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Abstract. In this paper, we present a center manifold reduction theorem for quasilinear elliptic
equations posed on infinite cylinders that is done without a phase space in the sense that we
avoid explicitly reformulating the PDE as an evolution problem. Under suitable hypotheses, the
resulting center manifold is finite dimensional and captures all sufficiently small bounded solutions.
Compared with classical methods, the reduced ODE on the manifold is more directly related to the
original physical problem and also easier to compute. The analysis is conducted directly in Hölder
spaces, which is often desirable for elliptic equations.

We then use this machinery to construct small bounded solutions to a variety of systems. These
include heteroclinic and homoclinic solutions of the anti-plane shear problem from nonlinear elas-
ticity; exact slow moving invasion fronts in a two-dimensional Fisher–KPP equation; and hydrody-
namic bores with vorticity in a channel. The last example is particularly interesting in that we find
solutions with critical layers and distinctive “half cat’s eye” streamline patterns.
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1. Introduction

Our basic objective in this paper relates to a classical problem: characterizing small bounded
solutions of a quasilinear elliptic PDE posed on an unbounded cylinder Ω = R × Ω′. The base of
the cylinder Ω′ ⊂ Rn−1 is a bounded and connected C2+α domain for some α ∈ (0, 1), and the
dimension n ≥ 2. For simplicity, say that 0 ∈ Ω′.

As a fairly representative example, we initially focus on the following quasilinear PDE:{
∇ · A(y, u,∇u, λ) + B(y, u,∇u, λ) = 0 in Ω

G(y, u,∇u, λ) = 0 on ∂Ω,
(1.1)

where spatial coordinates in Ω are written (x, y) for x ∈ R and y ∈ Ω′. Here, λ ∈ R is a parameter,
while u = u(x, y) ∈ C2+α(Ω) is the unknown. We ask that the functions A = A(y, z, p, λ),
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B = B(y, z, p, λ), and G = G(y, z, p, λ) are uniformly CM+4 in their arguments1 for a fixed integer
M ≥ 2. Moreover, we assume that the interior equation is uniformly elliptic in the sense that there
exists θ > 0 such that∑

i,j

∂pjAi(y, z, p, λ)qiqj ≥ θ|q|2 for all y ∈ Ω′, p, q ∈ Rn, z, λ ∈ R. (1.2)

The boundary condition is taken to be uniformly oblique in that there exists χ > 0 such that

−N(y) · ∇pG(y, z, p, λ) ≥ χ for all y ∈ Ω′, p ∈ Rn, z, λ ∈ R, (1.3)

where N = (0, N ′) ∈ Rn denotes the outward unit normal to Ω on ∂Ω = R× ∂Ω′. Note that since
the coefficients in (1.1) are independent of x, the full nonlinear problem is invariant under axial
translation. We also extend this to include nonlinear transmission problems, Dirichlet conditions,
and diagonal elliptic systems in Section 3.

Borrowing terminology from dynamical systems, we say a solution (u, λ) of (1.1) is homoclinic
if u limits to a fixed function as |x| → ∞, and we call it heteroclinic provided u has distinct limits
as x → ±∞. Beyond their intrinsic mathematical importance, equations of the form (1.1) arise
in a surprisingly diverse array of physical settings. Of particular interest to us is their connection
to traveling waves in nonlinear elasticity, mathematical biology, and especially hydrodynamics. In
those contexts, homoclinic solutions are referred to variously as pulses, solitons, or solitary waves,
and heteroclinics correspond to fronts or bores. Although the techniques we develop are equally
well-suited to both these types of solutions, our emphasis will be on fronts because they are more
difficult to construct. An ulterior motive for this choice is that, in a companion paper [8, 9], we
present a global bifurcation theory for heteroclinics.

