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Abstract. This paper is concerned with two classes of cubic quasilinear equations which
can be derived as asymptotic models from shallow-water approximation to the 2D in-
compressible Euler equations. One class of the models has homogeneous cubic nonlinear-
ity and includes the integrable modified Camassa–Holm (mCH) equation and Novikov
equation, and the other class encompasses both quadratic and cubic nonlinearities. It is
demonstrated here that both these models possess localized peaked solutions. By con-
structing a Lyapunov function, these peaked waves are shown to be dynamically stable
under small perturbations in the natural energy space H1, without restriction on the sign
of the momentum density. In particular, for the homogeneous cubic nonlinear model,
we are able to further incorporate a higher-order conservation law to conclude orbital
stability in H1 ∩ W 1,4. Our analysis is based on a strong use of the conservation laws,
the introduction of certain auxiliary functions, and a refined continuity argument.
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1. Introduction

Solitary waves are solutions to a time-dependent problem that carry finite energy, remain
spatially localized, and evolve by translating at a fixed velocity without altering their
shapes. They arise from precise balance between dispersion and nonlinear effects, and play
a substantial role in the study of more general solutions in the limit of large time. Their
importance is also manifested in the well-known “soliton resolution conjecture” (see, for
example, [23]), asserting that in general, solutions resolve into a superposition of weakly
interacting solitary waves and decaying dispersive waves. Hence it is natural to investigate
the stability of solitary waves in order to understand this asymptotic decomposition.

1.1. Cubic nonlinear shallow-water model equations. We consider two families of
quasilinear shallow-water equations recently derived in [4] as asymptotic shallow-water
model equations for the 2D full water wave dynamics. These two families are derived in a
scaling regime corresponding to waves with relatively large amplitude, which is in contrast
with the classical Korteweg-de Vries (KdV) weakly nonlinear scaling.

To introduce the equations of the present study, let us briefly recall the modeling process
of [4]. The common procedure in the water wave modeling involves relating two indepen-
dent nondimensional parameters

ε =
a

h0
� 1, µ =

h20
λ2
� 1,

where a, h0 and λ are the typical amplitude of the wave, the depth of the water, and the
wavelength, respectively. The balance between the nonlinearity parameter ε and disper-
sion parameter µ responsible for generation of interesting nonlinear phenomena is usually
quantified to be a power law scaling between ε and µ in the asymptotic regime ε, µ � 1.
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For instance, the KdV weakly nonlinear scaling corresponds to ε = O(µ), and the so-
called Camassa–Holm (CH) scaling regime for shallow–water waves of moderate amplitude
amounts to asking ε = O(µ1/2).

The next level of nonlinearity-enhancing scaling proposed in [4] aims at incorporating
higher order nonlinearity to capture more pronounced nonlinear behavior, for example the
curvature blow-up, i.e. the second derivative of solution becomes unbounded in finite time
while the solution and its gradient remain bounded.

Setting ε = O(µ2/5) and expanding the equation for the scaled surface elevation η it
follows that

2(ηx + ηt) +
1

3
µηxxx + 3εηηx −

3

4
ε2η2ηx +

3

8
ε3η3ηx + εµ

(
23

12
ηxηxx +

5

6
ηηxxx

)
+

115

192
ε4η4ηx + ε2µ

(
23

16
ηηxηxx +

29

8
η2ηxxx +

3

4
η3x

)
= 0 +O(ε5, µ2).

(1.1)

We then adapt the idea of [1] to expand η in terms of another function u, which is related
to the horizontal velocity of the fluid, together with its derivatives, using the so-called
Kodama transformation [14]. In particular, the expansion takes the following form

η ∼ u+ εA+ µB + εµC + µ2D + ε2E + ε3K + ε2µG+ εµ2H, (1.2)

where

A := λ1u
2, B := λ2uxx, E := λ3u

3, K = λ0u
4, C := λ4u

2
x + λ5uuxx,

D := λ6uxxxx, G := λ7uu
2
x + λ8u

2uxx, H := λ9uxuxxx + λ10uuxxxx + λ11u
2
xx.

This Kodama transformation produces sufficient degrees of freedom to allow one to derive
the desired family of cubic nonlinear asymptotic model equations. For example (see [4] for
more details), setting

λ1 =
k1
2

+
189

20
, λ2 =

k1
6

+
179

60
, λ3 =

23

5
+
k1
4
,

λ0 =
3

19
k31 +

13083

1520
k21 +

1189081

7600
k1 +

108125767

114000
,

λ4 = −
1

6
k21 −

671

120
k1 −

56327

1200
, λ5 = −

1

6
k21 −

67

15
k1 −

30437

1200
,

where λ7, λ8 are completely free, and λ6, λ9, λ10, λ11 are uniquely determined from λ7 and
λ8, and k1 ≈ −15.1765 is the unique real root of

2000k31 + 106200k21 + 1871550k1 + 10934031 = 0,

one can derive the following model equation consisting of quadratic terms being charac-
teristic for the Camassa–Holm (CH) equation together with cubic nonlinear terms known
from the Novikov equation and the modified Camassa–Holm (mCH) equation:

mt + ux−
µ

4
uxxx +

ε

2
(2uxm+ umx) +

k1ε
2

4

((
u2 − 5

12
µu2x

)
m

)
x

+
69ε2

20
(u2mx + 3uuxm) = 0 +O(ε5, µ2),

where m = u− 5
12µuxx is called the momentum density. Via a further scaling

u→ 2ε−1u, t→
(

5

12
µ

)− 1
2

t, x→
(

5

12
µ

)− 1
2

x,
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and a formal scaling limit consideration t → δ−2t and u → δ−1u then sending δ → 0, the
quadratic CH terms can be removed, yielding the so-called mCH–Novikov equation

mt + k1
(
(u2 − u2x)m

)
x
+

69

5
(u2mx + 3uuxm) = 0,

where, abusing notation, the momentum density becomes m = u− uxx.
On the other hand, considering

η = u+
97

20
εu2 +

29

20
µuxx + εµ

(
1261

600
uuxx −

10373

1200
u2x

)
+

23

10
ε2u3 +

13067089

114000
ε3u4

in (1.2) and performing a similar scaling and formal limit procedure, another cubic non-
linear equation can be derived as

mt + ux −
3

5
uxxx + (2uxm+ umx) +

46

5

((
u2 − 1

4
(u2)xx

)
u

)
x

= 0.

One of the purposes of this work is to investigate some qualitative properties of the
above two equations, while not restricting ourselves with the explicit coefficients of the
cubic and quadratic terms. In particular, we will study the following two equations

mt + k1
(
(u2 − u2x)m

)
x
+ k2(u

2mx + 3uuxm) = 0, (1.3)

and

mt + k1 (2uxm+ umx) + k2

((
u2 − 1

4
(u2)xx

)
u

)
x

= 0, (1.4)

where m = u−uxx, k1 and k2 are two arbitrary constants. Further motivation to consider
(1.4) is explained in Section 3.

1.2. Peaked solitary waves. Mathematically, equation (1.3) can be viewed as a combi-
nation of the mCH equation [8, 21, 22] (corresponding to k1 = 1, k2 = 0) and the Novikov
equation [20] (corresponding to k1 = 0, k2 = 1). Equation (1.4) generalizes the well-known
CH equation [2, 9] when k1 = 1 and k2 = 0.

Like their ancestors – the CH, mCH and Novikov equations, the two equations (1.3) and
(1.4) both exhibit nonlinear dispersion, which enables them to support a remarkable class
of non-smooth soliton-like solutions, namely, the peaked solitary waves of the form

ϕc(x− ct) := ae−|x−ct|;

see Theorem 2.1 and Theorem 3.1. These peaked solitary waves are also a common charac-
teristics shared by many dual integrable nonlinear systems, like the CH, mCH and Novikov
equations. Indeed (1.3) can be put into the form

∂m

∂t
= J1

δE

δm
, (1.5)

with the Hamiltonian operator

J1 = −k1∂xm∂−1x m∂x − 2k2(3m∂x + 2mx)(4∂x − ∂3x)−1(3m∂x +mx),

and the corresponding Hamiltonian functional

E(u) =

∫
R
(u2 + u2x) dx.

In addition, another conserved quantity of (1.3) is F1(u) =
∫
R
(
u4 + 2u2u2x − 1

3u
4
x

)
dx (see

Lemma 2.1). For (1.4), it is found that the Hamiltonian functional E(u) is again conserved
quantity. It is also observed that (1.4) can be rewritten as

∂m

∂t
= J2

δF2

δm
, with J2 = −

1

4
∂x(1− ∂2x), (1.6)
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and the corresponding Hamiltonian functional is given by

F2(u) = 2k1I1(u) + k2I2(u), (1.7)

where

I1(u) =

∫
R
(u3 + uu2x) dx, I2(u) =

∫
R
(u4 + u2u2x) dx. (1.8)

At this point we have not fully exploited to see if the model equations (1.3) and (1.4) can
be put into a bi-Hamiltonian form, or if they admit a Lax pair, and hence integrable. This
is certainly an interesting direction to go but it is beyond the scope of this paper.

1.3. Orbital stability in H1 space. The primary goal of the present paper is to inves-
tigate the dynamical stability of the peaked solutions for these two model equations (1.3)
and (1.4). A common strategy for studying the stability of solitary waves of such systems
is to exploit the Hamiltonian structure. However, many solitary waves are not local mini-
mizers of the energy, but are instead indefinite energy saddles. Fortunately, in a number of
cases the Hamiltonian system is canonical and the solitary waves can be thought of as local
extrema of the energy subject to the constraint of a fixed momentum, another conserved
quantity generated by translation symmetry. Such a fact was exploited in two seminal pa-
pers of Grillakis–Shatah–Strauss [10, 11] to develop a powerful tool to determine stability
or instability. Among other hypotheses, one crucial assumption needed for application of
the machinery of [10, 11] is that the spectrum of the linearized Hamiltonian at the solitary
wave consists of finitely many negative eigenvalues, zero, and a subset of the positive real
axis separated uniformly away from the origin.

1.3.1. Lyapunov method. Note that the peaked solitary wave ϕc is a global weak solution.
Its non-smoothness property leads to a degeneracy in the linearized Hamiltonian, making
the spectral analysis and hence the approach in [10] difficult to apply. Such a difficulty has
been long observed for many quasilinear dispersive equations admitting peaked solutions.
In [7] Constantin–Strauss introduced a new idea in the spirit of the Lyapunov method to
establish the H1-orbital stability of the CH peakons. Their idea relies crucially on two
special conserved quantities E(u) and F (u), one (say, E) being the H1-energy, and the
key observation is that the H1 distance of the perturbed solutions to the peaked wave is
controlled by the difference between the corresponding energies, with an error given by the
pointwise difference between the peaks of the solution u and the peaked wave ϕc, that is

E(u)− E(ϕc) = ‖u− ϕc(· − z)‖2H1 + 4 (u(z)−Mϕc)

for any z ∈ R, where Mϕc denotes the peak of ϕc. Then a Lyapunov function can be con-
structed via the introduction of some suitable auxiliary functions. Through this Lyapunov
function one obtains an inequality relating the maximum of the perturbed solution with
the conserved quantities

|Mu −Mϕc | . |E(u)− E(ϕc)|+ |F (u)− F (ϕc)|,

where Mu is the peaks of u. Finally since the difference terms on the right-hand side can
be made small according to the initial perturbation, |Mu −Mϕc | will be small, proving
stability.

The idea of [7] has been successfully applied to many other peakon equations, like the
ones with quadratic nonlinearity including the Degasperis-Procesi (DP) equation [15] and
the µ-CH equation [5]; and the cubic nonlinear models, for example the Novikov equation
[17] and the generalized mCH equation [16].
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1.3.2. Sign of m. The nonlinear terms in (1.3) are all cubic, leading one to reexamine the
approach of [17]. Among the assumptions of [17] on the initial perturbation, a crucial one
is the sign condition, namely m0(x) = (1 − ∂2x)u0(x) ≥ 0. Such a sign condition will be
preserved for later time, and thus the solution satisfies that u(t, x) ≥ 0. This allows one
to find the required auxiliary function

h(x) := u2(x)∓ 2

3
u(x)ux(x)−

1

3
u2x(x),

and use h to bound the functional F (u) by E(u) and the peak value Mu as

F (u)− 4

3
M4
u ≤

4

3
max
x∈R

(u2)
(
E(u)− 2M2

u

)
=

4

3
M2
u

(
E(u)− 2M2

u

)
, (1.9)

cf. [17, Lemma 9]. One of our goals here is to remove this sign constraint on the initial
data. Indeed the structure of equation (1.3) suggests us to work with the same auxiliary
function h. But we see that (1.9) still holds if the positivity assumption on u is replaced
by

Mu +min
x∈R

u ≥ 0. (1.10)

On the other hand, since min
x∈R

ϕc = 0 we know that Mϕc + min
x∈R

ϕc > 0, and hence (1.10)

holds with a strict inequality at initial time if the initial data u0 is sufficiently close to
ϕc. Continuity then guarantees that this property will propagate for some time, which in
turn ensures stability over that time period. But the H1-orbital stability then implies that
(1.10) holds over this time period as well. This way the same argument repeats, and so
one achieves stability over the entire time of existence, cf. Theorem 2.2.

We would like to point out that our new method in handling equation (1.3) can be used
to treat the Novikov equation (k1 = 0) and the mCH equation (k2 = 0). As a result, the
assumption on the initial momentum density m0 ≥ 0 used in [17] can be removed, at the
price that the global solution in [17, Theorem 1] being replaced by a local one.

1.3.3. A new auxiliary function. Equation (1.4) carries a similar structure as the gener-
alized mCH equation [16] in the sense that the nonlinearities contain both quadratic and
cubic terms. It was discovered in [16] that the interaction between the quadratic and the
cubic terms can be quite subtle and hence requires a rather delicate analysis. In particular,
an auxiliary function of the form h(x) := 2k1u(x) + k2

(
u2(x)∓ 2

3u(x)ux(x)−
1
3u

2
x(x)

)
is

used and the positivity of the initial momentum density m0 is still needed to ensure an
estimate like (1.9). However for our equation (1.4), the sign-preservation property of m
fails to be true and thus assuming m0 ≥ 0 is never enough to infer the positivity of the
solution for later time. What turns out to make the argument work is that we may consider
a different auxiliary function

h(x) := 2k1u(x) + k2u
2(x).

When the two parameters k1 and k2 are “cooperative”, namely, k1, k2 > 0, we can easily
bound h as h ≤ 2k1Mu + k2M

2
u , provided that (1.10) holds. Once such a bound for h is

available, a similar estimate of the form (1.9) can be proved; see Lemma 3.5. As a result,
the orbital stability of the peakons can be established with the help of a similar continuity
argument as before, cf. Theorem 3.2 (1).

On the other hand, when k1 and k2 are “uncooperative” in the sense that k1 > 0 but
k2 < 0, it becomes less clear whether h can be bounded in terms of Mu. However by
restricting the wave speed one can prove that for small perturbations h will be increasing;
see Lemma 3.4 part (2). This immediately implies that h ≤ 2k1Mu+k2M

2
u , and the orbital

stability follows, cf. Theorem 3.2 (2).
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1.4. Orbital stability in a finer energy space H1 ∩W 1,4. The H1-topology used in
the above stability results naturally arises from the conservation of the H1-energy E(u)
for both equations (1.3) and (1.4). On the other hand, though not having been explicitly
analyzed, traditional characteristics method seems to indicate that strong solutions of (1.3)
and (1.4) can exhibit finite-time wave-breaking (i.e. derivative blow-up) for well-chosen
initial data.1 Such a feature in turn suggests a strong instability property of the peakons
under the Lipschitz metric for perturbations as the strong solutions. Therefore it would
be interesting to investigate the stability issue under a certain topology that is between
H1 and W 1,∞. We would like to also point out that the strong W 1,∞ instability for H1-
stable peakons under weak-solution perturbations has been confirmed for the CH equation
[18, 19] and the Novikov equation [6] recently.

A natural way to seek an intermediate topology is to examine the higher-order conser-
vation laws. It turns out that the conserved quantity F1(u) of equation (1.3) together with
the H1 conservation gives W 1,4 control of solutions, cf. (2.36). In fact one can prove that
for a perturbation u of the peaked wave ϕc,

|F1(u− ϕc)| . |F1(u)− F1(ϕc)|+ f(‖u− ϕc‖H1)

for some polynomial function f , cf. (2.38). From this one can deduce W 1,4 stability of the
peakons even for initial perturbation that is only H1 close to the peaked solitary waves;
see Theorem 2.3.

Applying the same idea to (1.4), on the other hand, would not generate a finer topology
than H1, since the conservation law F2 does not provide a stronger norm than E.

1.5. Organization of the paper. The rest of the paper is organized as follows. In Section
2, we first state the local well-posedness result of the initial-value problem associated with
(1.3), and then establish the existence of peaked solutions and prove their orbital stability
in H1 ∩W 1,4. The similar discussion for equation (1.4) is performed in Section 3 to yield
the H1-orbital stability for the corresponding peaked waves. In the Appendix we provide
some technical details of existence of the peaked waves.

2. The mCH–Novikov equation

This section is focused on the existence and stability of peaked solitary waves for the
mCH–Novikov equation (1.3).

2.1. Local well-posedness and conservation laws. A necessary ingredient in our sta-
bility analysis is the local well-posedness theory for the initial-value problem

mt + k1
(
(u2 − u2x)m

)
x
+ k2(u

2mx + 3uuxm) = 0, t > 0, x ∈ R,
m = u− uxx,
u(0, x) = u0(x), x ∈ R.

(2.1)

Recall that the inverse operator (1 − ∂2x)−1 can be obtained by convolution with the cor-
responding Green’s function such that

u = (1− ∂2x)−1m = p ∗m, where p(x) =
1

2
e−|x|, (2.2)

and ∗ denotes the convolution product.

1The wave-breaking for (1.3) has recently been studied in [4].
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Applying now the operator (1− ∂2x)−1 to equation in (2.1), it follows that

ut + k1

(
u2 − 1

3
u2x

)
ux + k1px ∗

(
2

3
u3 + uu2x

)
+
k1
3
p ∗ u3x

+ k2u
2ux + k2px ∗

(
u3 +

3

2
uu2x

)
+
k2
2
p ∗ u3x = 0.

(2.3)

We will start by considering solutions to the above problem (2.1) in Sobolev spaces with
sufficiently high regularity. The precise definition of such solutions is given below.

Definition 2.1 (Strong solutions). If u ∈ C ([0, T ), Hs(R)) ∩ C1
(
[0, T ), Hs−1(R)

)
with

s > 5
2 and some T > 0 satisfies (2.1), then u is called a strong solution on [0, T ). If u is a

strong solution on [0, T ) for every T > 0, then it is called a global strong solution.

Remark 2.1. The regularity requirement that u ∈ H5/2+ comes from applying transport
theory to (2.3). We see from (2.3) that equation (1.3) can be reformulated in a transport
type with the transport velocity k1

(
u2 − 1

3u
2
x

)
+ k2u

2. Standard transport theory requires a
control on

∥∥k1 (u2 − 1
3u

2
x

)
+ k2u

2
∥∥
W 1,∞, which, by Sobolev embedding, amounts to asking

u ∈ H5/2+.

The argument for establishing the local well-posedness of strong solutions to (2.1) is now
fairly standard. For example, one can follow the same approach as in [12]. Hence we will
only state the result without proof.

Proposition 2.1. If s > 5
2 and u0 ∈ Hs(R), then there exists a time T > 0 such

that the initial-value problem (2.1) has a unique strong solution u ∈ C ([0, T ), Hs(R)) ∩
C1
(
[0, T ), Hs−1(R)

)
. Further, the map u0 7→ u is continuous from a neighborhood of u0

in Hs(R) into u ∈ C ([0, T ), Hs(R)) ∩ C1
(
[0, T ), Hs−1(R)

)
.

Regarding stability, as explained in the Introduction, certain conserved quantities of the
equation play a crucial role. For this reason we give the following result. Its proof can be
seen in Appendix A.

Lemma 2.1. For the strong solutions u obtained in Proposition 2.1, the following func-
tionals

E(u) =

∫
R
(u2 + u2x) dx, F1(u) =

∫
R

(
u4 + 2u2u2x −

1

3
u4x

)
dx (2.4)

are conserved, that is d
dtE(u) = d

dtF1(u) = 0 for all t ∈ [0, T ).

2.2. Existence of peaked solitary waves. As is mentioned in the Introduction, the
peaked solitary waves have low regularity and hence cannot be regarded as strong solutions
to (2.1).

The following theorem proves the existence of the peaked solutions to equation (2.3).
Details of the proof can be found in Appendix A.

Theorem 2.1. The function

u(t, x) = ϕc(x− ct) := ae−|x−ct|, (2.5)

is a peaked solution to (2.3) provided that

(1) 2k1 + 3k2 6= 0, 3c
2k1+3k2

> 0 and a = ±
√

3c
2k1+3k2

6= 0; or
(2) 2k1 + 3k2 = c = 0 and a 6= 0.
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Remark 2.2. Note that case (1) in Theorem 2.1 generates a pair of peaked (a > 0) and
anti-peaked (a < 0) solutions both moving at speed c 6= 0, whereas case (2) corresponds to
a stationary peaked solution.

Remark 2.3. If one imposes the ansatz that the solution u of equation (2.3) is a linear
superposition of N peakons

u(t, x) =

N∑
i=1

pi(t)e
−|x−qi(t)|, (2.6)

then a direct computation shows that the position functions qi(t) and the amplitude func-
tions pi(t) satisfy the following dynamical system:

ṗi = k2pi

N∑
j,l=1

pjpl sign(ql − qi)e−|ql−qi|−|qj−qi|,

q̇i =
2k1
3
p2i + 2k1

N∑
j=1,j 6=i

pipje
−|qj−qi| + 4k1

∑
1≤j<i,
i<l≤N

pjple
−|qj−ql| + k2

N∑
j,l=1

pjple
−|ql−qi|−|qj−qi|.

2.3. H1-orbital stability.

The main goal in this subsection is to prove the orbital stability for the single peaked
solutions obtained in Theorem 2.1 in the natural H1 energy space suggested by the con-
servation law E as in (2.4). We will only discuss the case when a > 0. The case for
anti-peakons (a < 0) can be treated by exploiting the invariance of equation in (2.1) under
the transformation u→ −u.

Recall Theorem 2.1. It is obvious that ϕc(x) ∈ H1(R) has the peak at x = 0 and a
simple computation reveals

max
x∈R

ϕc(x) = ϕc(0) = a :=

{√
3c

2k1+3k2
, 2k1 + 3k2 6= 0 and 3c

2k1+3k2
> 0,

∈ R+, 2k1 + 3k2 = c = 0,
(2.7)

E(ϕc) = 2a2, F1(ϕc) =
4

3
a4. (2.8)

Define the following functionals:

M̃(t) = max
x∈R
{u(t, x)}, m̃(t) = min

x∈R
{u(t, x)}, (2.9)

for every t ∈ [0, T ∗), where T ∗ > 0 is the maximal existence time of solutions u to initial-
value problem (2.1).

The H1-orbital stability of the peaked waves is given as follows.

