We denote L2
γ(R2) := H0

γ(R2)

for short and obtain from the Plancherel theorem that ‖u‖L2
γ(R2) = ‖e−γtu‖L2(R2).

We abbreviate L2(R+;Hs
γ(R2)) to L2(Hs

γ), which is equipped with the norm

‖u‖L2(Hs
γ) :=

(∫
R+

‖u(·, x2)‖2Hs
γ(R2) dx2

)1/2

,

and L2
γ(Ω) := L2(H0

γ), ‖u‖L2
γ(Ω) = ‖e−γtu‖L2(Ω). Moreover,

Hm
γ (ΩT ) :=

{
u ∈ D′(ΩT ) : e−γtu ∈ Hm(ΩT )

}
is introduced with the norm

‖u‖Hm
γ (ΩT ) :=

∑
|α|≤m

γm−|α|‖e−γt∂αu‖L2(ΩT ).

Similarly, the spaceHm
γ (ωT ) and its norm are defined. Furthermore, we abbreviate L2(R+;Hm

γ (ωT ))

to L2(Hm
γ (ωT )), which is equipped with the norm

‖u‖L2(Hm
γ (ωT )) :=

∑
α0+α1≤m

γm−α0−α1‖e−γt∂α0
t ∂α1

1 u‖L2(ΩT ).

and L2
γ(ΩT ) := L2(H0

γ(ωT )), ‖u‖L2
γ(ΩT ) = ‖e−γtu‖L2(ΩT ).

In the following lemma, we present the Moser-type calculus inequalities in weighted Sobolev
spaces that will be frequently adopted in proving the higher-order tame estimates and convergence
of the Nash–Moser iterative scheme.

Lemma 2.1. Let m ∈ N, γ ≥ 1, T ∈ R, and u,w ∈ Hm
γ (ΩT ) ∩ L∞(ΩT ). Let b denote a C∞–

function defined in a neighborhood of the origin.
(a) If |β1 + β2| ≤ m and b(0) = 0, then∥∥∂β1u∂β2w∥∥

L2
γ(ΩT )

+
∥∥uw∥∥

Hm
γ (ΩT )

. ‖u‖L∞(ΩT )‖w‖Hm
γ (ΩT ) + ‖u‖Hm

γ (ΩT )‖w‖L∞(ΩT ), (2.1)

‖b(u)‖Hm
γ (ΩT ) ≤ C

(
‖u‖L∞(ΩT )

)
‖u‖Hm

γ (ΩT ). (2.2)

(b) If |β1 + β2 + β3| ≤ m, then∥∥∂β1 [∂β2 , b(u)]∂β3w
∥∥
L2
γ(ΩT )

≤ C
(
‖u‖L∞(ΩT )

) (
‖w‖Hm

γ (ΩT ) + ‖u‖Hm
γ (ΩT )‖w‖L∞(ΩT )

)
. (2.3)

Furthermore, if u ∈W 1,∞(ΩT ), then∥∥∂β1 [∂β2 , b(u)]∂β3w
∥∥
L2
γ(ΩT )

≤ C
(
‖u‖W 1,∞(ΩT )

) (
‖w‖Hm−1

γ (ΩT ) + ‖u‖Hm
γ (ΩT )‖w‖L∞(ΩT )

)
. (2.4)
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Here βi, for i = 1, 2, 3, are multi-indices, [a, b]c := a(bc) − b(ac) denotes the usual commutator,
and the increasing function C is independent of u, w, γ, and T . The same results hold with ΩT

replaced by ωT .

We remark that the proof of the inequalities (2.1) and (2.2) can be found in [20, Section 4.5] and
[12, Appendix C]. The inequalities (2.3) and (2.4) follow (2.1) and (2.2) through a straightforward
calculation. We omit the proof.

3. Well-posedness of the Linearized Problem

In this section we shall consider the linearized problem for (1.13) and prove the well-posedness
of solutions in the usual Sobolev spaces Hm for all integers m stated in Theorem 3.1 as in [12].

3.1. Variable Coefficient Linearized Problem. Let us first perform the linearization for prob-
lem (1.13) around a basic state (Ǔ±, Φ̌±). We suppose that

supp (V̌ ±, Ψ̌±) ⊂ {−T ≤ t ≤ 2T, x2 ≥ 0, |x| ≤ 2}, (3.1)∥∥V̌ ±∥∥
W 2,∞(Ω)

+
∥∥Ψ̌±∥∥

W 3,∞(Ω)
≤ K, (3.2)

for V̌ ± := Ǔ± − U± and Ψ̌± := Φ̌± − Φ±, where T and K are positive constants, and (U±, Φ±) is
the background state defined by (1.19). Moreover, the basic state (Ǔ±, Φ̌±) is supposed to satisfy
(1.11), (1.13b), and (1.16), i.e.,

± ∂2Φ̌
± ≥ κ0 > 0, x2 ≥ 0, (3.3a)

∂tΦ̌
± + v̌±1 ∂1Φ̌

± − v̌±2 = 0, x2 ≥ 0, (3.3b)

F̌±2j = F̌±1j∂1Φ̌
± for j = 1, 2, x2 ≥ 0, (3.3c)

Φ̌+ = Φ̌− = ϕ̌, x2 = 0, (3.3d)

B
(
Ǔ+, Ǔ−, ϕ̌

)
= 0, x2 = 0, (3.3e)

for some positive constant κ0. Constraints (3.3b) and (3.3c) keep the rank of the boundary matrix

for the linearized problem being constant on Ω. Denote Ǔ := (Ǔ+, Ǔ−)>, V̌ := (V̌ +, V̌ −)>,
Φ̌ := (Φ̌+, Φ̌−)>, and Ψ̌ := (Ψ̌+, Ψ̌−)> for convenience.

The linearized operators read

L′(U,Φ)(V, Ψ) := (L(U,Φ) + C(U,Φ))V − 1

∂2Φ
(L(U,Φ)Ψ)∂2U, (3.4)

B′
(
Ǔ, ϕ̌

)
(V, ψ) := b̌∇ψ + B̌V |x2=0, (3.5)

where V := (V +, V −)>, and C(U,Φ), b̌, and B̌ are respectively defined by

C(U,Φ)V :=
(
∂UiA1(U)∂1U + ∂UiÃ2(U,Φ)∂2U

)
Vi, (3.6)

b̌(t, x1) :=

0 (v̌+
1 − v̌

−
1 )|x2=0

1 v̌+
1 |x2=0

0 0

 , (3.7)

and

B̌(t, x1) :=

 0 ∂1ϕ̌ −1 0 0 0 0 0 −∂1ϕ̌ 1 0 0 0 0
0 ∂1ϕ̌ −1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 −1 0 0 0 0 0 0

 . (3.8)

As in Alinhac [1], we obtain

L′(Ǔ±, Φ̌±)(V ±, Ψ±) = L(Ǔ±, Φ̌±)V̇ ± + C(Ǔ±, Φ̌±)V̇ ± +
Ψ±

∂2Φ̌±
∂2L(Ǔ±, Φ̌±), (3.9)
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where V̇ ± are the “good unknowns”

V̇ ± := V ± − ∂2Ǔ
±

∂2Φ̌±
Ψ±. (3.10)

We now consider effective linear system:

L′e
(
Ǔ±, Φ̌±

)
V̇ ± := L

(
Ǔ±, Φ̌±

)
V̇ ± + C(Ǔ±, Φ̌±)V̇ ± = f±, x2 > 0, (3.11a)

B′e
(
Ǔ, Φ̌

)
(V̇, ψ) := b̌∇ψ + b̌\ψ + B̌V̇ |x2=0 = g, x2 = 0, (3.11b)

Ψ+ = Ψ− = ψ, x2 = 0, (3.11c)

where L(Ǔ±, Φ̌±), C(Ǔ±, Φ̌±), b̌, and B̌ are given in (1.14), (3.6), (3.7), and (3.8), separately,

V̇ := (V̇ +, V̇ −)>, and

b̌\(t, x1) := B̌(t, x1)

(
∂2Ǔ

+/∂2Φ̌
+

∂2Ǔ
−/∂2Φ̌

−

)∣∣∣∣∣
x2=0

. (3.12)

Here, C(Ǔ±, Φ̌±) are two smooth functions of (V̌ ±,∇V̌ ±,∇Ψ̌±) vanishing at the origin, b̌ is a
smooth function of trace V̌ |x2=0, b̌\ is a smooth vector-function of (∇V̌ |x2=0,∇Ψ̌ |x2=0) vanishing at

the origin, and matrix B̌ is a smooth matrix-function of ∇ϕ̌. Notice that the boundary condition
(3.11b) depends on the traces of V̇ solely through P(ϕ̌)V̇ ±|x2=0, where

P(ϕ̌)V ± :=
(
V ±1 , V ±3 − ∂1ϕ̌V

±
2

)>
. (3.13)

Let us convert linearized problem (3.11) into a problem with a constant diagonal boundary
matrix. To this end, we define matrices

R(U,Φ) :=



0 〈∂1Φ〉 〈∂1Φ〉 0 0 0 0

1 − c(ρ)
ρ ∂1Φ

c(ρ)
ρ ∂1Φ 0 0 0 0

∂1Φ
c(ρ)
ρ − c(ρ)

ρ 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, (3.14)

and

Ã0(U,Φ) := diag

(
1,

∂2Φ

c(ρ)〈∂1Φ〉
, − ∂2Φ

c(ρ)〈∂1Φ〉
, 1, 1, 1, 1

)
, (3.15)

where 〈∂1Φ〉 := (1 + (∂1Φ)2)1/2 and c(ρ) is the sound speed given in (1.3). Then it follows from
constraints (3.3b) and (3.3c) that

Ã0R
−1Ã2R

(
Ǔ±, Φ̌±

)
= I2 := diag

(
0, 1, 1, 0, 0, 0, 0

)
.

In terms of new unknowns

W± := R−1
(
Ǔ±, Φ̌±

)
V̇ ±, (3.16)

the problem (3.11) can be rewritten equivalently as

A±0 ∂tW
± +A±1 ∂1W

± + I2∂2W
± +A±3 W

± = F±, x2 > 0, (3.17a)

b̌∇ψ + b̌\ψ + BW nc = g, x2 = 0, (3.17b)

Ψ+ = Ψ− = ψ, x2 = 0, (3.17c)
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where

A±0 := Ã0

(
Ǔ±, Φ̌±

)
, A±1 := Ã0R

−1A1R
(
Ǔ±, Φ̌±

)
, F± := Ã0R

−1
(
Ǔ±, Φ̌±

)
f±,

A±3 := Ã0

(
R−1∂tR+R−1A1∂1R+R−1Ã2∂2R+R−1CR

)(
Ǔ±, Φ̌±

)
.

In (3.17b), coefficients b̌ and b̌\ are defined by (3.7) and (3.12), respectively,

B(t, x1) :=


−c(ρ̌)

ρ̌
〈∂1ϕ̌〉2

c(ρ̌)

ρ̌
〈∂1ϕ̌〉2

c(ρ̌)

ρ̌
〈∂1ϕ̌〉2 − c(ρ̌)

ρ̌
〈∂1ϕ̌〉2

−c(ρ̌)

ρ̌
〈∂1ϕ̌〉2

c(ρ̌)

ρ̌
〈∂1ϕ̌〉2 0 0

〈∂1ϕ̌〉 〈∂1ϕ̌〉 −〈∂1ϕ̌〉 −〈∂1ϕ̌〉



∣∣∣∣∣∣∣∣∣∣∣
x2=0

, (3.18)

and W nc := (W nc
+ ,W nc

− )> denotes the noncharacteristic part of W := (W+,W−)> with W nc
± :=

(W±2 ,W
±
3 )>. Obviously, A±0 and A±1 are smooth functions of (V̌ ±,∇Ψ̌±), A±3 are smooth matrix-

functions of (V̌ ±,∇V̌ ±,∇Ψ̌±,∇2Ψ̌±), and B is a smooth matrix-function of (V̌ |x2=0,∇ϕ̌).
We are ready to show the following theorem in the rest of this section.