The unboundedness of Ω seriously complicates the task of finding these solutions. For example,
it is well-known that the relevant linearized operators fail to be Fredholm in unweighted Hölder
spaces, which precludes the direct application of bifurcation theoretic techniques. For semilinear
problems, monotonicity methods have proven to be effective; see, for example, Berestycki and
Nirenberg [6], A. Volpert, V. Volpert, and V. Volpert [51], and the references therein. By contrast,
in the quasilinear setting, the predominant approach is to reformulate (1.1) as a spatial dynamical
system (that is, treating x as an evolution variable), and use infinite-dimensional invariant manifold
theory. Seeking small bounded solutions, we might hope to construct a finite-dimensional center
manifold and study the bounded orbits of a reduced equation there. Beginning with the pioneering
work of Kirchgässner [28] and Mielke [39, 40] in the 1980s, this basic strategy has been built upon
and applied to great effect by many authors; see, for example, the book of Haragus and Iooss [20]
for historical overview or [12] for applications to water waves.

While the Mielke–Kirchgässner approach is quite general and very powerful, the way it is tra-
ditionally phrased is not perfectly suited to all applications. For many systems, such as (1.1),
the process of recasting it as an evolution equation contorts the PDE in an inconvenient way. In
particular, accommodating nonlinear boundary conditions requires one or more implicit changes of
dependent variables. This is certainly possible to do, but it adds an additional layer of complexity
to the already involved process of computing the reduced ODE. More importantly, it obscures the
relationship between the equation on the center manifold and the physical problem, complicating
for instance the task of establishing properties such as symmetry and monotonicity. When using
the center manifold reduction as a preparatory step towards an existence theory for large solu-
tions, being able to efficiently deduce this type of qualitative information is extremely desirable.
Lastly, the Mielke–Kirchgässner machinery is formulated in relatively weak Sobolev spaces in the
transversal variable y due to its reliance on so-called maximal regularity estimates. When studying

1Throughout the paper, we use the convention that ∇ denotes the full gradient with respect to (x, y) unless
indicated otherwise via a subscript. In particular, (y, z, p, λ) ∈ Ω′×R×Rn×R. We reserve D for Fréchet derivatives
or total derivatives. For a function v = v(x), we will often write v′ as a shorthand for ∂xv.
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elliptic PDEs, it is sometimes preferable to work directly in spaces of Hölder continuous functions.
An extension of Mielke–Kirchgässner to this setting was given by Kirrmann [29] in his unpublished
PhD thesis.

Recently, Faye and Scheel [15] introduced an alternative technique that ameliorates some of the
issues with the spatial dynamics approach. Rather than reformulate the problem as an evolution
equation, they instead perform a delicate fixed point argument in exponentially weighted Sobolev
spaces. This furnishes what they call a center manifold “without a phase space.” Indeed, the
manifold is parameterized by the components of the solution in the kernel of the linearized operator
rather than initial data. This permits them to treat certain non-local problems — which was their
original intent — and also greatly simplifies the arduous task of computing the reduced equation.
Unfortunately, the Faye–Scheel method is fundamentally restricted to semilinear problems, and it
appears to be ill-adapted to Hölder spaces.

As one contributions of this paper, we present a new variant of the center manifold reduction
theorem that is specialized to treat quasilinear elliptic problems of the form (1.1), though it can
be extended to more general ones. The analysis is conducted entirely in Hölder spaces and, like
Faye–Scheel, the reduced equation can be computed with comparatively elementary methods. For
heteroclinic solutions, one must expand the reduction function to cubic order, and so these differ-
ences in complexity are especially salient. We deliberately choose the projection involved in the
definition of the center manifold so that one obtains an ODE for the restriction v(x) = u(x, 0). For
instance, when we study surface water waves, we arrange for the reduced equation to directly gov-
ern the free boundary. In this way, the physical context remains in view even as we restrict to the
center manifold. One substantial advantage of this choice is that we are able to prove monotonicity
properties of the solutions relatively easily, laying the groundwork for subsequent global bifurca-
tion theoretic analysis. Indeed, the authors [8, 10] and Hogancamp [24] use exactly this strategy
to construct large solutions for two of the three applications considered in this paper; these works
all rely in an essential way on the qualitative information garnered from the local theory.