Theorem 2.2 (H1-orbital stability). Let ϕc(x − ct) = ae−|x−ct| be the peaked solutions
given in Theorem 2.1. Assume that the initial data u0 ∈ Hs(R), s > 5

2 . Then ϕc is
H1-orbitally stable in the following sense: ∃ 0 < δ0 � 1 such that if

‖u0 − ϕc‖H1 < aδ, 0 < δ < δ0, (2.10)

then the corresponding solution u(t, x) to (2.1) satisfies

sup
t∈[0,T ∗)

‖u(t, ·)− ϕc(· − ξ(t))‖H1 < 2
(
3a+ C(u0)

1/4
)
δ1/4, (2.11)
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where ξ(t) is the point at which the solution u(t, x) achieves its maximum and the constant

C(u0) :=
2
√
2a

3
‖u0x‖2L∞‖u0x‖L2 . (2.12)

Remark 2.4. It is easy to check that the mCH–Novikov equation in (2.1) has the sign-
persistence property: if the initial datam0 = (1−∂2x)u0 ≥ 0 (or ≤ 0), then the corresponding
solution satisfies that m(t, x) ≥ 0 (or ≤ 0). Therefore if one assumes in addition that
m0 ≥ 0 (or ≤ 0), then the sign property on m implies that |ux| ≤ |u|. Hence in (2.12) we
have from (2.17) that

‖u0x‖2L∞‖u0x‖L2 ≤ 2E(u0)
3/2 < 2

(
E(ϕc) + 4a2δ

)3/2
< 6a3.

Therefore C(u0) in (2.12) can be replaced by

C(u0) = 4
√
2a4.

Remark 2.5. Our stability result is established in the H1-metric, which is below the reg-
ularity index Hs for strong solutions as given in Proposition 2.1. The issue of extending
our result to replace the H1-metric by the Hs-metric is much more delicate. On the other
hand, one may consider an H1-stability result for suitable weak solutions. One of the main
ingredients in the proof of Theorem 2.1 is the use of the two conservation laws. Hence once
a weak solution theory is established so that E and F1 are conserved, it seems plausible that
the same stability property holds for those weak solutions.

The proof of Theorem 2.2 is approached via a series of lemmas.

Lemma 2.2. For any u ∈ H1(R) and z ∈ R, we have

E(u)− E(ϕc) = ‖u− ϕc(· − z)‖2H1 + 4a (u(z)− a) . (2.13)

Proof. Using integration by parts and (2.8), it follows that

‖u− ϕc(· − z)‖2H1

= E(u) + E(ϕc(· − z))− 2a

∫
R
u(x)ϕ(x− z)dx

− 2a

∫ z

−∞
ux(x)ϕ(x− z)dx+ 2a

∫ ∞
z

ux(x)ϕ(x− z)dx

= E(u) + E(ϕc)− 4au(z) = E(u)− E(ϕc)− 4a (u(z)− a) .
Consequently, we have established the lemma. �

The following lemma is essential to derive the orbital stability of ϕc.

Lemma 2.3. Assume that u ∈ Hs(R), s > 5
2 , and M̃ , m̃ are defined in (2.9).

(1) If M̃ + m̃ ≥ 0, then F1(u) ≤ 4
3M̃

2E(u)− 4
3M̃

4.
(2) If M̃ + m̃ ≤ 0, then F1(u) ≤ 4

3m̃
2E(u)− 4

3m̃
4.

Proof. (1) Since M̃ + m̃ ≥ 0, then there exists ξ ∈ R such that M̃ = u(ξ). Let us define

g(x) =

{
u(x)− ux(x), x < ξ,

u(x) + ux(x), x > ξ,
(2.14)

and a direct computation gives rise to∫
R
g2(x)dx =

∫
R
(u2 + u2x)dx− 2

∫ ξ

−∞
uuxdx+ 2

∫ ∞
ξ

uux dx

= E(u)− 2u2(ξ) = E(u)− 2M̃2.

(2.15)
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On the other hand, we define h(x) by

h(x) =

{
u2(x)− 2

3u(x)ux(x)−
1
3u

2
x(x), x < ξ,

u2(x) + 2
3u(x)ux(x)−

1
3u

2
x(x), x > ξ.

Direct computation yields that∫
R
h(x)g2(x)dx = F1(u)−

4

3
M̃4.

Since M̃ + m̃ ≥ 0 implies that u2 ≤ M̃2, together with h− 4
3u

2 = −1
3u

2 ± 2
3uux −

1
3u

2
x =

−1
3(u± ux)

2 ≤ 0, it follows that

h(x) ≤ 4

3
u2 ≤ 4

3
M̃2. (2.16)

Combining (2.15) and (2.16), we deduce that

F1(u)−
4

3
M̃4 =

∫
R
h(x)g2(x)dx ≤ 4

3
E(u)M̃2 − 8

3
M̃4,

thereby concluding part (1) of the lemma.
Part (2) of the lemma can be proved in a similar way. �

Remark 2.6. Note that the functions g and h are zero when u is replaced by −ϕc. Indeed,
this requirement is crucial to construct a Lyapunov function for the stability.

Lemma 2.4. Let u ∈ Hs(R), s > 5
2 and assume ‖u− ϕc‖H1 < aδ, with 0 < δ � 1. Then

|E(u)− E(ϕc)| ≤ 4a2δ, (2.17)

|F1(u)− F1(ϕc)| ≤
(
C(u) + 17a4

)
δ, (2.18)

where C(u) := 2
√
2a
3 ‖ux‖

2
L∞‖ux‖L2.

Proof. Using the relation (2.15), for any u ∈ H1(R), it is inferred that

sup
x∈R
|u(x)| ≤

√
2

2
E(u)

1
2 =

√
2

2
‖u‖H1 ,

with equality holding if and only if u is a multiple of some translate of e−|x|.
From the assumption on ‖u− ϕc‖H1 , it follows that∣∣E(u)− E(ϕc)

∣∣ = ∣∣(‖u‖H1 + ‖ϕc‖H1)(‖u‖H1 − ‖ϕc‖H1)
∣∣

≤ (‖u− ϕc‖H1 + 2‖ϕc‖H1)‖u− ϕc‖H1

≤
(
aδ + 2

√
2a
)
aδ < 4a2δ,

and ∣∣F1(u)− F1(ϕc)
∣∣ = ∣∣∣∣ ∫

R

(
u4 + 2u2u2x −

1

3
u4x

)
dx−

∫
R

(
ϕ4
c + 2ϕ2

cϕ
2
cx −

1

3
ϕ4
cx

)
dx

∣∣∣∣
≤
∫
R

∣∣u4 + 2u2u2x − ϕ4
c − 2ϕ2

cϕ
2
cx

∣∣dx+
1

3

∫
R

∣∣u4x − ϕ4
cx

∣∣dx
≤
∫
R

∣∣(u2 − ϕ2
c)(u

2 + 2u2x)
∣∣dx+

1

3

∫
R

∣∣u4x − ϕ4
cx

∣∣dx
+

∫
R
ϕ2
c

∣∣(u2 + 2u2x − ϕ2
c − 2ϕ2

cx

∣∣dx
=: I1 + I2 + I3.
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We compute I1 as follows:

I1 ≤ 2

∫
R
|u+ ϕc| · |u− ϕc| · (u2 + u2x) dx

≤ 2 (‖u‖L∞ + ‖ϕc‖L∞) · ‖u− ϕc‖L∞
∫
R
(u2 + u2x) dx

≤
(√

2‖u‖H1 + 2a
)
‖u− ϕc‖H1 · E(u)

≤ ‖u− ϕc‖H1

(
E(ϕc) + 4a2δ

)
·
(√

2‖u− ϕc‖H1 + 4a
)

≤ 2a4δ(4 +
√
2δ)(2δ + 1).

(2.19)

In a similar manner,

I3 ≤ a2
∫
R

∣∣(u− ϕc)2 + 2(ux − ϕcx)2 + 2ϕc(u− ϕc) + 4ϕcx(ux − ϕcx)
∣∣ dx

≤ 2a2
(
‖u− ϕc‖2H1 + 2‖ϕc‖H1‖u− ϕc‖H1

)
≤ 2a4δ(δ + 2

√
2).

(2.20)

For the term I2, by the Hölder and Young inequalities, it follows that

I2 =
1

3

∫
R

∣∣(u2x + ϕ2
cx)(ux + ϕcx)(ux − ϕcx)

∣∣ dx
≤ 1

3

(∫
R
(u2x + ϕ2

cx)
2(ux + ϕcx)

2dx

) 1
2
(∫

R
(ux − ϕcx)2dx

) 1
2

≤ 2
√
2

3

(∫
R
(u6x + ϕ6

cx)dx

) 1
2

‖u− ϕc‖H1 .

(2.21)

Since u ∈ Hs(R) ⊂W 1,∞(R), s > 5
2 , we have

‖ux‖L6 ≤ ‖ux‖
2
3
L∞‖ux‖

1
3

L2 .

We also know that ‖ϕcx‖6L6 = 1
3a

6. Hence, plugging the above into (2.21), there appears
the relation

I2 ≤

(
C(u) +

2
√
6

9
a4

)
δ, where C(u) =

2
√
2a

3
‖ux‖2L∞‖ux‖L2 . (2.22)

In view of (2.19), (2.20) and (2.22), we conclude that∣∣F1(u)− F1(ϕc)
∣∣ ≤ (C(u) + 17a4

)
δ.

This completes the proof of the lemma. �

Lemma 2.5. Assume that u(x) ∈ Hs(R), s > 5
2 , which satisfies (2.17) and (2.18) with

0 < δ � 1. Then we have:
(1) If M̃(t) + m̃(t) ≥ 0, then∣∣∣M̃ − a∣∣∣ <√(21a2 + 3

4a2
C(u)

)
δ. (2.23)

(2) If M̃(t) + m̃(t) < 0, then

|m̃+ a| <

√(
21a2 +

3

4a2
C(u)

)
δ. (2.24)
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Proof. (1) If M̃(t) + m̃(t) ≥ 0, it then follows from Lemma 2.3 (1) that

M̃4 +
3

4
F1(u)− E(u)M̃2 ≤ 0. (2.25)

Hence, we define the function fu(y) by

fu(y) := y4 +
3

4
F1(u)− E(u)y2, y ∈ R. (2.26)

Recalling (2.8), a direct calculation reveals that

fϕc(y) = y4 − 2a2y2 + a4 = (y + a)2 (y − a)2 . (2.27)

From (2.26), there appears the relation

fϕc(M̃) = fu(M̃) + M̃2 (E(u)− E(ϕc))−
3

4
(F1(u)− F1(ϕc)) ,

which, together with (2.25) and (2.27), yields(
M̃ + a

)2 (
M̃ − a

)2
≤ M̃2 (E(u)− E(ϕc))−

3

4
(F1(u)− F1(ϕc)) . (2.28)

On the other hand, using the relation

E(u)− 2M̃2 =

∫
R
g2(x)dx ≥ 0,

and the assumption (2.17), we discover that

0 < M̃2 ≤ E(u)

2
≤ a2(2δ + 1) < 2a2. (2.29)

Hence, in view of (2.28) and (2.29), we conclude that

a
∣∣∣M̃ − a∣∣∣ <√(21a4 + 3

4
C(u)

)
δ,

which implies (2.23).
Part (2) of the lemma can be proved in a similar way and the detail is omitted, thereby

concluding the proof of Lemma 2.5. �

We are now in the position to give a proof of the H1-stability result.

Proof of Theorem 2.2. Applying Lemma 2.1, we see that

E(u(t, ·)) = E(u0) and F1(u(t, ·)) = F1(u0), t ∈ [0, T ∗).

Therefore from assumption (2.10), it is easy to see that the conclusion of Lemma 2.4 holds.
Assumption (2.10) implies that

‖u0 − ϕc‖L∞ < aδ � a.

By (2.7), it follows that

M̃(0) = max
x∈R

u0(x) ≥ u0(0) > ϕc(0)− aδ = a(1− δ) > 0.

If m̃(0) = min
x∈R

u0(x) ≥ 0, the obviously

M̃(0) + m̃(0) > a(1− δ) > 0.

If m̃(0) < 0, then there exists some η ∈ R such that u0(η) = m̃(0). This way we know that

m̃(0) = min
x∈R

u0(x) = u0(η) > ϕc(η)− aδ > −aδ.

So we still have
M̃(0) + m̃(0) > a(1− δ)− aδ > 0.
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Therefore in any case we know that

M̃(0) + m̃(0) > 0.

Furthermore, by continuity, there exits a T0 > 0 such that

M̃(t) + m̃(t) > 0, (2.30)

for all t ∈ [0, T0]. In this way Lemma 2.3 (1) and Lemma 2.5 (1) hold true for t ∈ [0, T0].

Reading off (2.28) and using (2.29), we have

a |u(t, ξ(t))− a| <
√

2a2 (E(u)− E(ϕc))−
3

4
(F1(u)− F1(ϕc))

=

√
2a2 (E(u0)− E(ϕc))−

3

4
(F1(u0)− F1(ϕc))

<

√(
21a4 +

3

4
C(u0)

)
δ,

(2.31)

for any t ∈ [0, T0]. Now replacing z by ξ in Lemma 2.2, there obtains the equality

‖u(t, ·)− ϕc(· − ξ(t))‖2H1 = E(u0)− E(ϕc)− 4a (u(t, ξ(t))− a) .
This, together with the estimates (2.17) and (2.31) leads to that for t ∈ [0, T0],

‖u(t, ·)− ϕc(· − ξ(t))‖H1 ≤
√
|E(u0)− E(ϕc)|+ 4a |u(t, ξ(t))− a|

< 2
(
3a+ C(u0)

1/4
)
δ1/4.

(2.32)

An important consequence of (2.32) is that we now claim that (2.30) holds for all
t ∈ [0, T ∗). If not, then there exists some T ∈ (0, T ∗) such that (2.30) holds for all
t ∈ [0, T ), but

M̃(T ) + m̃(T ) = 0. (2.33)
This implies that (2.32) holds for t ∈ [0, T ). So when δ is sufficiently small so that

2
(
3a+ C(u0)

1/4
)
δ1/4 <

a

4
,

we know that over t ∈ [0, T ),
M̃(t) + m̃(t) >

a

2
.

Thus a continuity argument indicates that M̃(T )+m̃(T ) ≥ a
2 with a > 0, which contradicts

(2.33). Therefore (2.32) holds for all t ∈ [0, T ∗), and hence we obtain (2.11). �

2.4. W 1,4-orbital stability. Note that the conservation of F1 together with E as in (2.4)
provides a control of ‖ux‖L4 ; see, for example, [3]. In fact we show that the H1-stability
obtained in the previous subsection can be further improved to the stability in the space
H1 ∩W 1,4. Again we only consider the case a > 0 here.

Theorem 2.3 (W 1,4-orbital stability). Let the assumptions of Theorem 2.2 hold. Then
ϕc is W 1,4-orbitally stable in the following sense: ∃ 0 < δ0 � 1 such that if

‖u0 − ϕc‖H1 < aδ, 0 < δ < δ0,

then the corresponding solution u(t, x) to (2.1) satisfies

sup
t∈[0,T ∗)

‖u(t, ·)− ϕc(· − ξ(t))‖W 1,4 < C1(u0)δ
1/16 + C2(u0)δ

1/4, (2.34)

where ξ(t) is the point at which the solution u(t, x) achieves its maximum and the constants
C1 and C2 depend on a, ‖u0x‖L∞ and ‖u0x‖L2.
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Proof. Let us denote
v(t, ·) := u(t, ·+ ξ(t))− ϕc,

where ξ(t) is the point at which u(t, x) attains its maximum. In view of Theorem 2.2 we
know that

‖v‖H1 < Kδ1/4. (2.35)

Following [3, (2.7)-(2.8)] it is found that

‖vx‖4L4 ≤ 3
(
‖v‖4H1 − F1(v)

)
, ‖vx‖3L3 ≤

√
3‖v‖H1

√
‖v‖4

H1 − F1(v). (2.36)

Plugging u = v + ϕc into F1(u) and using the fact that ‖ϕc‖L∞ = ‖ϕcx‖L∞ = ‖ϕc‖L2 =
‖ϕcx‖L2 = a yields after a direct computation that

|F1(v)| ≤ |F1(u)− F1(ϕc)|

+ 2

∣∣∣∣∫
R

(
2v2vxϕcx + v2ϕ2

cx + 2vv2xϕc + 4vvxϕcϕcx + 2vϕcϕ
2
cx + v2xϕ

2
c + 2vxϕ

2
cϕcx

)
dx

∣∣∣∣
+

∣∣∣∣∫
R

(
4v3ϕc + 6v2ϕ2

c + 4vϕ3
c

)
dx

∣∣∣∣+ 1

3

∣∣∣∣∫
R

(
4v3xϕcx + 6v2xϕ

2
cx + 4vxϕ

3
cx

)
dx

∣∣∣∣
≤ |F1(u)− F1(ϕc)|+

4

3

∣∣∣∣∫
R
v3xϕcx dx

∣∣∣∣+ 14a3‖v‖H1 + 20a2‖v‖2H1 + 12a‖v‖3H1 .