Theorem 3.1. Let T > 0 and m ∈ N with m ≥ 2 being fixed. Suppose that background state
(1.19) satisfies (1.20) or (1.21), and that (V̌ ±, Ψ̌±) belong to Hm+3

γ (ΩT ) for all γ ≥ 1, and satisfy
(3.1)–(3.3) and

‖(V̌ ±, Ψ̌±)‖H6
γ(ΩT ) + ‖(V̌ ±, Ψ̌±)‖H5

γ(ωT ) ≤ K. (3.19)

Suppose further that source terms (f, g) ∈ Hm+1(ΩT )×Hm+1(ωT ) vanish in the past. Then there
exist constants K0 > 0 and γ0 ≥ 1 such that, if K ≤ K0 and γ ≥ γ0, then problem (3.11) has a

unique solution (V̇ ±, ψ) ∈ Hm(ΩT )×Hm+1(ωT ) vanishing in the past and satisfying tame estimate

‖V̇ ‖Hm
γ (ΩT ) + ‖P(ϕ̌)V̇ ±‖Hm

γ (ωT ) + ‖ψ‖Hm+1
γ (ωT )

. ‖f‖Hm+1
γ (ΩT ) + ‖g‖Hm+1

γ (ωT ) +
(
‖f‖H3

γ(ΩT ) + ‖g‖H3
γ(ωT )

)
‖(V̌ ±, Ψ̌±)‖Hm+3

γ (ΩT ). (3.20)

When f and g vanish in the past (it is equivalent to zero initial data), Theorem 3.1 holds. The
case of general initial data will be considered in Section 4 by constructing approximate solutions
before the procedure of Nash–Moser scheme.

3.2. Well-posedness in L2. Let us recall the following L2 a priori energy estimate derived by [7]
for the linearized problem (3.11).

Theorem 3.2 ([7, Theorem 2.1]). Suppose that background state (U±, Φ±) defined by (1.19) sat-
isfies (1.20) or (1.21), and basic state

(
Ǔ±, Φ̌±

)
satisfies (3.1)–(3.3). Then there exist constants

K0 > 0 and γ0 ≥ 1 such that, if K ≤ K0 and γ ≥ γ0, then

γ‖V̇ ‖2L2
γ(Ω) + ‖P(ϕ̌)V̇ ‖2L2

γ(∂Ω) + ‖ψ‖2H1
γ(R2)

. γ−3
∥∥L′e(Ǔ±, Φ̌±)V̇ ±∥∥2

L2(H1
γ)

+ γ−2
∥∥B′e(Ǔ, Φ̌)(V̇, ψ)

∥∥2

H1
γ(R2)

(3.21)

for all (V̇, ψ) ∈ H2
γ(Ω)×H2

γ(R2), where operators P(ϕ̌), L′e, and B′e are defined by (3.13), (3.11a),
and (3.11b), respectively.

System (3.11a) is symmetrizable hyperbolic, whose coefficients satisfy the regularity assumptions
of Coulombel [10]. It implies that we need to construct a dual problem that satisfies an appropriate
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energy estimate. Thus, we define

B̌1 :=

 0 0 0 0 0 0 0 −ς̌−1 0 0 0 0 0 0
ς̌+
1 0 0 0 0 0 0 ς̌−1 0 0 0 0 0 0
0 ς̌+

2 ς̌+
3 0 0 0 0 0 −ς̌−2 −ς̌

−
3 0 0 0 0

∣∣∣∣∣∣
x2=0

, (3.22)

Ď1 :=

 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ς̌+

2 ς̌+
3 0 0 0 0 0 ς̌−2 ς̌−3 0 0 0 0

∣∣∣∣∣∣
x2=0

, (3.23)

Ď :=

 0 ∂1ϕ̌ −1 0 0 0 0 0 ∂1ϕ̌ −1 0 0 0 0
0 ∂1ϕ̌ −1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0

 ,

where

ς̌±1 := − ρ̌±

∂2Φ̌±
, ς̌±2 := −c(ρ̌

±)2∂1ϕ̌

2ρ̌±∂2Φ̌±
, ς̌±3 :=

c(ρ̌±)2

2ρ̌±∂2Φ̌±
.

Use (3.3b) and (3.3c) to calculate

B̌>1 B̌ + Ď>1 Ď = diag
(
Ã2(Ǔ+, Φ̌+), Ã2(Ǔ−, Φ̌−)

)∣∣
x2=0

,

where B̌ is given in (3.8). Following [20, Section 3.2], we define the dual problem for (3.11) as{
L′e
(
Ǔ±, Φ̌±

)∗
U± = f∗±, x2 > 0,

Ď1U = 0, div(b̌>B̌1U)− b̌>\ B̌1U = 0, x2 = 0,
(3.24)

where b̌, b̌\, B̌1, and Ď1 are given in (3.7), (3.12), (3.22), and (3.23), respectively, and symbol

div denotes the divergence operator in R2. L′e
(
Ǔ±, Φ̌±

)∗
are the adjoint operators of L′e

(
Ǔ±, Φ̌±

)
.

Following the same analysis as in [12, Section 3.4], we can obtain the well-posedness result in L2

for the linearized problem (3.11).

Theorem 3.3. Let T > 0 be fixed. Suppose that f ∈ L2(R+;H1(ωT )) and g ∈ H1(ωT ) vanish
in the past and all the hypotheses in Theorem 3.2 are satisfied. Then constants K0 > 0 and
γ0 ≥ 1 exist such that, if K ≤ K0 and γ ≥ γ0, then there exists a unique solution (V̇ +, V̇ −, ψ) ∈
L2(ΩT )× L2(ΩT )×H1(ωT ) for problem (3.11a)–(3.11b) that vanishes in the past and satisfies

γ1/2‖V̇ ‖L2
γ(Ωt) + ‖P(ϕ̌)V̇ ‖L2

γ(ωt) + ‖ψ‖H1
γ(ωt) . γ

−3/2‖f‖L2(H1
γ(ωt)) + γ−1‖g‖H1

γ(ωt) (3.25)

for all γ ≥ γ0 and t ∈ [0, T ].

For the reformulated problem (3.17), Theorem 3.3 implies estimate

γ1/2‖W‖L2
γ(ΩT ) + ‖W nc‖L2

γ(ωT ) + ‖ψ‖H1
γ(ωT ) . γ

−3/2‖F±‖L2(H1
γ(ωT )) + γ−1‖g‖H1

γ(ωT ). (3.26)

For any nonnegative integer m, a generic and smooth matrix-valued function of {(∂αV̌, ∂αΨ̌) : |α| ≤
m} is denoted by čm, and by čm if it vanishes at the origin. For instance, the equations for ρ̇± in
(3.11a) can be rewritten as

(∂Φ̌
±

t + v̌±` ∂
Φ̌±
` )ρ̇± + ρ̌±∂Φ̌

±
` v̇±` = č0f + č1V̇. (3.27)

The exact forms of čm and čm may vary from line to line.
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3.3. Tangential Derivatives. The following lemma provides the estimate of the tangential deriva-
tives.

Lemma 3.1. If the hypotheses of Theorem 3.1 hold, then there exists a constant γm ≥ 1, indepen-
dent of T , such that

γ1/2‖W‖L2(Hm
γ (ωT )) + ‖W nc‖Hm

γ (ωT ) + ‖ψ‖Hm+1
γ (ωT )

. γ−3/2
∥∥F±∥∥

L2(Hm+1
γ (ωT ))

+ γ−3/2‖W‖L∞(ΩT )‖(V̌, Ψ̌)‖Hm+3
γ (ΩT )

+ γ−1‖g‖Hm+1
γ (ωT ) + γ−1‖(W nc, ψ)‖L∞(ωT )‖(V̌, Ψ̌)‖Hm+2

γ (ωT ), (3.28)

for all γ ≥ γm and solutions (W,ψ) ∈ Hm+2
γ (ΩT )×Hm+2

γ (ωT ) of problem (3.17).

Proof. We will follow [12, Proposition 1] to consider the enlarged system, but for the estimate of
the source terms we use the Moser-type calculus inequalities (2.1)–(2.4) instead of the Gagliardo–
Nirenberg’s and Hölder’s inequalities in [12, Proposition 1].

Let ` ∈ N with 1 ≤ ` ≤ m. Let α = (α0, α1, 0) ∈ N3 with |α| = ` so that ∂α = ∂α0
t ∂α1

1 is a
tangential derivative satisfying α0 + α1 = `. Then we apply operator ∂α to (3.17a) and get

A±0 ∂t∂
αW± +A±1 ∂1∂

αW± + I2∂2∂
αW± +A±3 ∂

αW±

+
∑

|β|=1, β≤α

Cα,β
(
∂βA±0 ∂t∂

α−βW± + ∂βA±1 ∂1∂
α−βW±

)
= Fα

±, (3.29)

where

Fα
± := ∂αF± +

∑
0<β≤α

Cα,β∂
βA±3 ∂

α−βW± +
∑

|β|≥2, β≤α

Cα,β
(
∂βA±0 ∂t∂

α−βW± + ∂βA±1 ∂1∂
α−βW±

)
.

Similarly, from (3.17b), we have

b̌∇∂αψ + b̌\∂
αψ + B∂αW nc = G α on ωT , (3.30)

where

G α := ∂αg − [∂α, b̌]∇ψ − [∂α, b̌\]ψ − [∂α,B]W nc.

Since the terms involving tangential derivatives of order ` in (3.29) do not only contain ∂αW±,
as in [12, Proposition 1], we write an enlarged system for all the tangential derivatives of order `,
in order to apply the L2 a priori estimate in Theorem 3.2. Note that the last term on the left-hand
side of (3.29) cannot be regarded simply as source terms due to the loss of derivatives in (3.21).
Defining

W
(`)
± :=

{
∂α0
t ∂α1

1 W± : α0 + α1 = `
}
, ψ(`) :=

{
∂α0
t ∂α1

1 ψ : α0 + α1 = `
}
,

we obtain from (3.29)–(3.30) that

A ±0 ∂tW
(`)
± + A ±1 ∂1W

(`)
± + I ∂2W

(`)
± + C±W

(`)
± = F

(`)
± , (3.31a)

B∇ψ(`) + B\ψ
(`) + MW (`)

nc = G (`), (3.31b)

where A ±0 , A ±1 , and I are block diagonal with blocks A±0 , A±1 , and I2, respectively. Matrices C±

belong to W 1,∞(Ω). The source terms F
(`)
± and G (`) consist of Fα

± and G α for all α = (α0, α1, 0)
with |α| = `, respectively. The enlarged problem (3.31) satisfies an energy estimate similar to
(3.26), i.e.,

γ1/2‖W (`)‖L2
γ(ΩT ) + ‖W (`)

nc ‖L2
γ(ωT ) + ‖ψ(`)‖H1

γ(ωT )

. γ−3/2‖F (`)‖L2(H1
γ(ωT )) + γ−1‖G (`)‖H1

γ(ωT ). (3.32)
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Let us now estimate the source terms F
(`)
± and G (`) by Moser-type calculus inequalities (2.1)–

(2.4). First, by definition, we have

‖∂αF‖L2(H1
γ(ωT )) . ‖(γ∂αF, ∂t∂αF, ∂1∂

αF )‖L2
γ(ΩT ) . ‖F‖L2(H`+1

γ (ωT )), (3.33)

‖∂αg‖H1
γ(ωT ) . ‖g‖H`+1

γ (ωT ). (3.34)

For 0 < β ≤ α, we infer

‖∂βA3∂
α−βW‖H1

γ(ωT ) . ‖(γ∂βA3∂
α−βW,∇t,x1(∂βA3∂

α−βW ))‖L2
γ(ωT ). (3.35)

Apply Moser-type calculus inequality (2.1) to deduce that

‖∂βA3∂
α−βW‖L2

γ(ωT ) = ‖∂β−β′(∂β′A3)∂α−βW‖L2
γ(ωT )

. ‖∂β′A3‖L∞(ωT )‖W‖H`−1
γ (ωT ) + ‖∂β′A3‖H`−1

γ (ωT )‖W‖L∞(ωT )

. ‖W‖H`−1
γ (ωT ) + ‖(V̌, Ψ̌)‖H`+2

γ (ωT )‖W‖L∞(ωT ), (3.36)

where β′ ≤ β with |β′| = 1. Similarly, we have

‖∇t,x1(∂βA3∂
α−βW )‖L2

γ(ωT ) . ‖W‖H`
γ(ωT ) + ‖(V̌, Ψ̌)‖H`+3

γ (ωT )‖W‖L∞(ωT ),

which combined with (3.35) and (3.36) implies

‖∂βA3∂
α−βW‖L2(H1

γ(ωT )) . ‖W‖L2(H`
γ(ωT )) + ‖(V̌, Ψ̌)‖H`+3

γ (ΩT )‖W‖L∞(ΩT ). (3.37)

For β ≤ α with |β| ≥ 2, similar to (3.37), we use (2.1) to derive

‖∂βA0∂t∂
α−βW‖L2(H1

γ(ωT )) + ‖∂βA1∂1∂
α−βW‖L2(H1

γ(ωT ))

. ‖W‖L2(H`
γ(ωT )) + ‖(V̌, Ψ̌)‖H`+3

γ (ΩT )‖W‖L∞(ΩT ). (3.38)

Combining (3.33), (3.37), and (3.38) leads to

‖F (`)‖L2(H1
γ(ωT )) . ‖F‖L2(H`+1

γ (ωT )) + ‖W‖L2(H`
γ(ωT )) + ‖(V̌, Ψ̌)‖H`+3

γ (ΩT )‖W‖L∞(ΩT ). (3.39)

Using (2.3)–(2.4), we obtain

‖[∂α, b̌]∇ψ‖H1
γ(ωT ) . γ‖[∂α, b̌]∇ψ‖L2

γ(ωT ) +
∑
|β|=1

‖∂β[∂α, b̌]∇ψ‖L2
γ(ωT )

. ‖ψ‖H`+1
γ (ωT ) + ‖č0‖H`+2

γ (ωT )‖ψ‖L∞(ωT )

. ‖ψ‖H`+1
γ (ωT ) + ‖(V̌, Ψ̌)‖H`+2

γ (ωT )‖ψ‖L∞(ωT ).

Applying Moser-type calculus inequalities (2.3)–(2.4) to the other terms in G α, we get

‖G (`)‖H1
γ(ωT ) . ‖g‖H`+1

γ (ωT ) + ‖W nc‖H`
γ(ωT ) + ‖ψ‖H`+1

γ (ωT )

+ ‖(V̌, Ψ̌)‖H`+2
γ (ωT )‖(W

nc, ψ)‖L∞(ωT ). (3.40)

Substitute (3.39) and (3.40) into (3.32), multiply the resulting estimate by γm−`, and take γ large
enough to conclude the desired tame estimate (3.28). The proof of this lemma is complete. �



NONLINEAR STABILITY OF VORTEX SHEETS IN 2D ELASTODYNAMICS 13

3.4. Normal Derivatives of the Noncharacteristic Variables. Following [32], we compensate
the loss of normal derivatives through the estimates of the linearized divergences and vorticities.
According to (3.17a), we have 0

∂2W
nc
±

0

 = F± −A±0 ∂tW
± −A±1 ∂1W

± −A±3 W
±, (3.41)

which leads to

‖∂2W
nc‖L2(Hm−1

γ (ωT )) . ‖(F, č1∂tW, č1∂1W, č2W )‖L2(Hm−1
γ (ωT )).

It follows from (2.1)–(2.2) that

‖č2W‖Hm−1
γ (ωT ) . ‖č2‖L∞(ωT )‖W‖Hm−1

γ (ωT ) + ‖č2‖Hm−1
γ (ωT )‖W‖L∞(ωT )

. ‖W‖Hm−1
γ (ωT ) + ‖(V̌, Ψ̌)‖Hm+1

γ (ωT )‖W‖L∞(ωT ),

and

‖č1W‖Hm
γ (ωT ) . ‖W‖Hm

γ (ωT ) + ‖(V̌, Ψ̌)‖Hm+1
γ (ωT )‖W‖L∞(ωT ),

Since

‖č1∇t,x1W‖Hm−1
γ (ωT ) . ‖č1W‖Hm

γ (ωT ) + ‖∇t,x1 č1W‖Hm−1
γ (ωT )

. ‖W‖Hm
γ (ωT ) + ‖č1W‖Hm

γ (ωT ) + ‖č2W‖Hm−1
γ (ωT ),

we combine the estimates above to get

‖∂2W
nc‖L2(Hm−1

γ (ωT )) . ‖F‖Hm−1
γ (ΩT ) + ‖W‖L2(Hm

γ (ωT ))

+ ‖(V̌, Ψ̌)‖L2(Hm+1
γ (ωT ))‖W‖L∞(ΩT ). (3.42)

Next, we introduce the linearized divergences and vorticities whose estimates enable us to recover
the normal derivatives of the characteristic variables

(W±1 , W
±
4 , W

±
5 , W

±
6 , W

±
7 ) =

(
v̇±1 + ∂1Φ̌

±v̇±2
〈∂1Φ̌±〉2

, Ḟ±11, Ḟ
±
21, Ḟ

±
12, Ḟ

±
22

)
, (3.43)

according to transformation (3.16).

3.5. Divergences. Inspired by involutions (1.17), we introduce linearized divergences ζ±1 and ζ±2
by

ζ±j := ∂Φ̌
±

i

(
ρ̌±Ḟ

±
ij + F̌±ij ρ̇

±
)
, j = 1, 2, (3.44)

where partial differentials ∂Φ̌
±

i , i = 1, 2, are defined by (1.18). We have the following estimate for
ζ±1 and ζ±2 .

Lemma 3.2 (Estimate of divergences). If the hypotheses of Theorem 3.1 hold, then there exists a
constant γm ≥ 1, independent of T , such that

γ‖(ζ±1 , ζ
±
2 )‖Hm−1

γ (ΩT ) . ‖(W, f)‖Hm
γ (ΩT ) + ‖(V̌, Ψ̌)‖Hm+2

γ (ΩT )‖(W, f)‖L∞(ΩT ), (3.45)

for all γ ≥ γm and solutions (W,ψ) ∈ Hm+2
γ (ΩT )×Hm+2

γ (ωT ) of problem (3.17).

Proof. The equations for Ḟij in (3.11a) read

(∂Φ̌t + v̌`∂
Φ̌
` )Ḟij − F̌`j∂Φ̌` v̇i = č0f + č1V̇. (3.46)

By using equations (3.27) and (3.46), we apply operator ∂Φ̌i and use

ρ̌F̌`1∂
Φ̌
i ∂

Φ̌
` v̇i − ρ̌F̌i1∂Φ̌i ∂Φ̌` v̇` = ρ̌F̌i1

[
∂Φ̌` , ∂

Φ̌
i

]
v` = č2∇V̇
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to discover

(∂Φ̌t + v̌`∂
Φ̌
` )ζj = č1∇f + č1f + č2∇W + č2W. (3.47)

Applying operator e−γt∂α with |α| ≤ m− 1 to (3.47) yields

(∂Φ̌t + v̌`∂
Φ̌
` )
(
e−γt∂αζj

)
+ γe−γt∂αζj

= e−γt∂α(č1∇f + č1f + č2∇W + č2W )− e−γt[∂α, ∂Φ̌t + v̌`∂
Φ̌
` ]ζj .

We multiply the last identity by e−γt∂αζj and integrate over ΩT to infer

γ‖∂αζj‖L2
γ(ΩT ) . ‖∂α(č1∇f + č1f + č2∇W + č2W )‖L2

γ(ΩT )

+ ‖[∂α, ∂Φ̌t + v̌`∂
Φ̌
` ]ζj‖L2

γ(ΩT ), (3.48)

for γ ≥ 1 sufficiently large, where we use

(∂Φ̌t + v̌`∂
Φ̌
` ) = ∂t + v̌1∂1 if x2 ≥ 0, (3.49)

owing to constraints (3.3b).
From Moser-type calculus inequality (2.3), we obtain

‖∂α(č1∇f + č1f)‖L2
γ(ΩT ) . ‖(č1∂

α∇f, č1∂
αf)‖L2

γ(ΩT ) + ‖([∂α, č1]∇f, [∂α, č1]f)‖L2
γ(ΩT )

. ‖f‖
H
|α|+1
γ (ΩT )

+ ‖(V̌, Ψ̌)‖
H
|α|+2
γ (ΩT )

‖f‖L∞(ΩT ). (3.50)

Since ζj = č1W + č1∇W , we apply Moser-type calculus inequalities (2.3)–(2.4) to deduce that

‖∂α(č2∇W + č2W )‖L2
γ(ΩT ) + ‖[∂α, ∂Φ̌t + v̌`∂

Φ̌
` ]ζj‖L2

γ(ΩT )

. ‖(č2∂
α∇W, č2∂

αW, [∂α, č2]W, [∂α, č2]∇W, [∂α, č1]∇2W )‖L2
γ(ΩT )

. ‖W‖
H
|α|+1
γ (ΩT )

+ ‖(V̌, Ψ̌)‖
H
|α|+3
γ (ΩT )

‖W‖L∞(ΩT ). (3.51)

Substituting (3.50) and (3.51) into (3.48) implies

γm−|α|‖∂αζj‖L2
γ(ΩT ) . ‖(W, f)‖Hm

γ (ΩT ) + ‖(V̌, Ψ̌)‖Hm+2
γ (ΩT )‖(W, f)‖L∞(ΩT ),

from which we conclude estimate (3.45) and finish the proof of this lemma. �

3.6. Vorticities. The linearized vorticities ξ± for velocities v̇± and the linearized vorticities η±j for

columns Ḟ±j of the deformation gradient are defined as

ξ± := ∂Φ̌
±

1 v̇±2 − ∂
Φ̌±
2 v̇±1 , (3.52)

η±j := ∂Φ̌
±

1 Ḟ±2j − ∂
Φ̌±
2 Ḟ±1j , (3.53)

for j = 1, 2. The following lemma gives the estimate of ξ±, η±1 , and η±2 .

Lemma 3.3 (Estimate of vorticities). If the hypotheses of Theorem 3.1 hold, then there exists a
constant γm ≥ 1, independent of T , such that

γ‖(ξ±, η±1 , η
±
2 )‖Hm−1

γ (ΩT ) . ‖(W, f)‖Hm
γ (ΩT ) + ‖(V̌, Ψ̌)‖Hm+2

γ (ΩT )‖(W, f)‖L∞(ΩT ), (3.54)

for all γ ≥ γm and solutions (W,ψ) ∈ Hm+2
γ (ΩT )×Hm+2

γ (ωT ) of problem (3.17).

Proof. The equations for v̇1 and v̇2 in (3.11a) read

(∂Φ̌t + v̌`∂
Φ̌
` )v̇i − F̌`j∂Φ̌` Ḟij +

c(ρ̌)2

ρ̌
∂Φ̌i ρ̇ = č0f + č1V̇, (3.55)

which implies the transport equation

(∂Φ̌t + v̌`∂
Φ̌
` )ξ − F̌`j∂Φ̌` ηj = č1∇f + č1f + č2∇W + č2W. (3.56)
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Moreover, it follows from (3.46) that

(∂Φ̌t + v̌`∂
Φ̌
` )ηj − F̌`j∂Φ̌` ξ = č1∇f + č1f + č2∇W + č2W. (3.57)

Apply operator e−γt∂α with |α| ≤ m− 1 to (3.56) (resp. (3.57)) and multiply the resulting identity
by e−γt∂αξ (resp. e−γt∂αηj) to obtain

1

2
(∂Φ̌t + v̌`∂

Φ̌
` )
{
|e−γt∂αξ|2 + |e−γt∂αη1|2 + |e−γt∂αη2|2

}
− F̌`j∂Φ̌`

(
e−2γt∂αξ∂αηj

)
+ γ
{
|e−γt∂αξ|2 + |e−γt∂αη1|2 + |e−γt∂αη2|2

}
= e−2γt∂αξ

{
∂α (č1∇f + č1f + č2∇W + č2W )− [∂α, ∂Φ̌t + v̌`∂

Φ̌
` ]ξ
}

+ e−2γt∂αηj

{
∂α (č1∇f + č1f + č2∇W + č2W )− [∂α, ∂Φ̌t + v̌`∂

Φ̌
` ]ηj

}
+ e−2γt

{
∂αξ[∂α, F̌`j∂

Φ̌
` ]ηj + ∂αηj [∂

α, F̌`j∂
Φ̌
` ]ξ
}
. (3.58)

It follows from constraints (3.3c) that

F̌`j∂
Φ̌
` = F̌1j∂1, x2 ≥ 0.