The most technically challenging part of constructing a center manifold invariably involves solving
a fixed point problem in weighted spaces and then verifying that the solution depends smoothly on
the parameters. For this, we rely on the work of Amick and Turner [3], where bounds and Fréchet
differentiability of superposition operators in exponentially weighted Hölder spaces is painstakingly
worked out. In fact, these authors developed their own center manifold reduction based on the
above estimates and a point-wise in x spectral splitting approach. We use their ideas to construct
a preliminary center manifold, and then reconfigure it in the style of Faye and Scheel, thereby
obtaining the simplified expansion procedure and freedom of projection choice.

The second part of the present paper consists of three nontrivial applications of our center
manifold reduction theorem. These problems were selected both for their physical relevance and
to illustrate different aspects of the methodology. First, we prove the existence of homoclinic
and heteroclinic solutions to the anti-plane shear equations from nonlinear elasticity. While this
model has been studied extensively, the class of front-type equilibria that we exhibit appear to
be completely new. Second, we verify the existence of slow moving fronts in a two-dimensional
Fisher–KPP system with absorbing boundary conditions. The one-dimensional Fisher–KPP system
is classical and thoroughly studied; the model we consider was recently formulated in [42] as an
explanation for experimental data suggesting that the presence of obstacles may reduce the speed of
invasion fronts in certain biological systems. We give the first rigorous existence theory for traveling
wave solutions to this equation.

Finally, and most significantly, we construct small rotational bores in a channel. These are het-
eroclinic solutions of the full two-dimensional incompressible Euler equations, with two immiscible
layers of constant density fluid separated by a free boundary. A major novelty is that we allow for
constant vorticity as well as critical layers.
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Notation. Here we record some notational conventions followed throughout the rest of the paper.
Let Σ ⊂ Rn be a cylinder in dimension n ≥ 2, k ∈ N, and α ∈ (0, 1). We define the usual Hölder
norm

‖f‖Ck+α(Σ) :=
∑
|β|≤k

‖∂βf‖C0(Σ) + sup
(x1,y1),(x2,y2)∈Σ
(x1,y1)6=(x2,y2)

|f(x1, y1)− f(x2, y2)|
|(x1 − x2, y1 − y2)|α

and denote by Ck+α
b (Σ) the Banach space of f ∈ Ck(Σ) for which ‖f‖Ck+α(Σ) < ∞. On the

other hand we say that f ∈ Ck+α(Σ) if ϕf ∈ Ck+α
b (Σ) for any smooth function ϕ with support

compactly contained in Σ. We call functions in Ck+α
b (Σ) uniformly Hölder continuous, and functions

in Ck+α(Σ) locally Hölder continuous up to the boundary.
We will also have occasion to work with exponentially weighted Hölder spaces. For k ∈ N,

α ∈ (0, 1), µ ∈ R, and a function f ∈ Ck(Σ), we define the exponentially weighted Hölder norm

‖f‖Ck+αµ (Σ) :=
∑
|β|≤k

‖wµ∂βf‖C0(Σ) +
∑
|β|=k

‖wµ|∂βf |α‖C0(Σ),

where wµ(x) := sech (µx) is an exponential weight function and |f |α is the local Hölder seminorm

|f |α(x, y) := sup
|(r,s)|<1

(x+r,y+s)∈Σ

|f(x+ r, y + s)− f(x, y)|
|(r, s)|α

.

We denote by

Ck+α
µ (Σ) :=

{
f ∈ Ck+α(Σ) : ‖f‖Ck+αµ (Σ) <∞

}
.

Note that Ck+α
b (Σ) = Ck+α

µ=0 (Σ). For k ≥ 1, and µ and α as above, we also define the seminorm

|f |C̊k+αµ (Σ) :=
∑

1≤|β|≤k

‖wµ∂βf‖C0(Σ) +
∑
|β|=k

‖wµ|∂βf |α‖C0(Σ),

and say f ∈ C̊k+α
µ (Σ) provided that |f |C̊k+αµ (Σ) <∞. Finally, we may append a subscript of “e” to

any of these spaces to indicate that we are restricting to the subspace of functions that are even
in the x-variable, and a subscript “c” when the functions have support that is a compact subset of
the stated domain.

1.1. Statement of results. Written as an abstract operator equation, the elliptic problem (1.1)
takes the form

F (u, λ) = 0, (1.4)

where

F = (F1,F2) : C2+α
b (Ω)× R −→ C0+α

b (Ω)× C1+α
b (∂Ω).

By this convention, F1 represents the equation in the interior, whereas F2 corresponds to the
boundary condition.

It is well-known that families of “long waves” can be found bifurcating from “trivial” x-independent
solutions at certain critical parameter values (often connected to so-called dispersion relations).
This intuition motivates the following structural assumptions on F . First, suppose that there
exists a family of trivial solutions parameterized by λ; for simplicity, this can be stated as

F (0, λ) = 0 for all λ ∈ R. (1.5)

We will study solutions near (u, λ) = (0, 0), which leads us to consider the linearized operator
L := DuF (0, 0). We make two hypotheses on L. First,

L is formally self-adjoint and commutes with reflections in x. (1.6)
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Explicitly, this means that L takes the form (2.1). Second, we make a spectral assumption on the
transversal linearized operator

L′ := L|C2+α(Ω′) : C2+α(Ω′)→ C0+α(Ω′)× C1+α(∂Ω′),

which results from restricting L to acting on x-independent functions. As is typical for PDE
operators, we say that ν is an eigenvalue of L′ provided there exists a nontrivial solution ϕ ∈
C2+α(Ω′) to the spectral problem L′ϕ = (νϕ, 0). Because Ω′ is a bounded and smooth domain in
Rn−1, standard elliptic theory ensures that L′ has a (unique) principal eigenvalue ν0 ∈ R for which
the corresponding eigenfunction ϕ0 is strictly positive on Ω′. In fact, ν0 must be simple and it lies
strictly to the right of all other eigenvalues of L′; see, for example, [1, Theorem 12.1] or [36]. Our
final assumption is that

ν0 = 0 is the principal eigenvalue of L′. (1.7)

This is the sense in which the parameter value λ = 0 is critical. As we will see in Lemma 2.1,
hypothesis (1.7) is equivalent to asking that kerL is spanned by ϕ0.

Theorem 1.1 (Center manifold reduction). Consider the quasilinear elliptic PDE (1.1) posed on
the infinite cylinder Ω. Assume that it has a family of trivial solutions (1.5), its linearization
satisfies (1.6), and that λ = 0 is a critical parameter value in that the corresponding transversal
linearized problem has the spectral behavior (1.7). There exist µ > 0 such that for any fixed µ ∈
(0, µ) and integer M ≥ 2, there exist neighborhoods U ⊂ C2+α

b (Ω) × R and V ⊂ R3 of the origin
and a coordinate map Ψ = Ψ(A,B, λ) satisfying

Ψ ∈ CM+1(R3, C2+α
µ (Ω)), Ψ(0, 0, λ) = 0 for all λ, ∇(A,B)Ψ(0, 0, 0) = (0, 0), (1.8)

and such that the following hold.

(a) Suppose that (u, λ) ∈ U solves (1.1). Then v(x) := u(x, 0) solves the second-order ODE

v′′ = f(v, v′, λ) (1.9)

where f : R3 → R is the CM+1 mapping

f(A,B, λ) :=
d2

dx2

∣∣∣∣
x=0

Ψ(A,B, λ)(x, 0). (1.10)

(b) Conversely, if v : R → R satisfies the ODE (1.9) and (v(x), v′(x), λ) ∈ V for all x, then
v = u( · , 0) for a solution (u, λ) ∈ U of the PDE (1.1). Moreover,

u(x+ τ, y) =
v(x)

ϕ0(0)
ϕ0(y) +

v′(x)

ϕ0(0)
τϕ0(y) + Ψ(v(x), v′(x), λ)(τ, y), (1.11)

for all τ ∈ R. Here, recall that ϕ0 generates the kernel of L′.

Remark 1.2. Setting τ = 0 in (1.11) and normalizing ϕ0 so that ϕ0(0) = 1, we obtain

u(x, y) = v(x)ϕ0(y) + Φ(v(x), v′(x), λ, y),

where Φ ∈ C2+α(R4,R) is given by

Φ(A,B, λ, y) := Ψ(A,B, λ)(0, y) = O
(

(|A|+ |B|)(|A|+ |B|+ |λ|)
)
. (1.12)

Remark 1.3. It is useful to note that the reduction function also satisfies

Ψ(A,B, λ)(0, 0) = ∂xΨ(A,B, λ)(0, 0) = 0.

Remark 1.4. If the PDE (1.1) exhibits symmetries, then one expects that they will be inherited in
some form by the coordinate map Ψ and hence the ODE (1.9). In Section 3.1, we prove that this
does indeed hold for a class of discrete symmetries that includes the important case of reflections
in x, sometimes called “reversibility.”
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Remark 1.5. Through a straightforward modification of the proof, versions of Theorem 1.1 can
be obtained that treat more general spectral behavior than (1.7). For instance, it is natural to
consider scenarios where L′ has finitely many positive eigenvalues or 0 is an eigenvalue of higher
multiplicity. In the interest of keeping the presentation concise, we will focus here on the simpler
situation in (1.7).

Let us draw attention again to the fact that the ODE (1.9) relates in a transparent way to the
original PDE (1.1). For example, when studying free boundary problems, we may pick coordinates
on Ω′ so that the graph of v parametrizes the interface.

Another advantage of our approach — which it inherits from Faye–Scheel — is the compara-
tive simplicity of deriving the reduced equation. This can be seen in the next result, which says
essentially that Ψ in (1.8) and f in (1.9) can be determined through a näıve formal asymptotic
expansion.

Theorem 1.6 (Reduced equation). In the setting of Theorem 1.1, the coordinate map Ψ admits
the Taylor expansion

Ψ(A,B, λ) =
∑

2≤i+j+k≤M
i+j≥1

ΨijkA
iBjλk +O

(
(|A|+ |B|)(|A|+ |B|+ |λ|)M

)
in C2+α

µ (Ω), (1.13)

where the coefficients Ψijk are the unique functions in C2+α
µ (Ω) that satisfy

(i) Ψijk(0, 0) = ∂xΨijk(0, 0) = 0.
(ii) For all i+ j + k ≤M , the formal Gâteaux derivative

∂iA∂
j
B∂

k
λ

∣∣∣
(A,B,λ)=0

F

(
A

ϕ0(0)
ϕ0 +

B

ϕ0(0)
xϕ0 + Ψ(A,B, λ)

)
= 0. (1.14)

Remark 1.7. By introducing an appropriate cut-off function, we may consider the Gâteaux deriva-
tive of F in (1.14) as the Fréchet derivative of a modified F . In practice, however, this distinction
is unimportant when using (1.14) to calculate the Ψijk. Further details can be found in Lemma 2.4
and Section 4.

Remark 1.8. As mentioned in the introduction, we actually have considerable freedom in choosing
the linear relationship v = Vu between the original unknown u and the quantity v governed by the
reduced ODE (1.9) in Theorem 1.1. Like Faye and Scheel [15], we have found pointwise evaluation
Vu(x) := u(x, 0) to be the most convenient for calculations, but our proofs also apply to, for
instance,

Vu(x) :=

∫
Ω′
u(x, y) dy or Vu(x) :=

1

2

∫ x+1

x−1

∫
Ω′
u(s, y) dy ds. (1.15)

Besides slightly alterning the very final step in the proof of Theorem 1.6 in Section 2.5, the only
other modification is that Theorem 1.6 (i) becomes QΨijk = 0, where the operator

Qw(x, y) :=
Vu(0)∫

Ω′ ϕ0(s) ds
ϕ0(y) +

V∂xu(0)∫
Ω′ ϕ0(s) ds

xϕ0(y)

is a bounded projection from C2+α
µ (Ω) onto the kernel of L, here thought of as a mapping between

weighted Hölder spaces.

We also obtain the following theorem relating the linearized problem at any small non-trivial
solution of the PDE (1.1) to the linearization of the reduced ODE (1.9).
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Theorem 1.9 (Linearization and reduction). In the setting of Theorem 1.1 (b), if u̇ ∈ C2+α
b (Ω) is

a solution to the linearized PDE2

DuF (u, λ)u̇ = 0,

then v̇ := u̇( · , 0) satisfies the linearized reduced ODE

v̇′′ = ∇(A,B)f(v, v′, λ) ·
(
v̇, v̇′

)
. (1.16)

The above theorem allows us to, among other things, calculate the dimension of the kernel of
DuF (u, λ) using only information about the planar system (1.16). Indeed, Theorem 1.9 tells us
that the linearizations of the PDE and reduced ODE are compatible in that uniqueness of bounded
solutions to the latter implies invertibility properties for the former.

Analogous results to Theorem 1.9 can be found in [54, Theorem 4.1(ii)] and [7, Theorem 5.1(ii)],
for example. There the authors must carefully linearize each step in the center manifold construc-
tion. By contrast, our proof of Theorem 1.9 relies on a soft analysis argument that avoids this
rather tedious process through an extension of Theorem 1.1 to diagonal elliptic systems.

While the Amick–Turner theory [3] seems particularly well-suited for our purposes, we note that
one should in principle be able to prove versions of Theorems 1.1, 1.6, and 1.9 through the classical
Mielke–Kirchgässner theory [28, 39, 40] or its variant due to Kirrmann [29]. This would involve the
implicit change of dependent variable mentioned above in order to absorb the nonlinear boundary
conditions, a further change of coordinates to achieve the desired projection, the reinterpretation
of the center manifold in the spirit of Faye and Scheel, and finally the application of embedding
theorems to obtain a result in Hölder spaces. To our knowledge, no results of this type appear
in the literature. Another intention of the present paper is to rekindle interest in the Amick–
Turner theory, as it has unfortunately received little attention in recent years. On the other hand,
this choice does force us to make the additional stipulation in (1.6) that the linearized operator
commutes with reflections. A spatial dynamics approach would not necessarily require this.

In the remainder of the paper, we use Theorem 1.1 and Theorem 1.6 to construct homoclinic
and heteroclinic solutions to three quasilinear elliptic problems arising in quite different physical
settings. This includes anti-plane shear equilibria for a nonlinear elastic model with live body
forces, and slow-moving invasion fronts for a two-dimensional Fisher–KPP equation with reactive
boundary conditions. To keep the presentation here compact, we defer stating these results and
discussing the relevant history until later.

Our last application is to water waves. Specifically, we study a system consisting of two incom-
pressible fluids at constant density governed by the Euler equations. They are separated by a free
boundary and confined to a infinitely long horizontal channel. Steady traveling solutions to this
problem are often referred to as internal waves, and they are observed frequently in coastal flows
[44]. We prove the existence of several families of front-type internal waves, which in hydrodynamics
are known as (smooth) bores. From a physical standpoint, bores are interesting because they are a
genuinely stratified phenomenon: one can show that no bores exist in constant density fluids [54].
As heteroclinic connections, they also require considerably more finesse to construct.

Numerical studies of bores have been carried out by a number of authors [50, 35, 19], but very
few rigorous results are currently available. The earliest work is due to Amick and Turner [2],
who used a precursor to the center manifold reduction in [3] to characterize all small bounded
solutions to the system assuming the flow in each layer is irrotational. Later, Mielke [41] obtained
an analogous result by applying traditional spatial dynamics techniques. Using direct fixed point
arguments, Makarenko [37] gave an alternative construction for small-amplitude bores in the same
setting, and later studied the continuously stratified case [38].

We not only prove the existence of irrotational bores, but in addition allow constant vorticity
in the upper layer. In the latter case, many of these waves will have critical layers — curves in

2Here and elsewhere in the paper, we use a dot to denote a variation. This should not be mistaken for a time
derivative.
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O(|ε|1/2)

h+O(|ε|)h

Figure 1. A smooth bore with a “half cat’s eye” streamline pattern. The two fluid
regions are bounded above and below by rigid walls and separated by a sharp inter-
face (shown in bold). The dashed curve is the critical layer, above which particles
move to the right and below which they move to the left (in the moving frame).
Inside the shaded region (the “eye”), the streamlines are bounded from the left and
unbounded to the right, whereas outside they are unbounded in both directions.

the fluid where particles move with the same horizontal velocity as the wave itself. It is well-
known that this can create interesting streamline patterns, such as the famous cat’s eyes in the
periodic setting [53, 14, 11, 46]. We find many families of waves feature a striking “half cat’s eye”;
see Figure 1 and Theorem 7.8. To the best of our knowledge, this configuration has never been
observed before. Indeed, it is commonly thought that surface solitary waves in constant density
water can never have unbounded critical layers (but see [32]). Our results show that this heuristic
does not extend to internal fronts.

The analysis required for the water wave problem is several orders of magnitude more involved
than the previous two examples. It is here that the elegance of the expansion in Theorem 1.6 and
the choice of projection in the definition of the manifold are exploited most fully. For instance,
we are able to give a very simple proof that the free surface is monotonically decreasing and the
streamlines have the expected pattern.

An essential part of each of the above problems is identifying a parameter regime that admits
front-type solutions. For elasticity, we are able to exploit symmetry properties of the equation,
whereas for the Fisher–KPP we take advantage of the robustness of the well-studied one-dimensional
model. Neither of these simplifications are available for water waves. Instead, we make strong use
of the theory of conjugate flows; see Section 7.3.

1.2. Plan of the article. The proofs of Theorem 1.1 and Theorem 1.6 are carried out in Section 2.
First, in Section 2.1, we establish some basic facts regarding the linear elliptic operator L =
DuF (0, 0). Then, in Section 2.2, the PDE is rewritten as a fixed point problem in the style of
Amick–Turner. Over the course of Section 2.3 and Section 2.4, we verify the hypotheses of that
general theory, which yields a center manifold, but does not directly furnish the reduced equation
for v in (1.9). In Section 2.5, we complete the proof using a near-identity change of variables to
convert locally to the Faye–Scheel formulation, which gives us the liberty to choose the projection
in the definition of the manifold, and also leads to the Taylor expansion (1.13).

In Section 3, we consider a number of extensions of Theorem 1.1 and Theorem 1.6 to other types
of elliptic equations. We also provide the proof of Theorem 1.9.

For the benefit of the reader, Section 4 contains a gentle explanation of the general strategy for
actually computing the reduced equation and finding heteroclinic or homoclinic solutions. While
this is in principle deducible from (1.9) and (1.13), there are certain choices that are not immediately
obvious but greatly simplify the process. Readers who are more interested in applying the theory
than the specifics of its proof are encouraged to read this section first.
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The application to nonlinear elasticity can be found in Section 5, while Section 6 contains our
results on invasion fronts in two-dimensional Fisher–KPP. We devote Section 7 to proving the
existence of internal bores with vorticity.

Finally, two appendices are included. Appendix A provides a brief statement of Amick and
Turner’s fixed point theory that is sufficient for proving Theorem 1.1. In Appendix B, we collect
some details regarding the calculation of the reduced equations for the elasticity problem.

2. Center manifolds for quasilinear elliptic PDE on a cylinder

In this section we prove the general results Theorem 1.1 and Theorem 1.6. The main tool
is the fixed-point theory of Amick–Turner [3], which is recalled in Appendix A for the reader’s
convenience.

Let us begin by fixing some notation. Recalling that α ∈ (0, 1) is the Hölder exponent introduced
earlier, we set

X := C2+α(Ω), Y = Y1 × Y2 := C0+α(Ω)× C1+α(∂Ω).

Recall that these are spaces of functions that are only locally Hölder up to the boundary; the
corresponding spaces of uniformly bounded functions are designated with a subscript b. Likewise,
for µ ≥ 0, we write Xµ and Yµ to indicate the associated exponentially weighted Hölder spaces.

2.1. Linear theory. Recall that

F1(u, λ) := ∇ · A(y, u,∇u, λ) + B(y, u,∇u, λ),

F2(u, λ) :=
(
G(y, u,∇u, λ)

)∣∣
∂Ω
.

Direct computation yields that the linearized operator of F1 at (u, λ) is given by

DuF1(u, λ)v = ∇ · [∇pA∇v + (∂zA+∇pB) v] + [∂zB −∇ · ∇pB] v,

where the coefficients are all of class CM+3
b (Ω′) and their arguments are being suppressed for

readability. Invoking assumption (1.6), the self-adjointness of L forces

∂zA+∇pB = 0 at (y, 0, 0, 0).

Writing A = (A1,A′) with A1 taking values in R and A′ taking values in Rn−1, and likewise
denoting p = (p1, p

′) ∈ R× Rn−1, we then have

∇ · (∇pA∇v) = ∂p1A1∂
2
xv +∇p′A1 · ∇′∂xv +∇′ ·

(
∂p1A′∂xv

)
+∇′ ·

(
∇′A′∇′v

)
where ∇′ and ∇′· indicate the gradient and divergence in y, respectively. The reflection symmetry
in (1.6) implies that

∇p′A1 = ∂p1A′ = 0 at (y, 0, 0, 0).

From the above we conclude that the linearized operator at (u, λ) = (0, 0) takes the form

DuF1(0, 0)v = a11(y)∂2
xv +∇′ ·

(
a′(y)∇′v

)
+ c(y)v,

DuF2(0, 0)v =
(
−N ′(y) ·

(
a′(y)∇′v

)
+ g(y)v

)∣∣∣
∂Ω′

.
(2.1)

As required by assumption (1.6), the linearized boundary condition is co-normal. The coefficients

are all of class CM+3
b (Ω′), and related to the nonlinear problem via

a11(y) := ∇p1A1(y, 0, 0, 0), a′(y) := ∇p′A′(y, 0, 0, 0),

c(y) := (∂zB −∇ · ∇pB) (y, 0, 0, 0), g(y) := ∂zG(y, 0, 0, 0).

From (2.1), we also see that the transversal linear operator L′ = (L′1, L
′
2) has the explicit form

L′1w := ∇′ ·
(
a′(y)∇′w

)
+ c(y)w,

L′2w :=
(
−N ′(y) ·

(
a′(y)∇′w

)
+ g(y)w

) ∣∣∣
∂Ω′

,
(2.2)
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for all w = w(y) ∈ C2+α(Ω′).

Projections. The uniform ellipticity assumption implies that a11, 1/a11 ∈ CM+3(Ω′). For integers
k ≥ 0, let Hk(Ω′) denote the weighted L2-based Sobolev space corresponding to the inner product

(u, v)Hk(Ω′) :=
∑
|β|≤k

∫
Ω′

(∂βy u)(∂βy v) a11dy.

As usual, we denote L2(Ω′) := H0(Ω′) and ( · , · )L2(Ω′) := ( · , · )H0(Ω′). Observe that

L′ :=
1

a11
L′

is an elliptic PDE operator that is symmetric with respect to the L2(Ω′) inner product. Moreover,
by the spectral assumption 1.7, its kernel is spanned by ϕ0, which recall is strictly positive on Ω′.
It follows that 0 is also the principal eigenvalue of L′, and hence the spectrum of L′ consists of a
sequence of finite-multiplicity eigenvalues {νk}∞k=0 such that ν0 = 0 > ν1 ≥ ν2 ≥ . . ., and νk ↘ −∞.

Let the corresponding eigenfunctions functions be {ϕk}, so that

L′ϕk = (νkϕk, 0), ‖ϕk‖L2(Ω′) = 1, and (ϕj , ϕk)L2(Ω′) = 0 for j 6= k.

In particular, we assume here and in the rest of this section that ‖ϕ0‖L2(Ω′) = 1. As it is not ϕ0

itself but the ratio ϕ0/ϕ0(0) which appears in Theorems 1.1 and 1.6, this assumption can be made
without loss of generality. Let P ′0 denote the continuous orthogonal projection onto the eigenspace
corresponding to ϕ0. It is also important to mention that there is a variational characterization of
our spectral assumption (1.7) in terms of the Rayleigh quotient defined by

R(w) :=

∫
Ω′

(
−a′(y)∇′w · ