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Abstract. We consider a four-parameter family of Boussinesq systems derived by Bona-
Chen-Saut [7]. We establish the existence of the ground states which are solitary waves
minimizing the action functional of the systems. We further show that in the presence of
large surface tension the ground states are even up to translation.

1. Introduction

The dynamics of surface waves in an ideal fluid obeys complicated nonlinear and dis-
persive equations. To simplify them, multiscale asymptotic methods can be employed.
One scaling regime that arises in practical situations is that of waves in a channel of ap-
proximately constant depth h that are uniform across the channel, and which are of small
amplitude and long wavelength. Let a be a typical wave amplitude and λ a typical wave-
length, the conditions above amount to

ε =
a

h
� 1, δ =

h

λ
� 1,

where the parameter ε measures the nonlinear effect and δ indicates the strength of dis-
persion. The equations within the above scaling regime couple the free surface elevation η
to the horizontal component of the velocity v.

When the nonlinear and dispersive effects are balanced, that is ε = δ2, taking advantage
of the freedom associated with the choice of the velocity variable and making full use of
the lower-order relations (the wave equation written as a coupled system) in the dispersive
terms, Bona-Chen-Saut [7] derived the following three-parameter family of Boussinesq sys-
tems (referred to as the abcd system) for one dimensional surface (generalized to include
the surface tension in [18], and a two-dimensional analogue is derived in Bona-Colin-Lannes
[9]),

(1.1)

{
ηt + vx + (ηv)x + avxxx − bηtxx = 0

vt + ηx + vvx + cηxxx − dvtxx = 0,
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which is formally equivalent models of solutions of the Euler equations. In the above system,
η(t, x) is proportional to the deviation of the free surface from its rest position, and v(t, x)
is proportional to the horizontal velocity taken at the scaled height θ with 0 ≤ θ ≤ 1 (θ = 1
at the free surface and θ = 0 at the bottom), and

a =

(
θ2

2
− 1

6

)
ν, b =

(
θ2

2
− 1

6

)
(1− ν), c =

(1− θ2)
2

µ− τ, d =
(1− θ2)

2
(1− µ)

with ν and µ arbitrary real numbers, and τ ≥ 0 the surface tension.

The abcd system (1.1) carries a Hamiltonian structure when b = d, as it can be written
in this case as

∂t

(
η
u

)
= J∇H(η, u),

where

(1.2) H(η, u) =
1

2

∫
R

[
−cη2x − au2x + η2 + (1 + η)u2

]
dx,

and

J = −(1− b∂2x)−1∂x
(

0 1
1 0

)
.

is a skew-adjoint operator.

Another conserved quantity when b = d is the impulse functional

(1.3) I(η, u) =

∫
R

(ηu+ bηxux) dx.

Throughout this paper we will just be dealing with the case a, c < 0 and b = d.

Among various topics of the water wave theory, solitary waves have their long-standing
history dated back to Scott Russell’s horseback observation and play a center role in un-
derstanding the wave coherent structure. In the context of two-dimensional full gravity-
capillary water wave equations, it is shown that for large surface tension (τ > 1/3), de-
pression solitary waves exist (cf. [21, 31] for analysis and [20, 34, 19] for computational
studies). Using asymptotic expansions, Ablowitz-Haut [1] find that for large enough sur-
face tension the asymptotic series for the free surface monotonically increases to zero away
from its unique minimum. A natural question is how well the Boussinesq model can cap-
ture this feature: are there one-dimensional depression solitary waves for system (1.1) that
increasing from its minimum to zero at infinity?

Our goal here is to understand the aforementioned properties for a special class of solitary
waves to system (1.1), namely the ground states, which carries the least Lagrangian action
energy among all solitary waves (a precise definition is given in Definition 1.1). By a solitary
wave, we mean a solution of (1.1) of the type

(1.4) η(x, t) = η(x− ωt) ∈ H1(R), u(x, t) = u(x− ωt) ∈ H1(R),

where ω denotes the traveling speed.
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We are thus looking in the class of “localized” solutions to the system

(1.5)

 cηxx + η − ωu+ bωuxx +
1

2
u2 = 0

auxx + u− ωη + bωηxx + ηu = 0.

A variational approach has been adopted to prove the existence of solitary waves. In
[15] the authors make use of the aforementioned two conserved quantities, namely the
Hamiltonian H and the impulse I, following the idea introduced by Buffoni [11] in dealing
with the full water wave problem. A solitary wave is thus characterized as a critical point
of the energy subject to the constraint of fixed impulse; it is therefore a critical point of
the functional

(1.6) Sω = H− ωI,
where the Lagrange multiplier ω gives the speed of the wave; and the energetic stability
of the set of such solitary waves follows from the Benjamins principle [3]. However, the
solitary waves found there are in X2 = H2(R)×H2(R) instead of the energy space X1 =
H1(R)×H1(R), and ‖η‖H2 needs to be small to obtain the coercivity of H. In addition, a
large surface tension assumption is needed to prove the stability result.

Another variational formulation is established in [16] by utilizing the following two func-
tionals

Hω =
1

2

∫
R

(
−cη2x − au2x + η2 + u2

)
dx− ω

∫
R

(ηu+ bηxux) dx(1.7)

P =
1

2

∫
R
ηu2 dx,(1.8)

which can be viewed as a quadratic-cubic splitting of the full action functional Sω. An
application of Lion’s concentration compactness principle [23] leads to the existence of the
minimization problem

(1.9) inf{Hω(η, u) : (η, u) ∈ X1, P (η, u) = p},
and hence the existence of solitary waves in X1, without any assumption on the size of
data and the strength of surface tension. But a small traveling speed assumption is needed
to ensure the coercivity of Hω.

We want to first establish an existence result of the ground states in the natural energy
space, which is X1. Now we give the definition of ground states as follows.

Definition 1.1. A ground state ~u = (η, u) of (1.1) is an X1-solitary wave solution of (1.5)
which minimizes

Sω = H− ωI
among all nonzero solutions of (1.5).

Our main existence theorem is the following.
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Theorem 1.1 (Existence of ground states). For a, c < 0, b = d and |ω| < ω0 where

(1.10) ω0 =

{
min

{
1,
√
ac
|b|

}
, when b 6= 0,

1, when b = 0,

then system (1.1) has a ground state solution.