Then we integrate identity (3.58) over ΩT and perform the similar analysis as ζj in Lemma 3.2 to
obtain the desired estimate (3.54). The proof of the lemma is complete. �

3.7. Proof of Theorem 3.1. Thanks to Lemmas 3.2 and 3.3, we can derive the estimate for the
normal derivative of characteristic variables defined by (3.43). More precisely, in view of (3.43),
(3.52), and (1.18), we obtain

ξ± = − 1

∂2Φ̌±
∂2

(
〈∂1Φ̌

±〉2W±1
)

+ č1∂1W + č2W,

which implies

∂2W
±
1 = č1ξ

± + č1∂1W + č2W. (3.59)

Similarly, it follows from (3.44) and (3.53) that

∂2Ḟ
±
ij = č1ζ

±
j + č1η

±
j + č1∂1W + č2W, (3.60)

for i, j = 1, 2. Thanks to identities (3.59)–(3.60), we apply Moser-type calculus inequalities (2.1)–
(2.4) and use (3.42), (3.45), and (3.54) to infer that

‖∂k2W‖L2(Hm−k
γ (ωT )) . ‖W‖L2(Hm

γ (ωT )) + γ−1‖(W, f)‖Hm
γ (ΩT )

+ γ−1‖(V̌, Ψ̌)‖Hm+2
γ (ΩT )‖(W, f)‖L∞(ΩT ) (3.61)

holds for k = 1.
Taking advantage of identities (3.41), (3.59), and (3.60), we can combine estimates (3.44) and

(3.54) to prove (3.61) by finite induction in k = 1, . . . ,m. Since

‖W‖Hm
γ (ΩT ) ∼

m∑
k=0

‖∂k2W‖L2(Hm−k
γ (ωT )),

we combine (3.28) and (3.61) to get for γ sufficiently large,

γ1/2‖W‖Hm
γ (ΩT ) + ‖W nc|x2=0‖Hm

γ (ωT ) + ‖ψ‖Hm+1
γ (ωT )

. γ−1/2
∥∥f∥∥

Hm
γ (ΩT )

+ γ−3/2
∥∥f∥∥

L2(Hm+1
γ (ωT ))

+ γ−1‖g‖Hm+1
γ (ωT )

+ γ−1‖(W, f)‖L∞(ΩT )

∥∥(V̌, Ψ̌)∥∥
Hm+3
γ (ΩT )

+ γ−1‖(W nc, ψ)‖L∞(ωT )

∥∥(V̌, Ψ̌)∥∥
Hm+2
γ (ωT )

. (3.62)
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Theorem 3.3 gives the well-posedness of the effective linear problem (3.11) for source terms
(f±, g) ∈ L2(H1(ωT ))×H1(ωT ) vanishing in the past. Following [3, 25], we can use tame estimate
(3.62) to transform Theorem 3.3 into a well-posedness formulation of (3.11) in Hm. To be more

precise, following Theorem 3.1, there exists a unique solution (V̇ ±, ψ) ∈ Hm(ΩT )×Hm+1(ωT ) that
vanishes in the past and satisfies (3.62) for all γ ≥ γm.

Finally, the tame estimate (3.20) can be derived as follows. By the Sobolev embedding inequal-
ities ‖W‖L∞(ΩT ) . ‖W‖H2(ΩT ) and ‖ψ‖W 1,∞(ωT ) . ‖ψ‖H3(ωT ), as well as (3.62) with m = 2, one
has,

‖W‖L∞(ΩT ) + ‖ψ‖W 1,∞(ωT ) ≤ CT,γ
(∥∥f∥∥

H3
γ(ΩT )

+ ‖g‖H3
γ(ωT )

)
. (3.63)

Substituting (3.63) into (3.62) yields the tame estimate (3.20). The proof of Theorem 3.1 is com-
pleted. �

4. Compatibility Conditions and Approximate Solutions

To apply Theorem 3.1 in the general setting, as in [12] we need to transform the original non-
linear problem (1.11)–(1.13) into the case with zero initial data. To this end, in this section the
approximate solutions are introduced to incorporate the initial data into the interior equations. The
necessary compatibility conditions are imposed on the initial data for the construction of smooth
approximate solutions.

4.1. Compatibility Conditions. Let m ∈ N with m ≥ 3. Assume that the initial data (U±0 , ϕ0)

satisfy Ũ±0 := U±0 − U± ∈ Hm+1/2(R2
+) and ϕ0 ∈ Hm+1(R), and (Ũ±0 , ϕ0) has the following

compact support,

supp Ũ±0 ⊂ {x2 ≥ 0, x2
1 + x2

2 ≤ 1}, suppϕ0 ⊂ [−1, 1]. (4.1)

Taking advantage of the trace theorem, we can construct Φ̃+
0 = Φ̃−0 ∈ Hm+3/2(R2

+) satisfying

Φ̃±0 |x2=0 = ϕ0, supp Φ̃±0 ⊂
{
x2 ≥ 0, x2

1 + x2
2 ≤ 2

}
, (4.2)∥∥Φ̃±0 ∥∥Hm+3/2(R2

+)
≤ C‖ϕ0‖Hm+1(R). (4.3)

Define Φ±0 := Φ̃±0 + Φ±0 , which is the initial data for the problem (1.11),

Φ±|t=0 = Φ±0 . (4.4)

By (4.3) and the Sobolev embedding theorem, we have

±∂2Φ
±
0 ≥ 7/8 for all x ∈ R2

+, (4.5)

for sufficiently small ϕ0 in Hm+1(R).

Denote the perturbation by (Ũ±, Φ̃±) := (U± − U±, Φ± − Φ±), and the traces of the k-th order
time derivatives on {t = 0} by

Ũ±(k) := ∂kt Ũ
±
∣∣∣
t=0

, Φ̃±(k) := ∂kt Φ̃
±
∣∣∣
t=0

for k ∈ N. (4.6)

Note Ũ±(0) = Ũ±0 and Φ̃±(0) = Φ̃±0 .

If we denote W± := (Ũ±,∇xŨ±,∇xΦ̃±)> ∈ R23, then the first equation of (1.11) and the
equation (1.13a) can be written as

∂tΦ̃
± = G1(W±), ∂tŨ

± = G2(W±), (4.7)
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where G1 and G2 are C∞–functions vanishing at the origin. We apply ∂kt to (4.7), take the traces
initially, and adopt the generalized Faà di Bruno’s formula (see [21, Theorem 2.1]) to derive

Φ̃±(k+1) =
∑

αi∈N23,|α1|+···+k|αk|=k

Dα1+···+αkG1(W±(0))
k∏
i=1

k!

αi!

(
W±(i)
i!

)αi
, (4.8)

Ũ±(k+1) =
∑

αi∈N23,|α1|+···+k|αk|=k

Dα1+···+αkG2(W±(0))

k∏
i=1

k!

αi!

(
W±(i)
i!

)αi
, (4.9)

where W±(i) represent the traces (Ũ±(i),∇xŨ
±
(i),∇xΦ̃

±
(i)). Hence, the following lemma is obtained (see

[20, Lemma 4.2.1] for the details).

Lemma 4.1. If (4.1)–(4.5) hold, then relations (4.8) and (4.9) determine Ũ±(k) ∈ H
m+1/2−k(R2

+)

for k = 1, . . . ,m, and Φ̃±(k) ∈ H
m+3/2−k(R2

+) for k = 1, . . . ,m+ 1, which satisfy

supp Ũ±(k) ⊂ {x2 ≥ 0, x2
1 + x2

2 ≤ 1}, supp Φ̃±(k) ⊂ {x2 ≥ 0, x2
1 + x2

2 ≤ 2},
m∑
k=0

∥∥Ũ±(k)

∥∥
Hm+1/2−k(R2

+)
+

m+1∑
k=0

∥∥Φ̃±(k)

∥∥
Hm+3/2−k(R2

+)

≤ C
(∥∥Ũ±0 ∥∥Hm+1/2(R2

+)
+ ‖ϕ0‖Hm+1(R)

)
, (4.10)

for some constant C > 0 depending solely upon ‖(Ũ±0 , Φ̃
±
0 )‖W 1,∞(R2

+) and m.

To ensure the smoothness of approximate solution, we need the following compatibility conditions
for the initial data.

Definition 4.1. Let m ∈ N with m ≥ 3. Let Ũ±0 := U±0 − U
±
0 ∈ Hm+1/2(R2

+) and ϕ0 ∈ Hm+1(R)

satisfy (4.1). The initial data U±0 and ϕ0 are said to be compatible up to order m if there exist

functions Φ̃±0 ∈ Hm+3/2(R2
+) satisfying (4.2)–(4.5) and

F±2j,0 = F±1j,0∂1Φ
±
0 for j = 1, 2, (4.11)

such that functions Ũ±(0), . . . , Ũ
±
(m), Φ̃

±
(0), . . . , Φ̃

±
(m+1) determined by (4.6) and (4.8)–(4.9) satisfy(

Φ̃+
(k) − Φ̃

−
(k)

)∣∣
x2=0

= 0 for k = 0, . . . ,m, (4.12a)(
ρ̃+

(k) − ρ̃
−
(k)

)∣∣
x2=0

= 0 for k = 0, . . . ,m− 1, (4.12b)

and ∫
R2
+

∣∣Φ̃+
(m+1) − Φ̃

−
(m+1)

∣∣2 dx1
dx2

x2
<∞, (4.13a)∫

R2
+

∣∣ρ̃+
(m) − ρ̃

−
(m)

∣∣2 dx1
dx2

x2
<∞. (4.13b)

4.2. Approximate Solutions. We now start to introduce as in [12] the approximate solutions
that are solutions of problem (1.11)–(1.13) in the sense of Taylor’s expansions at t = 0.

Lemma 4.2. Let m ∈ N with m ≥ 3. Assume that Ũ±0 := U±0 − U
±
0 ∈ Hm+1/2(R2

+) and ϕ0 ∈
Hm+1(R) satisfy (4.1), and that initial data U±0 and ϕ0 are compatible up to order m. If Ũ±0 and ϕ0
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are sufficiently small, then there exist functions Ua±, Φa±, and ϕa such that Ũa± := Ua± − U± ∈
Hm(Ω), Φ̃a± := Φa± − Φ± ∈ Hm+2(Ω), ϕa ∈ Hm+3/2(∂Ω), and

∂jtL(Ua±, Φa±)|t=0 = 0, for j = 0, . . . ,m− 2, (4.14a)

∂tΦ
a± + va±1 ∂1Φ

a± − va±2 = 0, in Ω, (4.14b)

± ∂2Φ
a± ≥ 3/4, in Ω, (4.14c)

Φa+ = Φa− = ϕa, on ∂Ω, (4.14d)

B(Ua+, Ua−, ϕa) = 0, on ∂Ω, (4.14e)

F a±2j = F a±1j ∂1Φ
a±, on Ω, for j = 1, 2. (4.14f)

Furthermore, we have

supp
(
Ũa±, Φ̃a±

)
⊂
{
t ∈ [−T, T ], x2 ≥ 0, x2

1 + x2
2 ≤ 3

}
, (4.15)∥∥Ũa±∥∥

Hm(Ω)
+
∥∥Φ̃a±∥∥

Hm+2(Ω)
+ ‖ϕa‖Hm+3/2(∂Ω)

≤ ε0

(∥∥Ũ±0 ∥∥Hm+1/2(R2
+)

+ ‖ϕ0‖Hm+1(R)

)
, (4.16)

where ε0(·) denotes a generic function that tends to zero as its argument tends to zero.

Proof. The proof is divided into four steps.

Step 1. First we take ρ̃a−, ṽa±1 ∈ Hm+1(Ω) and Φ̃a− ∈ Hm+2(Ω) to satisfy(
∂kt ρ̃

a−, ∂kt ṽ
a±
1

)∣∣
t=0

=
(
ρ̃−(k), ṽ

±
1(k)

)
, for k = 0, . . . ,m,

∂kt Φ̃
a−∣∣

t=0
= Φ̃−(k), for k = 0, . . . ,m+ 1,

where ρ̃−(k), ṽ
±
1(k), and Φ̃−(k) are constructed in Lemma 4.1. Thanks to compatibility conditions

(4.12)–(4.13), we can apply the lifting result in [19, Theorem 2.3] to choose ρ̃a+ ∈ Hm+1(Ω) and

Φ̃a+ ∈ Hm+2(Ω) such that

∂kt ρ̃
a+
∣∣
t=0

= ρ̃+
(k), for k = 0, . . . ,m,

∂kt Φ̃
a+
∣∣
t=0

= Φ̃+
(k), for k = 0, . . . ,m+ 1,

and

[ρ̃a] = 0, [Φ̃a] = 0 on ∂Ω.

Moreover, ρ̃a±, ṽa±1 , and Φ̃a± can be taken to satisfy (4.15), because (Ũ±(k), Φ̃
±
(k)) have a compact

support.

Step 2. Let us define

ϕa = Φ̃a+
∣∣
x2=0

= Φ̃a−
∣∣
x2=0

∈ Hm+3/2(∂Ω),

ṽa±2 = ∂tΦ̃
a± + (ṽa±1 ± v̄)∂1Φ̃

a± ∈ Hm+1(Ω).

Hence, we deduce that functions ṽa±2 satisfy (4.15), and (4.14b), (4.14d), and (4.14e) hold.

Step 3. Note that ṽa± ∈ Hm+1(Ω) and Φ̃a± ∈ Hm+2(Ω) have been already specified. Then we take

F̃ a±ij ∈ Hm(Ω), for i, j = 1, 2, as the unique solution of transport equation(
∂Φ

a±
t + va±` ∂Φ

a±
`

)
F̃ a±ij − F

a±
`j ∂

Φa±
` va±i = 0 on Ω, (4.17)
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supplemented with the initial data

F̃ a±ij
∣∣
t=0

= F̃±ij(0) ∈ H
m+1/2(R2

+). (4.18)

It follows from (4.11) and (4.18) that constraints (4.14f) are satisfied at the initial time. Conse-
quently, similar to the proof of Proposition 1.1, we can deduce (4.14f) for all t ∈ R.

Step 4. Equations (4.8)–(4.9) imply (4.14a). Estimate (4.16) follows from (4.10) and the continuity
of the lifting operator. From (4.16) and the Sobolev embedding theorem, we can obtain (4.14c)
provided the initial perturbations are small enough. This finishes the proof. �

We write Ua := (Ua+, Ua−)> and Φa := (Φa+, Φa−)> for short, and the vector (Ua, Φa) con-
structed in Lemma 4.2 is the approximate solution to (1.11)–(1.13). From (4.14d) and (4.15), ϕa is
supported within {−T ≤ t ≤ T, x2

1 ≤ 3}. By (4.16) and the Sobolev embedding theorem, we have∥∥Ũa±∥∥
W 2,∞(Ω)

+
∥∥Φ̃a±∥∥

W 3,∞(Ω)
≤ ε0

(∥∥Ũ±0 ∥∥Hm+1/2(R2
+)

+ ‖ϕ0‖Hm+1(R)

)
for any integer m ≥ 4. We can now transfer (1.11)–(1.13) into a problem with zero initial data
as follows. Define the function fa as: fa = −L(Ua, Φa) for t > 0, and fa = 0 for t < 0. Then
fa ∈ Hm−1(Ω) and supp fa ⊂

{
0 ≤ t ≤ T, x2 ≥ 0, x2

1 + x2
2 ≤ 3

}
from (4.14a) and (4.15) as well as

(Ũa±,∇Φ̃a±) ∈ Hm(Ω). Moreover, the Moser-type calculus inequalities and (4.16) imply

‖fa‖Hm−1(Ω) ≤ ε0

(∥∥Ũ±0 ∥∥Hm+1/2(R2
+)

+ ‖ϕ0‖Hm+1(R)

)
. (4.19)

Finally, by (4.14), (U,Φ) = (Ua, Φa) + (V, Ψ) is a solution to the original problem (1.11)–(1.13) on
[0, T ]× R2

+, if V = (V +, V −)> and Ψ = (Ψ+, Ψ−)> solve the problem as follow:
L(V, Ψ) := L(Ua + V, Φa + Ψ)− L(Ua, Φa) = fa, in ΩT ,

E(V, Ψ) := ∂tΨ + (va1 + v1)∂1Ψ + v1∂1Φ
a − v2 = 0, in ΩT ,

B(V, ψ) := B(Ua + V, ϕa + ψ) = 0, Ψ+ = Ψ− = ψ, on ωT ,

(V, Ψ) = 0, t < 0.

(4.20)

Therefore, we only need to solve the above problem (4.20) on [0, T ]× R2
+.

5. Nash–Moser Iteration

In this section we solve the problem (4.20) by an appropriate modification of the Nash–Moser
iteration scheme. We first describe the iterative scheme for problem (4.20) and present the inductive
hypothesis. Then we conclude the proof of Theorem 1.1 by showing that the inductive hypothesis
holds for all integers. We remark that this section follows closely the standard procedure in [12]
(also see [4]).

5.1. Iterative Scheme. We first recall the following result from [12, Proposition 4].

Proposition 5.1. Let T > 0, γ ≥ 1, and m ∈ N with m ≥ 4. Then there exists a family {Sθ}θ≥1

of smoothing operators

Sθ : F3
γ (ΩT )×F3

γ (ΩT ) −→
⋂
s≥3

Fsγ(ΩT )×Fsγ(ΩT ),
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where Fsγ(ΩT ) :=
{
u ∈ Hs

γ(ΩT ) : u = 0 if t < 0
}

for s ≥ 0, such that

‖Sθu‖Hk
γ (ΩT ) . θ

(k−`)+‖u‖H`
γ(ΩT ) for `, k = 1, . . . ,m, (5.1a)

‖Sθu− u‖Hk
γ (ΩT ) . θ

k−`‖u‖H`
γ(ΩT ) for 1 ≤ k ≤ ` ≤ m, (5.1b)∥∥∥∥ d

dθ
Sθu

∥∥∥∥
Hk
γ (ΩT )

. θk−`−1‖u‖H`
γ(ΩT ) for `, k = 1, . . . ,m, (5.1c)

and

‖Sθu− Sθw‖Hk
γ (ωT ) . θ

(k+1−`)+‖u− w‖H`
γ(ωT ) for `, k = 1, . . . ,m, (5.2)

where ` and k are integers, and (k − `)+ := max{0, k − `}. In particular, if u = w on ωT , then
Sθu = Sθw on ωT . Moreover, the smoothing operators acting on the functions defined on ωT can
be constructed analogously (still denoted by Sθ for notational simplicity), which also satisfies the
inequalities (5.1) with norms ‖ · ‖H`

γ(ωT ).

The next lemma provides us a lifting operator that will be used for constructing the iterative
scheme and the modified state (see [15, Chapter 5] and [12] for the proof).

Lemma 5.2. Let T > 0, γ ≥ 1, and m ∈ N+. Then there exists an operator RT that is continuous

from Fsγ(ωT ) to Fs+1/2
γ (ΩT ) and satisfies (RTu)|x2=0 = u when u ∈ Fsγ(ωT ) for all s ∈ [1,m].

Now we follow [4, 12] to describe the iteration scheme for problem (4.20). Let N ≥ 1 be any
given integer. First we set (V0, Ψ0, ψ0) = 0 and let (Vn, Ψn, ψn) be given and satisfy

(Vn, Ψn, ψn)
∣∣
t<0

= 0, Ψ+
n

∣∣
x2=0

= Ψ−n
∣∣
x2=0

= ψn for n = 0, . . . , N. (5.3)

We consider

VN+1 = VN + δVN , ΨN+1 = ΨN + δΨN , ψN+1 = ψN + δψN , (5.4)

where differences δVN , δΨN , and δψN will be constructed via the problem
L′e(Ua + VN+1/2, Φ

a + ΨN+1/2)δV̇N = fN in ΩT ,

B′e(Ua + VN+1/2, Φ
a + ΨN+1/2)(δV̇N , δψN ) = gN on ωT ,

(δV̇N , δψN ) = 0 for t < 0.

(5.5)

Here operators L′e and B′e are given in (3.11a) and (3.11b), respectively, (VN+1/2, ΨN+1/2) is a
modified state such that (Ua + VN+1/2, Φ

a + ΨN+1/2) satisfies constraints (3.2)–(3.3), and source
term (fN , gN ) will be determined later on. See Section 5.3 for the detailed construction of the
modified state. As in (3.10), we write

δV̇N := δVN −
∂2(Ua + VN+1/2)

∂2(Φa + ΨN+1/2)
δΨN . (5.6)

Then, we set f0 := Sθ0fa and (e0, ẽ0, g0) := 0 for θ0 ≥ 1 sufficiently large, and let (fn, gn, en, ẽn)
be given and vanish in the past for n = 0, . . . , N − 1. We determine fN and gN by

N∑
n=0

fn + SθNEN = SθN f
a,

N∑
n=0

gn + SθN ẼN = 0, (5.7)

where

EN :=

N−1∑
n=0

en ∈ R14, ẼN :=

N−1∑
n=0

ẽn ∈ R3, (5.8)
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and SθN are the smoothing operators given in Proposition 5.1 with {θN} defined by

θ0 ≥ 1, θN =
√
θ2

0 +N. (5.9)

As a consequence, we can use Theorem 3.1 to solve (δV̇N , δψN ) for problem (5.5).
According to (5.6), we need to construct functions δΨ+

N and δΨ−N such that δΨ±N
∣∣
x2=0

= δψN .

From the boundary conditions in (5.5) (cf. (3.7), (3.8), and (3.12)), we obtain that δψN satisfies

∂t(δψN ) + U+
N+1/2,2∂1(δψN ) +

(
∂1Φ

+
N+1/2

∂2U
+
N+1/2,2

∂2Φ
+
N+1/2

−
∂2U

+
N+1/2,3

∂2Φ
+
N+1/2

)
δψN

+ ∂1Φ
+
N+1/2δV̇

+
N,2 − δV̇

+
N,3 = gN,2 on ωT ,

∂t(δψN ) + U−N+1/2,2∂1(δψN ) +

(
∂1Φ

−
N+1/2

∂2U
−
N+1/2,2

∂2Φ
−
N+1/2

−
∂2U

−
N+1/2,3

∂2Φ
−
N+1/2

)
δψN

+ ∂1Φ
−
N+1/2δV̇

−
N,2 − δV̇

−
N,3 = gN,2 − gN,1 on ωT ,

where we define U±N+1/2 := Ua± + V ±N+1/2 and Φ±N+1/2 := Φa± + Ψ±N+1/2 for simplifying the presen-

tation. In accordance with the identities above, we take δΨ+
N and δΨ−N as the solutions to transport

equations

∂t(δΨ
+
N ) + U+

N+1/2,2∂1(δΨ+
N ) +

(
∂1Φ

+
N+1/2

∂2U
+
N+1/2,2

∂2Φ
+
N+1/2

−
∂2U

+
N+1/2,3

∂2Φ
+
N+1/2

)
δΨ+

N

+ ∂1Φ
+
N+1/2δV̇

+
N,2 − δV̇

+
N,3 = RT gN,2 + h+

N , (5.10)

∂t(δΨ
−
N ) + U−N+1/2,2∂1(δΨ−N ) +

(
∂1Φ

−
N+1/2

∂2U
−
N+1/2,2

∂2Φ
−
N+1/2

−
∂2U

−
N+1/2,3

∂2Φ
−
N+1/2

)
δΨ−N

+ ∂1Φ
−
N+1/2δV̇

−
N,2 − δV̇

−
N,3 = RT (gN,2 − gN,1) + h−N , (5.11)

where RT is the lifting operator given in Lemma 5.2 and we will choose source terms h±N through
a decomposition for operator E defined by (4.20).

Finally, we set (h+
0 , h

−
0 , ê0) = 0, and let (h+

n , h
−
n , ên) be given and vanish in the past for n =

0, . . . , N − 1. Under the above settings, we compute h+
N and h−N from

SθN
(
Ê+
N −RT ẼN,2

)
+

N∑
n=0

h+
n = 0, (5.12a)

SθN
(
Ê−N −RT ẼN,2 +RT ẼN,1

)
+

N∑
n=0

h−n = 0, (5.12b)

where

ÊN = (Ê+
N , Ê

−
N )> =

N−1∑
n=0

ên ∈ R2, (5.13)

and h±N = 0 for t < 0. As in [15], we can show that the traces of h±N on ωT vanish. Consequently,

we can deduce that δΨ±N = 0, for t < 0 and δΨ±N |x2=0 = δψN . They are the unique smooth
solutions satisfying transport equations (5.10)–(5.11). Hence, δVN can be obtained from (5.6) and
(VN+1, ΨN+1, ψN+1) can be derived from (5.4).
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From (5.8)–(5.7) and (5.12)–(5.13), it suffices to define the error terms eN , ẽN , and êN . To this
end, by an analogous argument in [4, 12], we decompose

L(VN+1, ΨN+1)− L(VN , ΨN )

= L′e(Ua + VN+1/2, Φ
a + ΨN+1/2)δV̇N + e′N + e′′N + e′′′N +DN+1/2δΨN (5.14)

and

B(VN+1, ψN+1)− B(VN , ψN )

= B′e(Ua + VN+1/2, Φ
a + ΨN+1/2)(δV̇N , δψN ) + ẽ′N + ẽ′′N + ẽ′′′N , (5.15)

where

e′N := L(VN+1, ΨN+1)− L(VN , ΨN )− L′(Ua + VN , Φ
a + ΨN )(δVN , δΨN ),

e′′N := L′(Ua + VN , Φ
a + ΨN )(δVN , δΨN )− L′(Ua + SθNVN , Φ

a + SθNΨN )(δVN , δΨN ),

e′′′N := L′(Ua + SθNVN , Φ
a + SθNΨN )(δVN , δΨN )− L′(Ua + VN+1/2, Φ

a + ΨN+1/2)(δVN , δΨN ),

DN+1/2 :=
(
∂2(Φa + ΨN+1/2)

)−1
∂2L(Ua + VN+1/2, Φ

a + ΨN+1/2), (5.16)

and

ẽ′N := B(VN+1, ψN+1)− B(VN , ψN )− B′(Ua + VN , ϕ
a + ψN )(δVN , δψN ),

ẽ′′N := B′(Ua + VN , ϕ
a + ψN )(δVN , δψN )

− B′(Ua + SθNVN , ϕ
a + (SθNΨN )|x2=0)(δVN , δψN ),

ẽ′′′N := B′(Ua + SθNVN , ϕ
a + (SθNΨN )|x2=0)(δVN , δψN )

− B′e(Ua + VN+1/2, Φ
a + ΨN+1/2)(δV̇N , δψN ).

Take

eN := e′N + e′′N + e′′′N +DN+1/2δΨN , ẽN := ẽ′N + ẽ′′N + ẽ′′′N . (5.17)

As for error term êN , we decompose

E(VN+1, ΨN+1)− E(VN , ΨN ) = E ′(VN+1/2, ΨN+1/2)(δVN , δΨN ) + ê′N + ê′′N + ê′′′N , (5.18)

and set

êN := ê′N + ê′′N + ê′′′N , (5.19)

where

ê′N := E(VN+1, ΨN+1)− E(VN , ΨN )− E ′(VN , ΨN )(δVN , δΨN ),

ê′′N := E ′(VN , ΨN )(δVN , δΨN )− E ′(SθNVN ,SθNΨN )(δVN , δΨN ),

ê′′′N := E ′(SθNVN ,SθNΨN )(δVN , δΨN )− E ′(VN+1/2, ΨN+1/2)(δVN , δΨN ).

It follows from (4.14b) that

E(V, Ψ) = ∂t(Φ
a + Ψ) + (va1 + v1)∂1(Φa + Ψ)− (va2 + v2).

Then we derive from (5.10)–(5.11) and (5.18) that(
E(V +

N+1, Ψ
+
N+1)− E(V +

N , Ψ
+
N )

E(V −N+1, Ψ
−
N+1)− E(V −N , Ψ

−
N )

)
=

(
RT gN,2 + h+

N + ê+
N

RT (gN,2 − gN,1) + h−N + ê−N

)
.

Thus, by E(V0, Ψ0) = 0, one has

E(V −N+1, Ψ
−
N+1) = RT

(
N∑
n=0

(gn,2 − gn,1)

)
+

N∑
n=0

h−n + Ê−N+1. (5.20)
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Furthermore, we obtain from (5.5) and (5.15) that

gN = B(VN+1, ψN+1)− B(VN , ψN )− ẽN . (5.21)

Denote by B(VN+1, ψN+1)j the jth component of the vector B(VN+1, ψN+1) for j = 1, 2. From
(4.20) and (1.15),

B(VN+1, ψN+1)2 = E(V +
N+1, Ψ

+
N+1)|x2=0 = E(V −N+1, Ψ

−
N+1)|x2=0 + B(VN+1, ψN+1)1. (5.22)

Using (5.21), we have

gN,2 − gN,1 = E(V −N+1, Ψ
−
N+1)|x2=0 − E(V −N , Ψ

−
N )|x2=0 − ẽN,2 + ẽN,1. (5.23)

Then, (5.23) and (5.20) yield

E(V −N+1, Ψ
−
N+1) = RT

(
E
(
V −N+1, Ψ

−
N+1

)
|x2=0 − ẼN+1,2 + ẼN+1,1

)
+

N∑
n=0

h−n + Ê−N+1, (5.24)

and similarly,

E(V +
N+1, Ψ

+
N+1) = RT

(
E
(
V +
N+1, Ψ

+
N+1

)
|x2=0 − ẼN+1,2

)
+

N∑
n=0

h+
n + Ê+

N+1. (5.25)

From (5.14) and (5.21), together with (5.5) and (5.7), one has

L(VN+1, ΨN+1) =
N∑
N=0

fN + EN+1 = SθN f
a + (I − SθN )EN + eN , (5.26)

B(VN+1, ψN+1) =
N∑
N=0

gN + ẼN+1 = (I − SθN )ẼN + ẽN . (5.27)

Substituting (5.12) into (5.24)–(5.25) and using (5.22), we get

E(V −N+1, Ψ
−
N+1) = RT

(
B(VN+1, ψN+1)2 − B(VN+1, ψN+1)1

)
+ (I − SθN )

(
Ê−N −RT

(
ẼN,2 − ẼN,1

))
+ ê−N −RT

(
ẽN,2 − ẽN,1

)
,

E(V +
N+1, Ψ

+
N+1) = RT

(
B(VN+1, ψN+1)2

)
+ (I − SθN )

(
Ê+
N −RT ẼN,2

)
+ ê+

N −RT ẽN,2.

(5.28)

From SθN → Id as N →∞, we conclude that if the error terms (eN , ẽN , êN ) tend to zero, then

(L(VN+1, ΨN+1),B(VN+1, ψN+1), E(VN+1, ΨN+1))→ (fa, 0, 0),

thus, the solution to (4.20) can be obtained formally.
In order to estimate the error terms, we need to introduce the inductive hypothesis as follows.

Let us take an integer µ ≥ 4, a small number ε > 0, and another integer µ̃ > µ, which will be
determined later. Suppose that we have the estimate

‖Ũa‖
Hµ̃+4
γ (ΩT )

+ ‖Φ̃a‖
Hµ̃+5
γ (ΩT )

+ ‖ϕa‖
H
µ̃+9/2
γ (ωT )

+ ‖fa‖
Hµ̃+3
γ (ΩT )

≤ ε, (5.29)
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then our inductive hypothesis HN−1 consists of the following four parts:

(1) ‖(δVn, δΨn)‖Hm
γ (ΩT ) + ‖δψn‖Hm+1

γ (ωT ) ≤ εθ
m−µ−1
n ∆n, n = 0, . . . , N − 1, m = 2, . . . , µ̃,

(2) ‖L(Vn, Ψn)− fa‖Hm
γ (ΩT ) ≤ 2εθm−µ−1

n , n = 0, . . . , N − 1, m = 2, . . . , µ̃− 1,

(3) ‖B(Vn, ψn)‖Hm
γ (ωT ) ≤ εθm−µ−1

n , n = 0, . . . , N − 1, m = 3, . . . , µ,

(4) ‖E(Vn, Ψn)‖H3
γ(ΩT ) ≤ εθ2−µ

n , n = 0, . . . , N − 1,

where θn is given in (5.9) and ∆n := θn+1 − θn decreases to zero with

1

3θn
≤ ∆n := θn+1 − θn =

√
θ2
n + 1− θn ≤

1

2θn
, n ∈ N. (5.30)

We shall show that for sufficiently small ε and fa, and for sufficiently large θ0 ≥ 1, H0 is true
and HN−1 implies HN , thus HN is true for all n ∈ N, which will allow us to prove Theorem 1.1
completely.

Now we assume that HN−1 holds, hence have the following estimates as in [12, Lemmas 6–7].

Lemma 5.3. If θ0 is sufficiently large, then

‖(Vn, Ψn)‖Hm
γ (ΩT ) + ‖ψn‖Hm+1

γ (ωT ) ≤

{
εθ(m−µ)+
n , if m 6= µ,

ε log θn, if m = µ,
(5.31)

‖((I − Sθn)Vn, (I − Sθn)Ψn)‖Hm
γ (ΩT ) ≤ Cεθm−µn , (5.32)

for n = 0, . . . , N , and m = 2, . . . , µ̃. Furthermore,

‖(SθnVn,SθnΨn)‖Hm
γ (ΩT ) ≤

{
Cεθ(m−µ)+

n , if m 6= µ,

Cε log θn, if m = µ,
(5.33)

for n = 0, . . . , N , and m = 2, . . . , µ̃+ 5.

5.2. Estimate of the Quadratic and First Substitution Error Terms. First we rewrite
quadratic error terms e′n, ẽ′n, and ê′n, in (5.14), (5.15), and (5.18) respectively, as

e′n =

∫ 1

0
L′′
(
Ua + Vn + τδVn, Φ

a + Ψn + τδΨn
)(

(δVn, δΨn), (δVn, δΨn)
)
(1− τ) dτ,

ẽ′n =

∫ 1

0
B′′
(
Ua + Vn + τδVn, ϕ

a + ψn + τδψn
)(

(δVn, δψn), (δVn, δψn)
)
(1− τ) dτ,

ê′n =

∫ 1

0
E ′′
(
Vn + τδVn, Ψn + τδΨn

)(
(δVn, δΨn), (δVn, δΨn)

)
(1− τ) dτ,

where L′′, B′′, and E ′′ are the second derivatives of operators L, B, and E respectively. More
precisely, we define

L′′
(
Ǔ, Φ̌

)(
(V, Ψ), (Ṽ , Ψ̃)

)
:=

d

dθ
L′
(
Ǔ + θṼ , Φ̌+ θΨ̃

)(
V, Ψ

)∣∣∣∣
θ=0

,

B′′(Ǔ, ϕ̌)
(
(V, ψ), (Ṽ , ψ̃)

)
:=

d

dθ
B′(Ǔ + θṼ , ϕ̌+ θψ̃)(V, ψ)

∣∣∣∣
θ=0

,

E ′′
(
V̌, Ψ̌

)(
(V, Ψ), (Ṽ , Ψ̃)

)
:=

d

dθ
E ′
(
V̌ + θṼ , Ψ̌ + θΨ̃

)(
V, Ψ

)∣∣∣∣
θ=0

,

where operators L′ and B′ are given in (3.4)–(3.5), and E ′ is defined by

E ′
(
V̌, Ψ̌

)
(V, Ψ) :=

d

dθ
E
(
V̌ + θV, Ψ̌ + θΨ

)∣∣∣∣
θ=0

.
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In fact, in our case, we have the following:

B′′(Ǔ, ϕ̌)
(
(V, ψ), (Ṽ , ψ̃)

)
=

 [ṽ1]∂1ψ + ∂1ψ̃[v1]

ṽ+
1 |x2=0∂1ψ + ∂1ψ̃v

+
1 |x2=0

0

 , (5.34)

E ′′
(
V̌, Ψ̌

)(
(V, Ψ), (Ṽ , Ψ̃)

)
= ṽ+

1 ∂1Ψ + ∂1Ψ̃v
+
1 . (5.35)

A straightforward computation with an application of the Moser-type calculus inequality (2.1)
yields the next proposition (see [12, Proposition 5]).

Proposition 5.4. Let T > 0 and m ∈ N with m ≥ 2. If (Ṽ , Ψ̃) belongs to Hm+1
γ (ΩT ) for all γ ≥ 1

and satisfies ‖(Ṽ , Ψ̃)‖W 1,∞(ΩT ) ≤ K̃ for some positive constant K̃, then there exist two constants

K̃0 > 0 and C > 0, independent of T and γ, such that, if K̃ ≤ K̃0 and γ ≥ 1, then∥∥L′′(U + Ṽ , Φ+ Ψ̃
)(

(V1, Ψ1), (V2, Ψ2)
)∥∥
Hm
γ (ΩT )

≤ C‖(V1, Ψ1)‖W 1,∞(ΩT )‖(V2, Ψ2)‖W 1,∞(ΩT )

∥∥(Ṽ , Ψ̃)∥∥
Hm+1
γ (ΩT )

+ C
∑
i 6=j
‖(Vi, Ψi)‖Hm+1

γ (ΩT )‖(Vj , Ψj)‖W 1,∞(ΩT ),

∥∥E ′′(Ṽ , Ψ̃)((V1, Ψ1), (V2, Ψ2)
)∥∥
Hm
γ (ΩT )

≤ C
∑
i 6=j

{
‖Vi‖Hm

γ (ΩT )‖Ψj‖W 1,∞(ΩT ) + ‖Vi‖L∞(ΩT )‖Ψj‖Hm+1
γ (ΩT )

}
,

and ∥∥B′′(U + Ṽ , ψ̃
)(

(W1, ψ1), (W2, ψ2)
)∥∥
Hm
γ (ωT )

≤ C
∑
i 6=j

{
‖Wi‖Hm

γ (ωT )‖ψj‖W 1,∞(ωT ) + ‖Wi‖L∞(ωT )‖ψj‖Hm+1
γ (ωT )

}
,

where (Vi, Ψi) ∈ Hm+1
γ (ΩT ) and (Wi, ψi) ∈ Hm

γ (ωT )×Hm+1
γ (ωT ) for i = 1, 2, symbol ψ̃ represents

the trace of Ψ̃ on ωT , and (U,Φ) is the background state defined by (1.19).

In view of (5.29)–(5.31) and the hypothesis HN−1, as in [12, Lemma 8] or [4, Lemma 8.3], we can
apply Proposition 5.4, the Sobolev embedding theorem, and the trace estimate to get the following
estimate.

Lemma 5.5. If µ ≥ 4, then there exist ε > 0 suitably small and θ0 ≥ 1 large enough such that

‖(e′n, ê′n)‖Hm
γ (ΩT ) + ‖ẽ′n‖Hm

γ (ωT ) ≤ Cε2θ`1(m)−1
n ∆n,

for m = 2, . . . , µ̃−1, and n = 0, . . . , N−1, where `1(m) := max{(m+1−µ)+ +4−2µ,m+2−2µ}.

For the first substitution error terms e′′n, ẽ′′n, and ê′′n defined in (5.14), (5.15), and (5.18), as in [12,
Lemma 9] or [4, Lemma 8.4], we can apply Proposition 5.4 and use (5.29), (5.32)–(5.33), hypothesis
(Hn−1), and the trace theorem to derive the next lemma.

Lemma 5.6. If µ ≥ 4, then there exist ε > 0 suitably small and θ0 ≥ 1 large enough such that

‖(e′′n, ê′′n)‖Hm
γ (ΩT ) ≤ Cε2θ`2(m)−1

n ∆n if m = 2, . . . , µ̃− 1,

‖ẽ′′n‖Hm
γ (ωT ) ≤ Cε2θ`2(m)−1

n ∆n if m = 2, . . . , µ̃− 2,

for n = 0, . . . , N − 1, where

`2(m) := max{(m+ 1− µ)+ + 6− 2µ,m+ 5− 2µ}.
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We emphasize that Proposition 5.4 reduces the estimate for ‖ẽ′′n‖Hm
γ (ωT ) to that for the terms

involving ‖(I − Sθn)Ψn‖Hm+2
γ (ΩT ), which requires condition m ≤ µ̃− 2 in order to apply inequality

(5.32).

5.3. Construction and Estimate of the Modified State. To control the remaining error terms,
we construct and estimate the modified state (VN+1/2, ΨN+1/2, ψN+1/2) in the following lemma.

Lemma 5.7. If µ ≥ 5, then there exist functions VN+1/2, ΦN+1/2, and ψN+1/2, which vanish in
the past, such that (Ua +VN+1/2, Φ

a +ΨN+1/2, ϕ
a +ψN+1/2) satisfies (3.3b)–(3.3c), where (Ua, Φa)

is the approximate solution given in Lemma 4.2. Furthermore,

Ψ±N+1/2 = SθnΨ±N , ψN+1/2 = (SθnΨ±N )|x2=0, (5.36)

v±N+1/2,1 = Sθnv±N,1, (5.37)

‖SθnVN − VN+1/2‖Hm
γ (ΩT ) ≤ Cεθm+2−µ

n for m = 2, . . . , µ̃+ 3. (5.38)

Proof. We divide the proof into four steps.

Step 1. It follows from (5.2)–(5.3) that (SθnΨ+
N )|x2=0 = (SθnΨ−N )|x2=0, and hence we can define

Ψ±N+1/2, ψN+1/2, and v±N+1/2,1 by (5.36)–(5.37). Thanks to (4.14d), constraint (3.3d) holds for

(Φa + ΨN+1/2, ϕ
a + ψN+1/2). As in [12, Proposition 7], we define

ρ±N+1/2 := SθNρ
±
N ∓

1

2
RT

(
(SθNρ

+
N )|x2=0 − (SθNρ

−
N )|x2=0

)
,

v±N+1/2,2 := ∂tΨ
±
N+1/2 +

(
va±1 + v±N+1/2,1

)
∂1Ψ

±
N+1/2 + v±N+1/2,1∂1Φ

a±,

so that [ρa+ρN+1/2] = 0 on ∂Ω, and constraints (3.3b), (3.3e) hold for (va+vN+1/2, Φ
a+ΨN+1/2, ϕ

a+
ψN+1/2), due to (4.14e), Lemma 5.2, and (4.14b).

Step 2. From (5.4), the trace theorem, and the hypothesis HN−1, we have

‖ρ+
N − ρ

−
N‖Hm

γ (ωT ) ≤ ‖ρ+
N−1 − ρ

−
N−1‖Hm

γ (ωT ) + ‖δρ+
N−1 − δρ

−
N−1‖Hm

γ (ωT )

≤ ‖B(VN−1, ψN−1)‖Hm
γ (ωT ) + C‖δρN−1‖Hm+1

γ (ΩT )

≤ Cεθm−µ−1
N for m ∈ [3, µ]. (5.39)

Then we use Lemma 5.2, (5.2), and (5.39) to obtain

‖ρN+1/2 − SθNρN‖Hm
γ (ΩT ) ≤ C‖SθNρ

+
N − SθNρ

−
N‖Hm

γ (ωT )

≤

{
C‖ρ+

N − ρ
−
N‖Hm+1

γ (ωT ) ≤ Cεθ
m−µ
N , if 2 ≤ m ≤ µ− 1,

Cθm+1−µ
N ‖ρ+

N − ρ
−
N‖Hµ

γ (ωT ) ≤ Cεθ
m−µ
N , if m ≥ µ.

(5.40)

Step 3. Using (5.36), we compute

vN+1/2,2 − SθN vN,2 = SθNE(VN , ΨN ) + [∂t + va1∂1,SθN ]ΨN + [∂1Φ
a,SθN ]vN,1

+ SθN vN,1∂1SθNΨN − SθN (vN,1∂1ΨN ). (5.41)

Using the decomposition

E(VN , ΨN ) = E(VN−1, ΨN−1) + ∂t(δΨN−1) + (va1 + vN−1,1)∂1(δΨN−1)

+ δvN−1,1∂1(Φa + ΨN )− δvN−1,2,

the Moser-type calculus inequality (2.1), hypothesis (HN−1), and (5.31) leads to

‖E(VN , ΨN )‖H3
γ(ΩT ) ≤ Cεθ

2−µ
N ,
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which together with (5.1a) implies

‖SθNE(VN , ΨN )‖Hm
γ (ΩT ) ≤ Cεθ

m−µ
N , for m ≥ 2. (5.42)

The remaining terms on the right-hand side of (5.41) are all commutators. Let us detail the
estimate of [va1∂1,SθN ]ΨN . We utilize (2.1), the Sobolev embedding theorem, (5.1a), (5.29), and
(5.33) to get

‖[va1∂1,SθN ]ΨN‖Hm
γ (ΩT ) ≤ ‖va1∂1(SθNΨN )‖Hm

γ (ΩT ) + ‖SθN (va1∂1ΨN )‖Hm
γ (ΩT )

≤ C‖SθNΨN‖Hm+1
γ (ΩT ) + C‖ṽa1‖Hm

γ (ΩT )‖SθNΨN‖H3
γ(ΩT )

+ Cθm−µN ‖va1∂1ΨN‖Hµ
γ (ΩT )

≤ Cεθm−µ+1
N for µ+ 1 ≤ m ≤ µ̃+ 4.

If 2 ≤ m ≤ µ, then it follows from (5.1b) and (5.31)–(5.32) that

‖[va1∂1,SθN ]ΨN‖Hm
γ (ΩT ) ≤ ‖va1∂1((SθN − I)ΨN )‖Hm

γ (ΩT ) + ‖(I − SθN )(va1∂1ΨN )‖Hm
γ (ΩT )

≤ C‖(SθN − I)ΨN‖Hm+1
γ (ΩT ) + Cθm−µN ‖va1∂1ΨN‖Hµ

γ (ΩT ) ≤ Cεθ
m−µ+1
N .

Performing the same analysis to the other commutators in (5.41) and using (5.42), we obtain

‖vN+1/2,2 − SθN vN,2‖Hm
γ (ΩT ) ≤ Cεθ

m−µ+1
N for m = 2, . . . , µ̃+ 4. (5.43)

Step 4. Let us now construct and estimate of FN+1/2 by following the idea of Secchi–Trakhinin
[30, Proposition 28]. According to Step 1, we have already specified functions vN+1/2 and ΨN+1/2.
Then we can take FN+1/2 as the unique solution vanishing in the past of linear equations

LFij (v
a + vN+1/2,F

a + FN+1/2, Φ
a + ΨN+1/2) = 0 for i, j = 1, 2, (5.44)

where LFij denotes the component of operator L corresponding to Fij , i.e.,

LFij (v,F , Φ) :=
(
∂Φt + v`∂

Φ
`

)
Fij − F`j∂Φ` vi. (5.45)

Since (va + vN+1/2, Φ
a + ΨN+1/2) satisfies (3.3b), equations (5.44) do not need to be supplemented

with any boundary condition.
When estimating FN+1/2 − SθNFN , we apply standard energy method. To this end, we obtain

from (5.44) that

LFij (v
a + vN+1/2,FN+1/2 − SθNFN , Φ

a + ΨN+1/2) = H1 +H2 +H3, (5.46)

where

H1 := − LFij (v
a + vN+1/2,F

a + SθNFN , Φ
a + ΨN+1/2)

+ LFij (v
a + SθN vN ,F

a + SθNFN , Φ
a + SθNΨN ),

H2 := − LFij (v
a + SθN vN ,F

a + SθNFN , Φ
a + SθNΨN )

+ SθNLFij (v
a + vN ,F

a + FN , Φ
a + ΨN ),

and H3 := −SθNLFij (va + vN ,F
a + FN , Φ

a + ΨN ). From (5.36), we compute

H1 = (SθN vN,` − vN+1/2,`)∂
Φa+ΨN+1/2

` (F aij + SθNFN,ij)

− (F a`j + SθNFN,`j)∂
Φa+ΨN+1/2

` (SθN vN,i − vN+1/2,i).
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Apply Moser-type calculus inequality (2.1) to the last identity and use the Sobolev embedding,
(5.36)–(5.37), (5.43), (5.29), and (5.33) to obtain

‖H1‖Hm
γ (ΩT ) ≤ C‖SθN vN − vN+1/2‖H3

γ(ΩT )‖(F̃ a,SθNFN , Φ̃
a,SθNΨN )‖Hm+1

γ (ΩT )

+ C‖SθN vN − vN+1/2‖Hm+1
γ (ΩT )

≤ Cεθm−µ+2
N for m = 2, . . . , µ̃+ 3. (5.47)

Regarding term H2, we apply the same strategy as for [va1∂1,SθN ]ΨN in Step 3 to derive

‖H2‖Hm
γ (ΩT ) ≤ Cεθ

m−µ+2
N for m = 2, . . . , µ̃+ 3. (5.48)

For term H3, we obtain from (5.1a), (4.17), and hypothesis HN−1 that

‖SθNLFij (v
a + vN−1,F

a + FN−1, Φ
a + ΨN−1)‖Hm

γ (ΩT )

≤ Cθm−2
N ‖LFij (va + vN−1,F

a + FN−1, Φ
a + ΨN−1)‖H2

γ(ΩT ) ≤ Cεθ
m−µ−1
N

for m ≥ 2. Using (5.1a), (2.1), hypothesis HN−1, and (5.31) yields

‖SθN
(
LFij (v

a + vN ,F
a + FN , Φ

a + ΨN )

− LFij (v
a + vN−1,F

a + FN−1, Φ
a + ΨN−1)

)
‖Hm

γ (ΩT ) ≤ Cεθ
m−µ+2
N

for m ≥ 2. We combine these two estimates with (5.47)–(5.48) to get

3∑
`=1

‖H`‖Hm
γ (ΩT ) ≤ Cεθ

m−µ+2
N , for m = 2, . . . , µ̃+ 3. (5.49)

Applying a standard energy argument to equations (5.46) and utilizing estimate (5.49), we infer

‖FN+1/2 − SθNFN‖Hm
γ (ΩT ) ≤ Cεθ

m−µ+2
N for m = 2, . . . , µ̃+ 3. (5.50)

Estimate (5.38) follows from (5.37), (5.40), (5.43), and (5.50). The proof is complete. �

Remark 5.1. We can get constraint (3.2) from (5.29), (5.33), and (5.38) by using the Sobolev
embedding theorem. Constraint (3.3a) will be obtained by taking ε small enough, while constraint
(3.1) will follow through truncating (VN+1/2, ΨN+1/2, ψN+1/2) by an appropriate cut-off function.

5.4. Estimate of the Second Substitution and Last Error Terms. The next lemma gives
the estimate of the second substitution error terms e′′′n , ẽ′′′n , and ê′′′n defined in (5.14), (5.15), and
(5.18).

Lemma 5.8. If µ ≥ 5, then there exist ε > 0 suitably small and θ0 ≥ 1 large enough such that

(ẽ′′′n , ê
′′′
n ) = 0, ‖e′′′n ‖Hm

γ (ΩT ) ≤ Cε2θ`3(m)−1
n ∆n if m = 2, . . . , µ̃− 1,

for n = 0, . . . , N − 1, where `3(m) := max{(m+ 1− µ)+ + 9− 2µ,m+ 6− 2µ}.

Proof. From (5.34) and (5.36)–(5.37), we have

ẽ′′′n = B′(Ua + SθnVn, ϕa + (SθnΨn)|x2=0)(δVn, δψn)

− B′(Ua + Vn+1/2, ϕ
a + (SθnΨn)|x2=0)(δVn, δψn) = 0.

Using (5.35)–(5.37) yields ê′′′n = 0. Thanks to (5.36), the error term e′′′n can be rewritten as

e′′′n =

∫ 1

0
L′′
(
Ua + Vn+1/2 + τ(SθnVn − Vn+1/2), Φa + SθnΨn

)(
(δVn, δΨn), (SθnVn − Vn+1/2, 0)

)
dτ.

Apply the Sobolev embedding theorem, (5.29), (5.33), and (5.38) to infer

‖(Ũa, Vn+1/2, SθnVn − Vn+1/2, Φ̃
a, SθnΨn)‖W 1,∞(ΩT ) ≤ Cε,
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so that we can use Proposition 5.4 for ε suitably small. Note that from (5.29)–(5.31) and (5.38)

‖(Ũa, Vn+1/2, SθnVn, Φ̃a, SθnΨn)‖Hm+1
γ (ΩT ) ≤ Cε

(
θ(m+1−µ)++1
n + θm+3−µ

n

)
for 2 ≤ m ≤ µ̃ − 1. We use Proposition 5.4, hypothesis Hn−1, and (5.38) to get the estimate for
term e′′′n and this finishes the proof of the lemma. �

For the last error term (5.16),

Dn+1/2δΨn =
δΨn

∂2(Φa + Ψn+1/2)
Rn, with Rn := ∂2L(Ua + Vn+1/2, Φ

a + Ψn+1/2),

we first notice that

|∂2(Φa± + Ψ±n+1/2)| ≥ 1

2
,

from (4.14c), (5.36), and (5.33) if ε is small enough. Therefore, we arrive at the following lemma
analogous to [12, Lemma 8.6] or [4, Lemma12] and the proof is omitted.

Lemma 5.9. If µ ≥ 5 and µ̃ > µ, then there exist ε > 0 suitably small and θ0 ≥ 1 large enough
such that

‖Dn+1/2δΨn‖Hm
γ (ΩT ) ≤ Cε2θ`4(m)−1

n ∆n if m = 2, . . . , µ̃− 1, (5.51)

for n = 0, . . . , N − 1, where

`4(m) := max{(m+ 2− µ)+ + 8− 2µ, (m+ 1− µ)+ + 9− 2µ,m+ 6− 2µ}.

Lemmas 5.5–5.9 lead to the following estimates for en, ẽn, and ên defined in (5.17) and (5.19).

Corollary 5.10. If µ ≥ 5 and µ̃ > µ, then there exist ε > 0 suitably small and θ0 ≥ 1 large enough
such that

‖en‖Hm
γ (ΩT ) ≤ Cε2θ`4(m)−1

n ∆n if m = 2, . . . , µ̃− 1, (5.52)

‖ên‖Hm
γ (ΩT ) ≤ Cε2θ`2(m)−1

n ∆n if m = 2, . . . , µ̃− 1, (5.53)

‖ẽn‖Hm
γ (ωT ) ≤ Cε2θ`2(m)−1

n ∆n if m = 2, . . . , µ̃− 2, (5.54)

for n = 0, . . . , N−1, where `2(m) and `4(m) are defined in Lemma 5.6 and Lemma 5.9, respectively.

5.5. Proof of Theorem 1.1. We first show the following lemma for accumulated error terms En,

Ẽn, and Ên that are given in (5.8) and (5.13).

Lemma 5.11. If µ ≥ 7 and µ̃ = µ + 3, then there exist ε > 0 suitably small and θ0 ≥ 1 large
enough such that

‖EN‖Hµ+2
γ (ΩT )

≤ Cε2θN , (5.55)

‖ẼN‖Hµ+1
γ (ωT )

+ ‖ÊN‖Hµ+1
γ (ΩT )

≤ Cε2. (5.56)

Proof. The proof follows closely [4, 12]. First we note that `4(µ+ 2) ≤ 1 when µ ≥ 7. From (5.52),
one has

‖EN‖Hµ+2
γ (ΩT )

≤
N−1∑
n=0

‖en‖Hµ+2
γ (ΩT )

≤
N−1∑
n=0

Cε2∆n ≤ Cε2θN ,

for µ ≥ 7 and µ + 2 ≤ µ̃ − 1. Since `2(µ + 1) = 6 − µ ≤ −1 for µ ≥ 7 and µ + 1 ≤ µ̃ − 2, from
(5.53)–(5.54), we have

‖ẼN‖Hµ+1
γ (ωT )

+ ‖ÊN‖Hµ+1
γ (ΩT )

≤
N−1∑
n=0

{
‖ẽn‖Hµ+1

γ (ωT )
+ ‖ên‖Hµ+1

γ (ΩT )

}
≤

N−1∑
n=0

Cε2θ−2
n ∆n ≤ Cε2,
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where we have used (5.9) and (5.30) to derive the last inequality. The minimal possible µ̃ is µ+ 3.
This completes the proof of the lemma. �

Based on the lemma above, we have the estimates for fN , gN , and h±N .

Lemma 5.12. If µ ≥ 7 and µ̃ = µ + 3, then there exist ε > 0 suitably small and θ0 ≥ 1 large
enough such that

‖fN‖Hm
γ (ΩT ) ≤ C∆N

{
θm−µ−2
N

(
‖fa‖

Hµ+1
γ (ΩT )

+ ε2
)

+ ε2θ
`4(m)−1
N

}
, (5.57)

‖gN‖Hm
γ (ωT ) ≤ Cε2∆N

(
θm−µ−2
N + θ

`2(m)−1
N

)
, (5.58)

for m = 2, . . . , µ̃+ 1, and

‖h±N‖Hm
γ (ΩT ) ≤ Cε2∆N

(
θm−µ−2
N + θ

`2(m)−1
N

)
for m = 2, . . . , µ̃. (5.59)

Proof. Since θN−1 ≤ θN ≤
√

2θN−1 and ∆N−1 ≤ 3∆N , from (5.1a), (5.1c), (5.52), and (5.55), we
obtain

‖fN‖Hm
γ (ΩT ) ≤ ‖(SθN − SθN−1

)fa − (SθN − SθN−1
)EN−1 − SθN eN−1‖Hm

γ (ΩT )

≤ C∆Nθ
m−µ−2
N

(
‖fa‖

Hµ+1
γ (ΩT )

+ θ−1
N ‖EN−1‖Hµ+2

γ (ΩT )

)
+ ‖SθN eN−1‖Hm

γ (ΩT )

≤ C∆N

{
θm−µ−2
N (‖fa‖

Hµ+1
γ (ΩT )

+ ε2) + ε2θ
`4(m)−1
N

}
.

By using (5.54) and (5.56), we get

‖gN‖Hm
γ (ωT ) ≤ ‖(SθN − SθN−1

)ẼN−1 − SθN ẽN−1‖Hm
γ (ΩT )

≤ C∆Nθ
m−µ−2
N ‖ẼN−1‖Hµ+1

γ (ΩT )
+ ‖SθN ẽN−1‖Hm

γ (ΩT )

≤ Cε2∆N

(
θm−µ−2
N + θ

`2(m)−1
N

)
.

Similarly we can deduce (5.59) for h±N from (5.53) and (5.56). The proof is complete. �

In the next lemma, we obtain the estimate of differences δVN , δΨN , and δψN with the aid of
tame estimate (3.20). See [12, Lemma 16] or [4, Lemma 8.10] for the proof.

Lemma 5.13. Let µ ≥ 7 and µ̃ = µ + 3. If ε > 0 and ‖fa‖
Hµ+1
γ (ΩT )

/ε are suitably small and

θ0 ≥ 1 is large enough, then

‖(δVN , δΨN )‖Hm
γ (ΩT ) + ‖δψN‖Hm+1

γ (ωT ) ≤ εθ
m−µ−1
N ∆N for m = 2, . . . , µ̃. (5.60)

Lemma 5.13 implies the first part of the hypothesis HN . The following lemma provides us the
other parts of HN .

Lemma 5.14. Let µ ≥ 7 and µ̃ = µ + 3. If ε > 0 and ‖fa‖
Hµ+1
γ (ΩT )

/ε are suitably small and

θ0 ≥ 1 is large enough, then

‖L(VN , ΨN )− fa‖Hm
γ (ΩT ) ≤ 2εθm−µ−1

N for m = 2, . . . , µ̃− 1, (5.61)

‖B(VN , ψN )‖Hm
γ (ωT ) ≤ εθ

m−µ−1
N for m = 3, . . . , µ, (5.62)

‖E(VN , ΨN )‖H3
γ(ΩT ) ≤ εθ

2−µ
N . (5.63)

We refer to [12, Lemmas 17–18] or [4, Lemma 8.11] for the proof of Lemma 5.14. Let us take
µ ≥ 7, µ̃ = µ + 3, ε > 0 and ‖fa‖

Hµ+1
γ (ΩT )

/ε suitably small, and θ0 ≥ 1 large enough, so that

the assumptions of Lemmas 5.13–5.14 are satisfied, from which we obtain the inductive hypothesis
HN . Then, as in [12, Lemma 19] or [4, Lemma 8.12], we can prove that the hypothesis H0 is true.

Lemma 5.15. If ‖fa‖
Hµ+1
γ (ΩT )

/ε is small enough, then the hypothesis H0 holds.
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We are now ready to complete the proof of Theorem 1.1. Our proof follows closely [4, 12] and is
still presented here for the sake of completeness.

Proof of Theorem 1.1. For µ̃ := s0−4 ≥ 10 and µ := µ̃−3 ≥ 7, the initial data (U±0 , ϕ0) under

the assumptions of Theorem 1.1 are compatible up to order s0 = µ̃ + 4. If (Ũ±0 , ϕ0) is sufficiently

small in Hs0+1/2(R2
+) × Hs0+1(R) with Ũ±0 := U±0 − U±, then the assumption (5.29) and all the

requirements of Lemmas 5.13–5.15 are satisfied owing to (4.16) and (4.19), and hence HN holds
for all N ∈ N. Thus, from

∞∑
n=0

(
‖(δVn, δΨn)‖Hm

γ (ΩT ) + ‖δψn‖Hm+1
γ (ωT )

)
≤ C

∞∑
n=0

θm−µ−2
n <∞, 3 ≤ m ≤ µ− 1,

we conclude that (Vn, Ψn) converges to some (V, Ψ) in Hµ−1
γ (ΩT ), and ψn converges to some ψ in

Hµ
γ (ΩT ). Then we take the limit in (5.61)–(5.62) for m = µ− 1 = s0− 8, and in (5.63), and obtain

that (V, Ψ) solves (4.20). As a consequence, (U,Φ) = (Ua +V, Φa +Ψ) is a solution to (1.11)–(1.13)
in Ω+

T . The proof of Theorem 1.1 is complete. �
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