Note that we have∣∣∣∣43
∫
R
v3xϕcx dy

∣∣∣∣ ≤ 4a

3
‖vx‖3L3 ≤

4a√
3
‖v‖H1

√
‖v‖4

H1 − F1(v).

Thus, from (2.35) for δ � 1 sufficiently small it follows that

|F1(v)| ≤ |F1(u)− F1(ϕc)|+
4a√
3
‖v‖H1

√
‖v‖4

H1 − F1(v) + 15a‖v‖H1 . (2.37)

On the other hand, from Lemma 2.4 we have

|F1(u)− F1(ϕc)| = |F1(u0)− F1(ϕc)| ≤
(
C(u0) + 17a4

)
δ.

Plugging the above into (2.37) yields that

|F1(v)| ≤
4a√
3
‖v‖H1

√
‖v‖4

H1 − F1(v) + L ≤ 8a2

3
‖v‖2H1 +

1

2
‖v‖4H1 +

1

2
|F1(v)|+ L

where L := 15aKδ1/4 +
(
C(u0) + 17a4

)
δ < 15aKδ1/4 +K4δ. Hence we have

|F1(v)| ≤
16a2

3
‖v‖2H1 + ‖v‖4H1 + 2L. (2.38)

Therefore from (2.36) it is inferred that

‖vx‖4L4 ≤ 16a2‖v‖2H1 + 6‖v‖4H1 + 6L ≤ C̃1(u0)δ
1/4 + C̃2(u0)δ

where C̃1(u0) := 90aK + 12a2K and C̃2(u0) := 24a2K + 12K4. Moreover it is noted that

‖v‖L4 ≤ ‖v‖H1 ≤ Kδ1/4.

Combining the above leads to (2.34). This completes the proof of Theorem 2.3. �
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3. The extended cubic CH equation

We now turn our attention to the stability analysis for the extended cubic CH equation.
It is known that the classical CH equation without the linear terms ux and uxxx possesses
peaked localized solitons. Analogously we will focus on the equation (1.4) which neglects
the linear terms ux and uxxx, although the linear term uxxx could be removed by the
Galilean transformation u(t, x)→ u(t, x− κt) with a suitable parameter κ.

3.1. Existence of peaked solitary waves. Consider the initial-value problem
mt + k1 (2uxm+ umx) + k2

(
(u2 − 1

4(u
2)xx)u

)
x
= 0, t > 0, x ∈ R,

m = u− uxx,
u(0, x) = u0(x), x ∈ R.

(3.1)

Applying the operator (1− ∂2x)−1 to above equation in (3.1) yields the following nonlocal
equation:

ut + k1uux + k1px ∗
(
u2 +

1

2
u2x

)
+
k2
2
u2ux +

k2
2
px ∗

(
uu2x +

5

3
u3
)

= 0. (3.2)

The following local well-posedness results of strong solutions can be obtained by applying
a Galerkin-type approximation method which is established by Hilmonas and Holliman [13].
The proof is thus omitted.

Proposition 3.1. If s > 3
2 and u0 ∈ Hs(R), then there exists T > 0 and a unique

strong solution u ∈ C([0, T ), Hs(R)) ∩ C1([0, T ), Hs−1(R)) of the initial-value problem
(3.1). Further, the map u0 7→ u is continuous from a neighborhood of u0 in Hs(R) into
u ∈ C([0, T ), Hs(R)) ∩ C1([0, T ), Hs−1(R)).

Similarly as in the previous section, we record the important conservation laws.

Lemma 3.1. For a strong solution u obtained in Proposition 3.1, the following functionals

E(u) =

∫
R
(u2 + u2x) dx, F2(u) = 2k1

∫
R
(u3 + uu2x) dx+ k2

∫
R
(u4 + u2u2x) dx (3.3)

are conserved, that is, d
dtE(u) = d

dtF2(u) = 0, for all t ∈ [0, T ).

Proof. The conservation of E(u) can be proved by multiplying equation in (3.1) by u and
integrating over R, and then integrating by parts. The conservation of F2(u) is an easy
consequence of the Hamiltonian structure of equation in (3.1), cf. (1.6). In fact we have

dF2(u)

dt
=

〈
δF2

δu
, ut

〉
=

〈
(1− ∂2x)

δF2

δm
, ut

〉
=

〈
δF2

δm
, mt

〉
=

〈
δF2

δu
, J2

δF2

δu

〉
= 0,

and this completes the proof of the lemma. �

The existence of the single peaked solutions to equation (3.2) is given below. Details of
the proof can be found in Appendix A.

Theorem 3.1. Assume k2 6= 0. The equation (3.2) admits the single peakon of the follow-
ing forms:
(1) If c 6= 0 and k21 + 2k2c ≥ 0, then the single peaked solutions have the form

u(t, x) = ϕc(x− ct) := ae−|x−ct|, with a =
−k1 ±

√
k21 + 2k2c

k2
=: a± 6= 0. (3.4)

(2) If c = 0 and k1 6= 0, then the single peaked solutions take the form

u(t, x) = aϕ(x) := ae−|x|, with a = −2k1
k2
6= 0. (3.5)
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3.2. H1-orbital stability of ϕc(x− ct).
The focus of this subsection is the stability analysis with peakons of the form (3.4).

For simplicity, we will only consider the case when a = a+ > 0, since the other case
can be easily handled by using invariance of the cubic CH equation in (3.1) under the
transformation u→ −u and k1 → −k1.

It is easy to check that

max
x∈R
{ϕc(x)} = ϕc(0) = a+, E(ϕc) = ‖ϕc‖2H1 = 2a2+, F2(ϕc) =

8

3
k1a

3
+ + k2a

4
+.

The main result of this subsection is the following.

Theorem 3.2 (H1-orbital stability). Consider ϕc = a+e
−|x−ct| the peaked solutions defined

in (3.4). Then ϕc is orbitally stable in the following sense. Assume that the initial data
u0 ∈ Hs(R), s > 3

2 . There exists some 0 < δ0 � 1 such that if

‖u0 − ϕc‖H1 < a+δ, 0 < δ < δ0, (3.6)

then
(1) when k1 > 0, k2 > 0, the corresponding solution u(t) of (3.1) satisfies

sup
t∈[0,T ∗)

‖u(t, ·)− ϕc(· − ξ(t))‖H1 < 2a+

(
86k1 + 75k2a+
8k1 + 3k2a+

)1/4

δ1/4. (3.7)

(2) when k1 > 0, k2 < 0, and 0 < c < −4k21
9k2

, the corresponding solution u(t) of (3.1)
satisfies

sup
t∈[0,T ∗)

‖u(t, ·)− ϕc(· − ξ(t))‖H1 < 2a+

(
41k1 + 36|k2|a+

2k1

)1/4

δ1/4,

where T ∗ > 0 is the maximal existence time of the solution u(t, x) and ξ(t) ∈ R is the point
at which the solution u(t, x) achieves its maximum.

The proof of this theorem is achieved via a series of lemmas.

Lemma 3.2. For any u ∈ H1(R) and z ∈ R, we have

E(u)− E(ϕc) = ‖u− ϕc(· − z)‖2H1 + 4a+ (u(z)− a+) .
Proof. The proof follows exactly along the same line as for the proof of Lemma 2.2. �

Lemma 3.3. Let u ∈ Hs(R), s > 3
2 . Assume ‖u− ϕc‖H1 < a+δ, with 0 < δ � 1. Then

|E(u)− E(ϕc)| ≤ C2δ, |F2(u)− F2(ϕc)| ≤ C3δ, (3.8)

where C2 := 4a2+, C3 := (10|k1|+ 8|k2|a+) a3+.
Proof. The first part of (3.8) is just (2.17). As for the second estimate, it is noted that

|F2(u)− F2(ϕc)| ≤ 2|k1||I1(u)− I1(ϕc)|+ |k2||I2(u)− I2(ϕc)|,
where the functionals I1 and I2 are defined in (1.8). In view of [7, Lemma 3], it follows
that

|I1(u)− I1(ϕc)| < a3+δ

(
3
√
2 + 3δ +

δ2√
2

)
< 5a3+δ.

Next, similar to (2.19) and (2.20), a calculation reveals that

|I2(u)− I2(ϕc)| ≤
∫
R

[
|(u2 − ϕ2

c)(u
2 + u2x)|+ ϕ2

c(u
2 + u2x − ϕ2

c − ϕ2
cx)
]
dx

< a4+δ(4 +
√
2δ)(2δ + 1) + a4+δ(δ + 2

√
2) < 8a4+δ.

Putting the above together we complete the proof of the lemma. �
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Lemma 3.4. Assume that u ∈ Hs(R), s > 3
2 , and ‖u − ϕc‖H1 < a+δ, with 0 < δ � 1.

Furthermore, assume that one of the following two conditions holds:
(1) k1 > 0, k2 > 0, and M̃ + m̃ ≥ 0.
(2) k1 > 0, k2 < 0 and 0 < c ≤ − k21

2k2
.

Then we have

2k1u+ k2u
2 ≤ 2k1M̃ + k2M̃

2, (3.9)

where recall that the constants M̃ = max
x∈R

u(x) ≥ 0 and m̃ = min
x∈R

u(x) ∈ R.

Proof. (1) If k1 > 0, k2 > 0 and M̃ + m̃ ≥ 0, then it is easy to see that

2k1u+ k2u
2 ≤ 2k1M̃ + k2max

x∈R
{u2(x)} ≤ 2k1M̃ + k2M̃

2.

(2) In this case, we have

0 <

√
2

2
‖ϕc‖H1 = a+ =

−k1 +
√
k21 + 2k2c

k2
<

k1
|k2|

. (3.10)

Then choosing δ small enough, from (3.8), (3.10) and the Sobolev embedding, it transpires
that

‖u‖L∞ ≤
√
2

2
‖u‖H1 <

√
2

2
‖ϕc‖H1 +

√
2a+δ

1
2 <

k1
|k2|

. (3.11)

On the other hand, define the functional f(u) := 2k1u+k2u
2. In view of (3.10) and (3.11),

a direct computation yields that
df

du
= 2k1 + 2k2u ≥ 2k1 − 2|k2||u| > 0 for ‖u‖L∞ <

k1
|k2|

.

Hence, it follows that f(u) ≤ f(M̃). We thus finish the proof of the lemma. �

Lemma 3.5. Under the conditions of Lemma 3.4, for u ∈ Hs(R), s > 3
2 , we have

F2(u) ≤ (2k1M̃ + k2M̃
2)E(u)− 4

3
k1M̃

3 − k2M̃4. (3.12)

Proof. Taking ξ ∈ R such that M̃ = u(ξ) and defining g(x) as in (2.14), it is noted that∫
R
g2(x)dx = E(u)− 2u2(ξ) = E(u)− 2M̃2. (3.13)

In addition, the auxiliary function h(x) is defined by

h(x) := 2k1u(x) + k2u
2(x), x ∈ R.

It holds that

2k1

∫
R
u(x)g2(x)dx = 2k1I1(u)−

8k1
3
M̃3, k2

∫
R
u2(x)g2(x)dx = k2I2(u)− k2M̃4.

Thus we have ∫
R
h(x)g2(x)dx = F2(u)−

8k1
3
M̃3 − k2M̃4. (3.14)

On account of Lemma 3.4, it then follows from (3.13) and (3.14) that

F2(u)−
8k1
3
M̃3 − k2M̃4 =

∫
R
h(x)g2(x)dx =

∫
R

(
2k1u+ k2u

2
)
g2(x) dx

≤
(
2k1M̃ + k2M̃

2
)
E(u)− 4k1M̃

3 − 2k2M̃
4,
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which in turn implies that

F2(u) ≤
(
2k1M̃ + k2M̃

2
)
E(u)− 4

3
k1M̃

3 − k2M̃4.

Hence, we reach the conclusion of Lemma 3.5. �

Lemma 3.6. Let k1 > 0, k2 > 0 and M̃ + m̃ ≥ 0. Assume that u ∈ Hs(R), s > 3
2 and

satisfies (3.8). Then

∣∣M̃ − a+∣∣ <
√

78k1 + 72k2a+
8k1 + 3k2a+

· a+δ
1
2 .

Proof. From (3.12) it follows that

k1

(
4

3
M̃3 − 2E(u)M̃ + 2I1(u)

)
+ k2

(
M̃4 − E(u)M̃2 + I2(u)

)
≤ 0. (3.15)

This motivates us to define the Lyapunov function pu(z) by

pu(z) := k1

(
4

3
z3 − 2E(u)z + 2I1(u)

)
+ k2

(
z4 − E(u)z2 + I2(u)

)
. (3.16)

Recall that E(ϕc) = 2a2+, I1(ϕc) =
4
3a

3
+ and I2(ϕc) = a4+. We have

pϕc(z) = k1

(
4

3
z3 − 2E(ϕc)z +

8

3
a3+

)
+ k2

(
z4 − E(ϕc)z

2 + a4+
)

= (z − a+)2
(
4

3
k1(z + 2a+) + k2(z + a+)

2

)
.

We can also write

pϕc(M̃) = pu(M̃) + 2k1M̃ (E(u)− E(ϕc)) + k2M̃
2 (E(u)− E(ϕc))− (F2(u)− F2(ϕc)) ,

which together (3.15) yields(
M̃ − a+

)2(4

3
k1(M̃ + 2a+) + k2(M̃ + a+)

2

)
≤
(
2k1M̃ + k2M̃

2
)
|E(u)− E(ϕc)|+ |F2(u)− F2(ϕc)| .

(3.17)

Using the conditions k1 > 0, k2 > 0, it is determined that
4

3
k1(M̃ + 2a+) + k2(M̃ + a+)

2 ≥ 8

3
k1a+ + k2a

2
+. (3.18)

On the other hand, (3.8) implies that

0 < M̃ ≤
√
2

2
E(u)

1
2 ≤
√
2

2

(
E(ϕc) + 4a2+δ

) 1
2 = a+(2δ + 1)

1
2 . (3.19)

Hence, in view of (3.17), (3.18) and (3.19), we conclude that

∣∣∣M̃ − a+∣∣∣ ≤
√√√√3

(
2k1M̃ + k2M̃2

) ∣∣E(u)− E(ϕc)
∣∣+ 3

∣∣F2(u)− F2(ϕc)
∣∣

8k1a+ + 3k2a2+

≤

√
(6k1M̃ + 3k2M̃2)C2δ + 3C3δ

8k1a+ + 3k2a2+
<

√
78k1 + 72k2a+
8k1 + 3k2a+

· a+δ
1
2 ,

which completes the proof of Lemma 3.6. �
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Lemma 3.7. Let k1 > 0, k2 < 0 and 0 < c ≤ −4k21
9k2

. Assume that u ∈ Hs(R), s > 3
2 and

satisfies (3.8). Then we have

∣∣M̃ − a+∣∣ <
√

78k1 + 72|k2|a+
4k1

· a+δ
1
2 .

Proof. Using the similar arguments as Lemma 3.6, we replace (3.17) by(
M̃ − a+

)2(4

3
k1(M̃ + 2a+) + k2(M̃ + a+)

2

)
≤
(
2k1M̃ + |k2|M̃2

)
|E(u)− E(ϕc)|+ |F2(u)− F2(ϕc)| .

(3.20)

From the conditions k1 > 0, k2 < 0 and 0 < c <
−4k21
9k2

, a direct calculation yields that
0 < 2a+ < −4k1

3k2
. Choosing δ sufficiently small, we have from (3.11) that

0 < M̃ + a+ ≤ 2a+ +
√
2a+δ

1
2 < −4k1

3k2
,

from which we deduce that
4

3
k1(M̃ + 2a+) + k2(M̃ + a+)

2 >
4k1
3
a+. (3.21)

Hence, in view of (3.19), (3.20) and (3.21), we therefore conclude that∣∣∣M̃ − a∣∣∣ ≤
√

(6k1M̃ + 3|k2|M̃2)C2δ + 3C3δ

4k1a+
<

√
78k1 + 72|k2|a+

4k1
· a+δ

1
2 .

This completes the proof of Lemma 3.7. �

Proof of Theorem 3.2. Assume u0 ∈ Hs(R) with s > 3
2 . Let u ∈ C([0, T ∗), Hs(R)) ∩

C1([0, T ∗), Hs−1(R)) be the corresponding solution of initial-value problem (3.1) on the
line with T ∗ > 0 being the maximal existence time of the solution. From Lemma 3.1 it is
noted that

E(u(t, ·)) = E(u0) and F2(u(t, ·)) = F2(u0), t ∈ [0, T ∗). (3.22)

(1) Applying (3.22) together with (3.6) implies that Lemma 3.3 holds. Furthermore, a
similar argument as in the proof of Theorem 2.2 suggests the existence of T0 > 0 such that

M̃(t) + m̃(t) > 0, for t ∈ [0, T0],

which allows us to apply Lemma 3.6 to obtain

∣∣u(t, ξ(t))− a+∣∣ <
√

78k1 + 72k2a+
8k1 + 3k2a+

· a+δ
1
2 , (3.23)

for any t ∈ [0, T0], where u(t, ξ(t)) = M̃(t). Moreover, utilizing Lemma 3.2, we have

‖u(t, ·)− ϕc(· − ξ(t))‖H1 ≤
√
|E(u0)− E(ϕc)|+ 4a+|u(t, ξ(t))− a+|

< 2a+

(
1 +

78k1 + 72k2a+
8k1 + 3k2a+

)1/4

δ1/4,
(3.24)

for t ∈ [0, T0]. Again a similar continuity argument as is performed in the proof of Theorem
2.2 implies that T0 can be pushed all the way till T ∗, which means that (3.24) holds for all
t ∈ [0, T ∗). Thus, we complete the proof of part (1) of Theorem 3.2.
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(2) Similarly, one can apply Lemma 3.3 here. Moreover, since in this case

0 < c < −4k21
9k2

=⇒ 0 < c < − k21
2k2

,

Lemma 3.7 can be applied. Then the rest of the proof can be done in a similar approach,
and hence we omit it here. �

4. Appendix A

For the readers’ convenience, we provide the details about the proofs of Lemma 2.1,
Theorem 2.1 and Theorem 3.1 in this appendix.

Proof of Lemma 2.1. The conservation of E(u) can be obtained by multiplying equation
in (2.1) by u and integrating over R, and then using integration by parts. On the other
hand, taking the inner products between equation in (2.1) and 4(1− ∂2x)−1

(
(u2 − u2x)m

)
,

then we have
0 =4

〈
mt, (1− ∂2x)−1

(
(u2 − u2x)m

) 〉
+ 4k1

〈 (
(u2 − u2x)m

)
x
, (1− ∂2x)−1

(
(u2 − u2x)m

) 〉
+ 4k2

〈
u2mx + 3uuxm, (1− ∂2x)−1

(
(u2 − u2x)m

) 〉
=: P1 + P2 + P3.

(4.1)

For the terms P1 and P2, a direct calculation gives that

P1 = 4

∫
R
ut(u

2 − u2x)mdx =
d

dt

∫
R

(
u4 + 2u2u2x −

1

3
u4x

)
dx, (4.2)

and

P2 = 4k1

∫
R

(
(u2 − u2x)m

)
x
(1− ∂2x)−1

(
(u2 − u2x)m

)
dx

= 2k1

∫
R

((
(1− ∂2x)−

1
2
(
(u2 − u2x)m

))2)
x

dx = 0.

(4.3)

Applying integration by parts, we discover that

P3 = 4k2
〈
u2mx + 3uuxm, (1− ∂2x)−1

(
(u2 − u2x)m

) 〉
= 4k2

〈
u2ux, (u

2 − u2x)m
〉
+ 2k2

〈
(1− ∂2x)−1u3x, (u2 − u2x)m

〉
+ 4k2

〈
(1− ∂2x)−1∂x

(
u3 +

3

2
uu2x

)
, (u2 − u2x)m

〉
= 0, (4.4)

where we have used the operator formula (1 − ∂2x)
−1∂2x = −1 + (1 − ∂2x)

−1. Plugging
(4.2)-(4.4) into (4.1), we deduce that

d

dt

∫
R

(
u4 + 2u2u2x −

1

3
u4x

)
dx = 0. (4.5)

This completes the proof of Lemma 2.1. �

Proof of Theorem 2.1. Recall the definition (2.5). For simplicity we drop the subscript in
ϕc. We have that

ϕ′(x) = −sgn(x)ϕ(x), p(x) =
1

2a
ϕ(x).

Plugging in the ansatz (2.5) into (2.3) and computing the convolution terms we have

p′ ∗
[(

2k1
3

+ k2

)
ϕ3 +

(
k1 +

3k2
2

)
ϕ(ϕ′)2

]
+

(
k1
3

+
k2
2

)
p ∗ (ϕ′)3

=
1

2a

(
k1
3

+
k2
2

)(
5ϕ′ ∗ ϕ3 + ϕ ∗ (ϕ2ϕ′)

)
=

4(2k1 + 3k2)

9a
ϕ′ ∗ ϕ3.
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A direct computation yields that

ϕ′ ∗ ϕ3 = −(sgn(x)ϕ) ∗ ϕ3 =
3a

4
sgn(x)ϕ(ϕ2 − a2).

For the local terms in (2.3) we have

− cϕ′ + k1

(
ϕ2ϕ′ − 1

3
(ϕ′)3

)
+ k2ϕ

2ϕ′ = sgn(x)ϕ
(
c− 2k1 + 3k2

3
ϕ2

)
.

Putting together, we find the equation for ϕ to be

sgn(x)ϕ
(
c− 2k1 + 3k2

3
a2
)

= 0, (4.6)

which leads to the two cases (1) a = ±
√

3c
2k1+3k2

and (2) a 6= 0 with 2k1 + 3k2 = c = 0.
This completes the proof of Theorem 2.1. �

Proof of Theorem 3.1. Similar to the approach in Theorem 2.1, we plug the function ϕ
into (3.2). A direct calculation then reveals

−cϕ′ + k1ϕϕ
′ +

k2
2
ϕ2ϕ′ = sgn(x)ϕ

(
c− k1ϕ−

k2
2
ϕ2

)
and

p′ ∗
(
k1ϕ

2 +
k1
2
(ϕ′)2 +

k2
2
ϕ(ϕ′)2 +

5

6
ϕ3

)
= sgn(x)k1

(
ϕ2 − aϕ

)
+ sgn(x)

k2
2

(
ϕ3 − a2ϕ

)
,

where use has been made of the equalities ϕ′ ∗ ϕ2 = 2a
3 sgn(x) ·

(
ϕ2 − aϕ

)
. In view of the

above two identities we deduce that the equation for ϕ is

sgn(x)
(
c− k1a−

k2
2
a2
)
ϕ = 0.

Solving the above we have that (1) c 6= 0 and a =
−k1±
√
k21+2k2c

k2
, or (2) c = 0 and

a = −2k1
k2

. �
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