We use a Nehari manifold approach [28, 29], which is to minimize Sω over the natural
constraint set

N =
{
~u ∈ X1\{0} : 〈S ′ω(~u), ~u〉 = 0

}
.

We prove that this gives an equivalent formulation, and hence introduce the following
constraint minimization (cf. Proposition 2.2)

inf
~u∈N

Sω(~u).

The difficulties in the direct minimization of the above problem lie in the fact that Sω is
not coercive due to the indefinite cubic term, and that N may not be weakly closed. To
get around these issues, we cut off the cubic part from Sω and relax the constraint set.

The second topic we address here is the symmetry of the ground states. It turns out
that the ground states solve a weakly coupled elliptic system. We follow the moving-plane
method as is used in Busca-Sirakov [12], which requires that the nonlinearities satisfy
certain restrictions, and the solutions do not change sign as well. The non-sign-changing
property of the ground states turns out to be rather delicate to check due to the appearance
of the product of the derivatives in the minimizing functional. To resolve this difficulty
we introduce a change-of-unknowns transformation (cf. (3.10), (3.12)) and then apply a
“selection principle” (cf. Remark 3.1). Our symmetry results for the ground states are the
follows.

Theorem 1.2 (Symmetry of ground states). Under the same assumptions as in Theorem
1.1, and assume further that

0 ≤ b ≤ max{−a,−c}.
Then any ground state (η∗, u∗) of (1.1) is even up to translation, that is, there exists a
point x0 ∈ R such that η∗(x) = η∗(|x− x0|) and u∗(x) = u∗(|x− x0|). Moreover,

(1) when ω > 0,

(1.11)
dη∗

dr
> 0 and

du∗

dr
> 0 for all r = |x− x0| > 0;

(2) when ω < 0,

(1.12)
dη∗

dr
> 0 and

du∗

dr
< 0 for all r = |x− x0| > 0;

(3) when ω = 0, then either (1.11) or (1.12) holds.
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It would certainly be interesting to study the situation when the parameters fall out of
the regime considered here, while keeping the Hamiltonian structure (that is, b = d), so
that ground states can still be defined. It is also nature to require that the system be
linearly well-posed in the parameter regime [7]. The main difficulty now lies in the fact
that the coercivity property is lost in the variational procedure, and hence it is hard to
even search for solitary waves. For some special cases, solitary waves are found using a
dynamical system approach (see, e.g. [14, 33]). However the existence of solitary waves in
the general linearly well-posed regime still remains open.

The rest of the paper is organized as follows. In Section 2 we prove the existence of ground
states to system (1.1) using a variational approach, and show the connection between the
ground states and the solitary waves obtained in [16] (cf. Proposition 2.5). In Section 3
we establish a non-sign-changing condition for the ground states so that we can apply the
“moving plane” method to prove the symmetry property of the ground states in Section
4. Finally in the Appendix we show that in fact all solitary waves of system (1.5) decay
exponentially to zero at infinity.

2. Existence of ground states

Denote the set of ground states with traveling speed ω by

(2.1) Gω = {~u ∈ X1\{0} : Sω(~u) ≤ Sω(~v) for all ~v ∈ X1\{0} satisfying 〈S ′ω(~v), ~v〉 = 0}.

The main goal of this section is to prove the existence result Theorem 1.1. First we state
a result on the coercivity of the functional Hω defined in (1.7)

Lemma 2.1. [16] For a, c < 0, b = d and |ω| < ω0 where ω0 is given in (1.10), one has

(2.2) Hω(~u) ≥ C0‖~u‖2X1 ,

where

(2.3) C0 =
1

2
min

{(
1− |ωb|√

ac

)
|a|,
(

1− |ωb|√
ac

)
|c|, (1− |ω|)

}
> 0.

We next define the functional

(2.4) N(~u) =

∫
R

(
−cη2x − au2x + η2 + u2

)
dx− 2ω

∫
R

(ηu+ bηxux) dx+
3

2

∫
R
ηu2 dx.

Therefore if ~u is a solitary wave solution, then N(~u) = 〈S ′ω(~u), ~u〉 = 0. Moreover we have

Proposition 2.2. Under the assumption of Lemma 2.1, ~u ∈ Gω if and only if ~u solves the
minimization problem

(2.5) Jω = inf{Sω(~v) : ~v ∈ X1\{0}, N(~v) = 0}.
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Proof. “⇒”: This is obvious since S ′ω(~v) = 0 implies N(~v) = 0.

“⇐”: If Sω(~u) = Jω and N(~u) = 0, the ~u satisfies the Euler-Lagrange equation

S ′ω(~u) + λN ′(~u) = 0

for some Lagrange multiplier λ ∈ R. Taking the L2-inner product of the above equations
with ~u and making use of the fact that 〈S ′ω(~u), ~u〉 = N(~u) = 0 we have that λ〈N ′(~u), ~u〉 = 0.
On the other hand, from Lemma 2.1

〈N ′(~u), ~u〉 = 2

∫
R

(
−cη2x − au2x + η2 + u2

)
dx− 4ω

∫
R

(ηu+ bηxux) dx+ 3

∫
R

3

2
ηu2 dx

= −
∫
R

(
−cη2x − au2x + η2 + u2

)
dx+ 2ω

∫
R

(ηu+ bηxux) dx

= −2Hω(~u) < 0.

Hence λ = 0 and in turn S ′ω(~u) = 0. Moreover since N(~u) = 〈S ′ω(~u), ~u〉 for any ~u ∈ X1 and
~u is a minimizer of J , thus Sω(~u) ≤ Sω(~v) for any solitary wave ~v ∈ X1 of (1.1). Therefore
~u ∈ Gω. �

As is pointed out in the Introduction, there are two difficulties in minimizing Jω directly.
The first difficulty is that Sω is not homogeneous, and moreover is not coercive. The second
one is the lack of convergence of N(~un), provided a weak X1-convergence of ~un. To handle
the first issue, we remove the cubic terms from Sω by using N , that is, we consider the
functional

(2.6) S̃ω = Sω −
1

3
N =

1

6

∫
R

(
−cη2x − au2x + η2 + u2

)
dx− 1

3
ω

∫
R

(ηu+ bηxux) dx,

and look for minimizers of S̃ω. Note that when N = 0, Sω = S̃ω. To resolve the second
issue, we relax the constraint N = 0 to N ≤ 0. In this way, we seek minimizers to the
problem

(2.7) J̃ω = inf{S̃ω(~v) : ~v ∈ X1\{0}, N(~v) ≤ 0}.

Proposition 2.3. Under the same assumptions of Theorem 1.1, we have

(2.8) Jω = J̃ω.

Proof. From the assumption |ω| < ω0 and Lemma 2.1 we obtain the coercivity of S̃ω:

(2.9) S̃ω(~u) ≥ 1

3
C0‖~u‖2X1 .

For ~u ∈ X1\{0} with N(~u) = 0, it is straightforward that J̃ω ≤ S̃ω(~u) = Sω(~u). Hence
J̃ω ≤ Jω. Next we claim that Jω ≤ J̃ω. Notice that for any ~u ∈ X1\{0} with

N(~u) = 2Hω(~u) +
3

2

∫
R
ηu2 dx ≤ 0,
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from Lemma 2.1 we know that Hω ≥ C0‖~u‖2X1 > 0 when |ω| < ω0. Thus
∫
R ηu

2 dx < 0. So
there exists some k ∈ (0, 1) sufficiently small such that

N(k~u) = k2
[∫

R

(
−cη2x − au2x + η2 + u2

)
dx− 2ω

∫
R

(ηu+ bηxux) dx

]
+

3

2
k3
∫
R
ηu2 dx > 0.

Hence by continuity we can find a k0 ∈ (k, 1) such that N(k0~u) = 0. Therefore

Jω ≤ S(k0~u) =
k20
2

∫
R

(
−cη2x − au2x + η2 + u2

)
dx− k20ω

∫
R

(ηu+ bηxux) dx+
k30
2

∫
R
ηu2 dx

= k20

[
1

6

∫
R

(
−cη2x − au2x + η2 + u2

)
dx− 1

3
ω

∫
R

(ηu+ bηxux) dx

]
=
k20
3
S̃ω(~u) ≤ S̃ω(~u),

where we have used the coercivity of S̃ω in the last inequality. Hence Jω ≤ J̃ω, and therefore
Jω = J̃ω �

From the above discussion we arrive at the minimization of J̃ω. The following Lemma
ensures the existence of such minimizers, and hence completes the proof of Theorem 1.1.

Lemma 2.4. Under the assumption of Theorem 1.1, the minimization problem (2.5) has
a solution.

Proof. We first consider the minimization of J̃ω. From (2.9) we know that S̃ω is coercive.
Hence there exists a minimizing sequence {~un = (ηn, un)} for S̃ω satisfying

(2.10) ~un 6= 0, N(~un) ≤ 0, and lim
n→∞

S̃ω(~un) = J̃ω.

The coercivity of S̃ω also implies that {~un} is bounded in X1, therefore it has a subsequence,
still denoted by {~un}, converges weakly to some ~u∗ = (η∗, u∗) ∈ X1.

1◦. We claim that

inf
n

∣∣∣∣∫
R
ηnu

2
n dx

∣∣∣∣ = α > 0.

Suppose not. Then there is a subsequence, still denoted by {~un}, such that

lim
n→∞

∫
R
ηnu

2
n dx = 0.

Since N(~un) ≤ 0, it follows Lemma 2.1 that

2C0‖~un‖2X1 ≤ 2Hω(~un) =

∫
R

(
−cη2nx − au2nx + η2n + u2n

)
dx− 2ω

∫
R

(ηnun + bηnxunx) dx

≤ −3

2

∫
R
ηnu

2
n dx→ 0, as n→∞,(2.11)
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and thus ‖~u∗‖2X1 ≤ 0. On the other hand, from Sobolev embedding we know that∣∣∣∣∫
R
ηnu

2
n dx

∣∣∣∣ ≤ C‖~un‖3X1 , for C > 0.

Combing this with the previous estimate (2.11) leads to

C0‖~un‖2X1 ≤ C‖~un‖3X1 .

Moreover ~un 6= 0, then ‖~un‖X1 ≥ C0/C > 0, contradicting (2.11), hence we prove the claim.

2◦. We prove that ~u∗ 6= 0. We perform the following splitting

α ≤
∫
R

∣∣ηnu2n∣∣ dx ≤ (∫
|ηn|≤ε

+

∫
ε<|ηn|,|un|<1/ε

+

∫
|un|≤ε

+

∫
|un|≥1/ε

+

∫
|ηn|≥1/ε

) ∣∣ηnu2n∣∣ dx
≤ ε‖~un‖2X1 +

1

ε3
|{|ηn|, |un| > ε}|+ ε‖~un‖2X1 + ε2

∫
R

∣∣ηnu4n∣∣ dx+ ε

∫
R
η2nu

2
n dx

≤ C(ε+ ε2) +
1

ε3
|{|ηn|, |un| > ε}|

for any ε > 0. Choosing ε small enough so that C(ε+ ε2) < α/2 we thus have

|{|ηn|, |un| > ε}| > αε3

2
= δ > 0.

Since ‖~un‖X1 is bounded, a one-dimensional analogue of Lemma 4 in [25] leads to

|B ∩ {|ηn| > ε/2, |un| > ε/2}| > δ0 > 0

for some δ0 > 0, where B is a ball in R of unit radius. Then using the fact that ~un → ~u∗

a.e. we prove the assertion.

3◦. Now we show that ~u∗ is a minimizer of (2.7), that is, N(~u∗) ≤ 0 and S̃ω(~u∗) = J̃ω.

Denote

G(~u) =

∫
R

(
−cη2x − au2x + η2 + u2

)
dx,

K(~u) =

∫
R

(ηu+ bηxux) dx.

Then S̃ω = 1
6
G− 1

3
ωK. Since ~un ⇀ ~u∗ in X1, ~un → ~u∗ a.e., it is easy to deduce that

G(~un)−G(~un − ~u∗)−G(~u∗)→ 0,

K(~un)−K(~un − ~u∗)−K(~u∗)→ 0 as n→∞,
and so

(2.12) S̃ω(~un)− S̃ω(~un − ~u∗)− S̃ω(~u∗)→ 0.

We claim that the same limit holds for P (defined (1.8)):

(2.13) P (~un)− P (~un − ~u∗)− P (~u∗)→ 0.
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To prove (2.13), we use the idea from Brezis-Lieb [10]. Consider a function j : R2 → R,
j(~a) = a1a

2
2, and in this way P (~u) = 1

2

∫
R j(~u) dx. Then one can easily verify the following

decomposition estimate

|j(~a+~b)− j(~a)| ≤ εϕ(~a) + ψε(~b), for all ~a,~b ∈ R2,

where

ϕ(~a) = a21a
2
2 + a21 + a42 + a22, ψε(~b) = Cε(b

2
1 + b21b

2
2 + b22 + b42) + b1b

2
2.

Then the functions j, ϕ, ψ, ~un, and ~u satisfy the conditions in Theorem 2 of [10], and thus∫
R
|j(~un)− j(~un − ~u∗)− j(~u∗)| → 0,

implying (2.13).

So combining the above convergence results and using the identity that N = G− 2ωK+
3P we have

(2.14) N(~un)−N(~un − ~u∗)−N(~u∗)→ 0.

If N(~u∗) > 0, from the constraint N(~un) ≤ 0 and (2.14) we know N(~un − ~u∗) < 0 as
n → ∞ and hence also in the constraint class of S̃ω, and subsequently when n is large,
S̃ω(~un−~u∗) ≥ J̃ω. On the other hand, by definition S̃ω(~un)→ J̃ω as n→∞. Together with
(2.12) we infer that S̃ω(~u∗) ≤ 0. Then from the coercivity of S̃ω, (2.9) we know ‖~u∗‖X1 ≤ 0,
implying that ~u∗ = 0 a.e., which contradicts the result in 2◦. Therefore N(~u∗) ≤ 0.

Moreover from (2.12) we have

1

3
C0‖~un − ~u∗‖2X1 ≤ S̃ω(~un − ~u∗)→ S̃ω(~un)− S̃ω(~u∗)→ J̃ω − S̃ω(~u∗).

Hence S̃ω(~u∗) ≤ J̃ω, and J̃ω > 0.

4◦. Now it remains to check that indeed N(~u∗) = 0. If not, then N(~u∗) < 0. A
scaling argument similar to the one in Proposition 2.3 indicates that N(k~u∗) > 0 for some
0 < k < 1 sufficiently small, and by continuity of N there is a k0 ∈ (0, k) such that
N(k0~u

∗) = 0. Accordingly,

J̃ω ≤ S̃ω(k0~u
∗) = k20S̃ω(~u∗) = k20J̃ω < J̃ω,

a contradiction. Therefore S̃ω(~u∗) = J̃ω and N(~u∗) = 0. From Proposition 2.3 we know
that ~u∗ solves (2.5). Hence proves the lemma. �

Proof of Theorem 1.1. The existence of the ground states can be inferred from Propositions
2.2, 2.3, and Lemma 2.4. �

The proposition below gives several characterizations of a ground state of (1.5).

Proposition 2.5 (Characterization of ground states). Under the same assumptions as in
Theorem 1.1, the following statements are equivalent:
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(i) ~u∗ is a ground state;
(ii) N(~u∗) = 0 and Hω(~u∗) = inf{Hω(~u) : P (~u) = λ∗}, where λ∗ = P (~u∗) < 0;

(iii) N(~u∗) = 0 and P (~u∗) = sup{P (~u) : ~u 6= 0, N(~u) = 0};
(iv) N(~u∗) = 0 = inf{N(~u) : ~u 6= 0, P (~u) = P (~u∗)}.

Proof. It is clear that (i) and (iii) are equivalent. Indeed, by Proposition 2.2, ~u∗ ∈ Gω if
and only if ~u∗ is a minimizer of (2.5), where ~u∗ is required to satisfy N(~u∗) = 0. But since
N = 2Sω + P , it is equivalent to saying that any ground state ~u∗ maximizes P under the
same requirement.

Let us next prove (ii) implies (iii). Let ~u∗ satisfy N(~u∗) = 0, P (~u∗) = λ∗ and Hω(~u∗) =
min{Hω(~u) : P (~u) = λ∗}. For any ~u 6= 0 such that N(~u) = 0, G(~u) − 2ωK(~u) > 0 and
therefore P (~u) < 0. We take

b =

(
P (~u∗)

P (~u)

)1/3

.

Our goal is to show that b ≤ 1.

By direct calculation, we get

(2.15) N(b~u) = b2(G(~u)− 2ωK(~u)) + 3b3P (~u) = (b2 − b3)(G− 2ωK)(~u)

and

P (b~u) = b3P (~u) = P (~u∗) = λ∗.

By definition of ~u∗, we have Hω(b~u) ≥ Hω(~u∗). We are then led to

0 = N(~u∗) = Hω(~u∗) + 3P (~u∗) ≤ Hω(b~u) + 3P (b~u) = N(b~u).

Combining the relation above with (2.15), we have

(b2 − b3)(G− 2ωK)(~u) ≥ 0,

which yields that b ≤ 1 due to the positivity of (G− 2ωK)(~u).

We next show that (i) implies (ii). Let ~u∗ be a ground state of (1.5). Then we have

N(~u∗) = (G− 2ωK)(~u∗) + 3P (~u∗) = 0.

We let λ∗ = P (~u∗)(< 0) and in consequence (G− 2ωK)(~u∗) = −3λ∗. Since

min{Sω(~v) : ~v ∈ X1\{0}, N(~v) = 0}

= min

{
1

2
G(~v)− ωK(~v)− 1

3
(G− 2ωK)(~v) : ~v ∈ X1\{0}, N(~v) = 0

}
= min

{
1

6
(G− 2ωK)(~v) : ~v ∈ X1\{0}, N(~v) = 0

}
,

~u∗ in fact minimizes G − 2ωK among all ~u satisfying N(~u) = 0. Our goal is to prove ~u∗

minimizes G− 2ωK among all ~u satisfying P (~u) = λ∗.
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Let ~u1 = (η1, u1) be such a minimizer. It suffices to show that (G − 2ωK)(~u1) = (G −
2ωK)(~u∗). We apply Lagrange multiplier method to get a θ ∈ R such that (H ′ω+θP ′)(~u1) =
0, which implies that η1 and u1 satisfy cηxx + η − ωu+ bωuxx +

1

2
θu2 = 0

auxx + u− ωη + bωηxx + θηu = 0.

This yields (G− 2ωK)(~u1) = −3θP (~u1) = −3θλ∗. It remains to prove θ = 1. To this end,
we first apply the definition of ~u1 to get

(G− 2ωK)(~u1) ≤ (G− 2ωK)(~u∗),

which means −3θλ∗ ≤ −3λ∗ and therefore θ ≤ 1.

On the other hand, if we let ~u2 = θ ~u1, then ~u2 = (η2, u2) satisfies (1.5) and therefore
N( ~u2) = 0. Since ~u∗ minimizes G− 2ωK among all ~u satisfying N(~u) = 0, we obtain

(G− 2ωK)(~u∗) ≤ (G− 2ωK)(~u2) = (G− 2ωK)(θ~u1) = θ2(G− 2ωK)(~u1) = −3θ3λ∗.

This gives us −3λ∗ ≤ −3θ3λ∗, which implies θ ≥ 1.

We next prove the equivalence between (iii) and (iv). We first show (iii) implies (iv).
Suppose that ~u∗ satisfies (iii). Then for any ~u such that P (~u) = P (~u∗), we must have
N(~u) ≥ 0. If it is not the case, i.e., N(~u) < 0 and hence P (~u) < 0, we get

N(b~u) = b2(G− 2ωK)(~u) + 3b3P (~u) > 0

for some b ∈ (0, 1) sufficiently small. Then there exists b0 ∈ (0, 1) such that N(b0~u) = 0.
Meanwhile, P (b0~u) = b30P (~u) > P (~u∗). This contradicts the fact that ~u∗ satisfies (iii).

We finally show (iv) implies (iii). Suppose that ~u∗ satisfies (iv). Assume by contradiction
that there is some ~u 6= 0 satisfying N(~u) = 0 but P (~u) > P (~u∗). It is clear that P (~u) < 0.
Then we can find b0 > 1 such that P (b0~u) = b30P (~u) = P (~u∗). On the other hand,
N(b0~u) = b20(G− 2ωK)(~u) + 3b30P (~u) < 0. This is a contradiction to (iv). �

Remark 2.1. The existence of ~u∗ satisfying the condition (ii) can be derived by scaling
the result of [16]. Indeed, it is known that there exists ~u0 such that Hω(~u0) = min{Hω(~u) :
P (~u) = λ0}, where λ0 = P (~u0). Then there exists a Lagrange multiplier θ ∈ R such that
(G− 2ωK)(~u0) + 3θP (~u0) = 0. The proof is trivial if θ = 1 or θ = 0.

We thus assume θ 6= 1 and θ 6= 0. By letting ~u∗ := θ~u0, we have

N(~u∗) = θ2(G− 2ωK)(~u0) + 3θ3P (~u0) = 0.

Moreover, it is easily seen that Hω(~u∗) = min{Hω(~u) : P (~u) = λ∗}, where λ∗ = P (~u∗). In
fact, for any ~u such that P (~u) = λ∗, P (~u

θ
) = λ0. Then in view of the definition of ~u0, we

have
Hω(~u0) ≤ Hω(~u/θ),

which implies
Hω(~u∗) = θ2Hω(~u0) ≤ θ2Hω(~u/θ) = Hω(~u).
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Remark 2.2. From (ii) in Proposition 2.5 and Proposition 3.2 in [16] we see that the
ground states are all smooth classical solutions, that is (η∗, u∗) ∈ H∞(R)×H∞(R).

3. Positivity/Negativity of the ground states

We prove in this section that in a certain parameter regime the ground states obtained
in the previous section have fixed sign.

From Proposition 2.5 we know that if ~u∗ = (η∗, u∗) is a ground state, then

(3.1) P (~u∗) = λ∗ < 0, Hω(~u∗) = −3

2
λ∗, (since Q(~u∗) = 2Hω(~u∗) + 3P (~u∗) = 0.)

and

(3.2) Sω(~u∗) = Hω(~u∗) + P (~u∗) = −1

2
λ∗.

The following lemma is crucial to our analysis.

Lemma 3.1. Under the same assumptions as in Theorem 1.1, if ~u = (η, u) ∈ X1 satisfies
that

(3.3) P (~u) ≤ λ∗, Hω(~u) ≤ −3

2
λ∗,

then ~u ∈ Gω, that is, ~u is a ground state.

Proof. For t ∈ R, consider

Q(t~u) = 2Hω(t~u) + 3P (t~u) = t2 [2Hω(~u) + 3tP (~u)] .

So choosing

(3.4) t =
2Hω(~u)

−3P (~u)

we have Q(t~u) = 0. From assumption 3.3 we know that

(3.5) 0 < t ≤ 1.

Now using the definition of ground states and (3.2)-(3.5) we deduce that

−1

2
λ∗ ≤ Sω(t~u) = t2 [Hω(~u) + tP (~u)]

≤ t2
(
−3

2
λ∗ + tλ∗

)
= −λ

∗

2
t2 (3− 2t) .

(3.6)

Hence
t2(3− 2t) ≥ 1,

which only holds when t = 1 and the inequality becomes an equality. Therefore Q(~u) = 0
and Sω(~u) = −1

2
λ∗, which shows that ~u is a ground state. �
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Remark 3.1. The importance of Lemma 3.1 is that it provides a “selection principle” of
the ground states in the sense that it asserts that the following cases cannot happen.

P (~u) < λ∗, Hω(~u) ≤ −3

2
λ∗;(3.7)

P (~u) ≤ λ∗, Hω(~u) < −3

2
λ∗.(3.8)

An easy situation is when b = d = 0, using the above lemma, we have

Lemma 3.2. Suppose a, c < 0, b = d = 0, |ω| < ω0, and ~u∗ = (η∗, u∗) ∈ Gω. Then

(1) if ω > 0, then (η∗, u∗) = (−|η∗|,−|u∗|);
(2) if ω < 0, then (η∗, u∗) = (−|η∗|, |u∗|);
(3) if ω = 0, then (η∗, u∗) = (−|η∗|,−|u∗|) or (η∗, u∗) = (−|η∗|, |u∗|).

Proof. It is easy to see that (3.3) is satisfied for the new functions in (1), (2) and (3). Hence
from Lemma 3.1, they are also ground states. Next we show that they are the same as ~u∗.
We will only discuss case (1), since the other two can be proved the same way. Note that
now (η∗, u∗) solve the following equations.

(3.9)

 cηxx + η − ωu+
1

2
u2 = 0

auxx + u− ωη + ηu = 0.

Hence it is obvious that η∗, u∗ 6≡ 0 (this can also be inferred from Proposition 2.5 (ii)).

First we show that η∗ = −|η∗|. If not, then from the smoothness of the ground states (see
Remark 2.2), there exists an open interval (p, q), p < q such that η∗ > 0 on (p, q). Then we
must have u∗ ≡ 0 on (p, q). Otherwise we would have

Hω(−|η∗|,−|u∗|) ≤ Hω(η∗, u∗), P (−|η∗|,−|u∗|) < P (η∗, u∗),

and then the scaling parameter t given in (3.4) indicates that

0 < t =
2Hω(−|η∗|,−|u∗|)
−3P (−|η∗|,−|u∗|)

< 1.

Therefore inequality (3.6) is not valid, which is a contradiction. So u∗ ≡ 0 on (p, q), and
then u∗xx = 0 on (p, q). Now plugging (η∗, u∗) into the second equation of (3.9) on (p, q) we
obtain that η∗ ≡ 0 on (p, q), which is a contradiction. So η∗ ≤ 0 on R, that is, η∗ = −|η∗|.

Next we consider u∗. For simplicity we only discuss the case when ω > 0 since the other
cases can be done similarly. We need to prove that u∗ = −|u∗|. If not, then u∗ > 0 on
some (p, q) with p < q.

Case 1: if u∗ > 0 on R. Since η∗ 6≡ 0, we have

Hω(η∗,−|u∗|) < Hω(η∗, u∗), P (η∗,−|u∗|) = P (η∗, u∗),
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and the scaling parameter t in (3.4) satisfies

0 < t < 1.

So (3.6) cannot hold, which is a contradiction.

Case 2: if u∗ > 0 on (p, q) and u∗(p) = u∗(q) = 0 (p may be −∞ and q may be +∞).
Similarly as in Case 1, if η∗ 6≡ 0 on (p, q), then let

ū∗ =

{
−u∗ on (p, q)
u∗ else.

Then
Hω(η∗, ū∗) < Hω(η∗, u∗), P (η∗,−ū∗) = P (η∗, u∗),

which again leads to a contradiction. Therefore we must have η∗ = 0 on (p, q). But then
the second equation of (3.9) indicates that on (p, q)

au∗xx + u∗ = 0,

together with u∗(p) = u∗(q) = 0, we infer that u∗ ≡ 0 on (p, q), which is a contradiction.
Thus we conclude that u∗ ≤ 0 on R and hence u∗ = −|u∗|.

�

Remark 3.2. It can be further proved by using a strong maximum principle, as in Theorem
3.1, that η∗ and u∗ can not attain zero.

As is explained in the Introduction, when b = d 6= 0 and ω 6= 0, it is difficult to analyze
the sign of the ground state directly due to the appearance of the product of the derivatives
in the functional. So instead, we use the trick of “completing the squares” and then make
a change-of-unknowns transformation to remove the mixed derivative term. There are two
ways to perform the transformation, as indicated in the following.

1. Hω(~u) and P (~u) can be written as

Hω(~u) =
1

2

∫
R
(η − ωu)2 +

1− ω2

ω2
(ωu)2 − c

(
η +

b

c
ωu

)2

x

+
ac− b2ω2

−cω2
(ωu)2x dx

P (~u) =
1

2ω2

∫
R
η(ωu)2 dx.

Let

(3.10) w = ωu, ζ = η +
b

c
w.

Then the corresponding functionals become

H(1)
ω (ζ, w) =

1

2

∫
R

(
ζ − b+ c

c
w

)2

+
1− ω2

ω2
w2 − cζ2x +

ac− b2ω2

−cω2
w2
x dx

P (1)(ζ, w) =
1

2ω2

∫
R

(
ζ − b

c
w

)
w2 dx.

(3.11)
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2. Another way to write Hω(~u) and P (~u)

Hω(~u) =
1

2

∫
R
(u− ωη)2 +

1− ω2

ω2
(ωη)2 − a

(
u+

b

a
ωη

)2

x

+
ac− b2ω2

−aω2
(ωη)2x dx

P (~u) =
1

2ω

∫
R
(ωη)u2 dx.

Now the transformation is

(3.12) ξ = ωη, v = u+
b

a
ξ,

and the corresponding functionals are

H(2)
ω (ξ, v) =

1

2

∫
R

(
v − b+ a

a
ξ

)2

+
1− ω2

ω2
ξ2 − av2x +

ac− b2ω2

−aω2
ξ2x dx

P (2)(ξ, v) =
1

2ω

∫
R
ξ

(
v − b

a
ξ

)2

dx.

(3.13)

Note that under the assumptions of Theorem 1.1, in both (3.11) and (3.13), the coefficients
of the square terms in functional Hω are all positive.

Now we can state our theorem on the sign of the ground states.

Theorem 3.1. Under the same assumptions as in Theorem 1.1, and assume further that

(3.14) 0 ≤ b ≤ max{−a,−c}.
Let (η∗, u∗) be a ground state of system (1.1). Then

(1) if ω > 0, then η∗, u∗ < 0.
(2) if ω < 0, then η∗ < 0, u∗ > 0.
(3) if ω = 0, then η∗ < 0, u∗ < 0; or η∗ < 0, u∗ > 0. This is true even without the

assumption (3.14).

Proof. To prove (1) and (2), we will use the new functionals given in (3.11) and (3.13) with
unknowns (ζ, w) and (ξ, v) defined in (3.10) and (3.12) respectively, where (η, u) is replaced
by (η∗, u∗).

We claim that

if 0 ≤ b ≤ −c, then ζ, w ≤ 0,(3.15)

if 0 ≤ b ≤ −a, then

{
ξ, v ≤ 0, when ω > 0,
ξ, v ≥ 0, when ω < 0.

(3.16)

In fact, when 0 ≤ b ≤ −c, and if w > 0 on some (p, q), then

H(1)
ω (−|ζ|,−|w|) ≤ H(1)

ω (ζ, w), P (1)(−|ζ|,−|w|) < P (1)(ζ, w), if 0 < b ≤ −c,
H(1)
ω (−|ζ|,−|w|) < H(1)

ω (ζ, w), P (1)(−|ζ|,−|w|) ≤ P (1)(ζ, w), if 0 ≤ b < −c,
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and

H(1)
ω (ζ, w) = Hω(η∗, u∗) = −3

2
λ∗, P (1)(ζ, w) = P (η∗, u∗) = λ∗.

Since the transformation (3.10) does not change the scaling of the two functionals Hω and
P , and

Sω(η∗, u∗) = H(1)
ω (ζ, w) + P (1)(ζ, w), Q(η∗, u∗) = 2H(1)

ω (ζ, w) + 3P (1)(ζ, w),

we can apply the same argument as in Lemma 3.1. Define

η = −|ζ|+ bω

c
|u∗|,

then η ∈ H1(R) and

Hω(η, u∗) = H(1)
ω (−|ζ|,−|w|), P (η, u∗) = P (1)(−|ζ|,−|w|),

and

Q(tη, tu∗) = 0, for 0 < t =
2Hω(η, u∗)

−3P (η, u∗)
=

2H
(1)
ω (−|ζ|,−|w|)

−3P (1)(−|ζ|,−|w|)
< 1.

So

−1

2
λ∗ = Sω(η∗, u∗) ≤ Sω(tη, tu∗) = t2H(1)

ω (−|ζ|,−|w|) + t3P (1)(−|ζ|,−|w|)

< −3

2
λ∗t2 + λ∗t3 = −1

2
λ∗t2(3− 2t),

which cannot hold because 0 < t < 1. This proves that w ≤ 0.

If ζ > 0 on some (p, q), then

H(1)
ω (−|ζ|,−|w|) ≤ H(1)

ω (ζ, w), P (1)(−|ζ|,−|w|) < P (1)(ζ, w).

Then a similar argument as above leads to a contradiction. Therefore ζ ≤ 0.

The other case when 0 ≤ b ≤ −a can be done in the same way. When ω > 0, we consider
(−|ξ|,−|v|). When ω < 0, we use (|ξ|, |v|). Hence we proved (3.15) and (3.16).

From the definitions (3.10), (3.12) and the sign conditions (3.15), (3.16) we infer that
η∗, u∗ ≤ 0 when ω > 0; and η∗ ≤ 0, u∗ ≥ 0 when ω < 0. From Lemma 3.2 we know that
when ω = 0 then either η∗, u∗ ≤ 0 or η∗ ≤ 0, u∗ ≥ 0.

Finally we prove that η∗, u∗ do not attain zero. We only consider the case when ω > 0.
The other cases can be treated the same way. Multiplying the first equation of (1.5) by a,
and the second equation by bω, then subtracting we get

(3.17) (ac− b2ω2)η∗xx + (a+ bω2)η∗ − (a+ b)ωu∗ +
a

2
(u∗)2 − bωη∗u∗ = 0.

Similarly, Multiplying the second equation of (1.5) by c, and the first equation by bω, then
subtracting we get

(3.18) (ac− b2ω2)u∗xx + (c+ bω2)u∗ − (c+ b)ωη∗ − bω

2
(u∗)2 + cη∗u∗ = 0.
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The following strong maximum principle is a classical case of Proposition 2.6 in Da
Lio-Sirakov [17].

Proposition 3.3. Let O ⊂ Rn be a smooth domain and let b, c ∈ L∞(O). Suppose w ∈
C2(O) is a classical solution of{

∆w − b(x)|∇w|+ c(x)w ≥ 0 in O,
w ≤ 0 in O.

Then either w ≡ 0 in O or w < 0 in O and at any point x0 ∈ ∂O where w(x0) = 0 we have

∂w

∂~ν
(x0) > 0,

where ~ν is the outward normal to ∂O at x0.

From the assumption of the theorem and that η∗, u∗ ≤ 0 we can rewrite equations (3.17)
and (3.18) as

η∗xx +

[
(a+ bω2)− bωu∗

ac− b2ω2

]
η∗ =

(a+ b)ωu∗ − a
2
(u∗)2

ac− b2ω2
≥ 0,

u∗xx +

[
(c+ bω2)− bω

2
u∗ + cη∗

ac− b2ω2

]
u∗ =

(c+ b)ωη∗

ac− b2ω2
≥ 0.

Note that η∗, u∗ are smooth and in H1(R), and hence are both L∞. So applying Proposition
3.3 to the above two equations we know that for any interval (p, q), either η∗ = u∗ ≡ 0 or
η∗, u∗ < 0 on (p, q) and

(i) if η∗(p) = 0 (u∗(p) = 0 resp.), then η∗x(p) < 0 (u∗x(p) < 0 resp.).
(ii) if η∗(q) = 0 (u∗(q) = 0 resp.), then η∗x(q) > 0 (u∗x(q) > 0 resp.).

However, since η∗, u∗ ≤ 0 and η∗, u∗ 6≡ 0 on all of R, if η∗(x0) = 0 for some x0 ∈ R, then
η∗(x0) = max η∗ and hence η∗x(x0) = 0. The same result holds for u∗. Therefore we must
have η∗, u∗ < 0 on all of R.

�

4. Symmetry

In this section we discuss the symmetry property of the ground states. We prove that
all ground states of (1.1) are even up to translation. The method we employ here stems
from the general framework of Busca-Sirakov [12].
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4.1. Weakly coupled version of (1.5). We first rewrite our system (1.5) to the fit in the
setting in [12]. For simplicity of discussion. we only consider the case when ω > 0.

From (3.17) and (3.18) and Theorem 3.1 we obtain
(4.1)
η∗xx +

[
(a+ bω2)

ac− b2ω2

]
η∗ −

[
(a+ b)ω

ac− b2ω2

]
u∗ +

[
a

2(ac− b2ω2)

]
(u∗)2 −

[
bω

ac− b2ω2

]
η∗u∗ = 0,

u∗xx +

[
(c+ bω2)

ac− b2ω2

]
u∗ −

[
(c+ b)ω

ac− b2ω2

]
η∗ −

[
bω

2(ac− b2ω2)

]
(u∗)2 +

[
c

ac− b2ω2

]
η∗u∗ = 0.

η∗, u∗ < 0, η∗, u∗ → 0 as |x| → ∞.

Denote

(4.2) A =
a

ac− b2ω2
, B =

bω

ac− b2ω2
, and C =

c

ac− b2ω2
,

and let U = −η∗, V = −u∗. Then (4.1) becomes

(4.3)


Uxx + (A+ ωB)U − (Aω +B)V − 1

2
AV 2 +BUV = 0,

Vxx + (C + ωB)V − (Cω +B)U +
1

2
BV 2 − CUV = 0,

U, V > 0, U, V → 0 as |x| → ∞.

Notice that (4.3) is a weakly coupled semilinear elliptic system. From the assumptions
in Theorem 3.1 we have

(4.4) B ≥ 0, A, C,A+ ωB,C + ωB < 0, AC −B2 > 0.

We next set

g(U, V ) = (A+ ωB)U − (Aω +B)V − 1

2
AV 2 +BUV,

f(U, V ) = (C + ωB)V − (Cω +B)U +
1

2
BV 2 − CUV.

Then we get

∂g

∂U
= A+ ωB +BV,

∂g

∂V
= −(Aω +B)− AV +BU,

∂f

∂U
= −(Cω +B)− CV,

∂f

∂V
= C + ωB +BV − CU.

Let us recall the symmetry result [12, Theorem 2], which requires that
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(1)
∂g

∂V
(U, V ) ≥ 0 and

∂f

∂U
(U, V ) ≥ 0 for all (U, V ) ∈ [0,∞)× [0,∞);

(2)
∂g

∂U
(0, 0) < 0 and

∂f

∂V
(0, 0) < 0;

(3) detX > 0, where

X =


∂g

∂U

∂g

∂V
∂f

∂U

∂f

∂V

 (0, 0).

From (3.14) we know that
Aω +B,Cω +B ≤ 0,

and hence condition (1) is satisfied. From (4.4), we know that condition (2) is satisfied. A
direct computation shows that

X =

 A+ ωB −(Aω +B)

−(Cω +B) C + ωB


From (1.10)

detX = (1− ω2)(AC −B2) > 0.

Remark 4.1. In the case when ω ≤ 0, we know from Theorem 3.1 that η∗ < 0, either
u∗ > 0 or u∗ < 0. When u∗ > 0, one may consider (U,−V ) and it is easy to see that
conditions (1)–(3) are also satisfied for (U,−V ).

Therefore applying Theorem 2 in [12] we obtain

Lemma 4.1. Under the same assumption as in Theorem 3.1, when ω > 0, there exist
points x1, x2 ∈ R such that U(x) = U(|x− x1|) and V (x) = V (|x− x2|). Moreover,

dU

dr1
< 0 and

dV

dr2
< 0

for all r1 = |x − x1| > 0 and r2 = |x − x2| > 0. Therefore η∗(x) = η∗(|x − x1|), u∗(x) =
u∗(|x− x2|) and

dη∗

dr1
> 0,

du∗

dr2
> 0.

Similar results hold when ω ≤ 0.

From [12], a sufficient condition so that x1 = x2 is that V (reps. U) appears in a non-zero
term in the first (reps. second) equation in (4.3), that is,

(i) either ∂g/∂V or ∂f/∂U is positive in a neighborhood of (0, 0), except possibly on
{U = 0} ∪ {V = 0}. This is the case when ω 6= 0;
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or

(ii) either ∂g/∂V or ∂f/∂U does not depend on one of its variables and is not identically
zero in every neighborhood of (0, 0). This is true when ω = 0.

Putting all the above arguments together, we obtain our symmetry result for (η∗, u∗) as
in Theorem 1.2.

Appendix A. Exponential decay of solitary waves

In this appendix, we concern the decay property of solitary waves to system (1.1). We
prove, in the following theorem, an exponential decay estimate for the solitary waves under
the condition a, c < 0, b = d, and |ω| < ω0 where ω0 is defined in (1.10).

Theorem A.1. Let a, c < 0, b = d, and |ω| < ω0 where ω0 is defined in (1.10). Then for
any solitary wave (η, u) of (1.1) having the form (1.4), we have

(A.1) η(x), u(x) = O(e−α|x|),

with α a positive constant depending on a, b, c and ω.

Proof. Since system (1.5) can be regarded as a four-dimensional ODE system, we may
employ the Stable Manifold Theorem to obtain the exponential decay.

From definition, all solitary waves decay at infinity to zero, which is the trivial equilibrium
of the system. Thus we first check the hyperbolicity at the trivial equilibrium. Let x =
(η, u, ξ, v)T , and then it satisfies

ẋ = Ax,

where

A =


0 0 1 0
0 0 0 1

−(A+Bω) Aω +B 0 0
Cω +B −(C +Bω) 0 0

 ,

with A,B,C defined in (4.2). A short computation shows that the characteristic equation
is

(A.2) λ4 + (A+ C + 2ωB)λ2 + (1− ω2)(AC −B2) = 0.

From the assumptions in Theorem 3.1 we easily see that

(A.3) A+ C + 2ωB < 0, (1− ω2)(AC −B2) > 0.

Thus Re(λ2) > 0 and hence the system is hyperbolic. This way the exponential decay of
solitary waves follows from the standard result on the exponential convergence to hyperbolic
equilibria, cf. [30, p.115, Corollary]. �
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Remark A.1. In the parameter regime where our symmetry results hold, cf. Theorem
1.2, we can further quantify the decay rate of the corresponding ground states. Notice that
in this regime we have (3.14), which leads to

(Aω +B)(Cω +B) ≥ 0.

Therefore the discriminant of (A.2) satisfies

∆ = (A− C)2 + 4(Aω +B)(Cω +B) ≥ 0.

Hence λ2 > 0. Using the sign conditions (A.3) we infer that the decay exponent α can be
bounded by

(A.4) 0 < α ≤

√
−(A+ C + 2ωB)−

√
∆

2
.
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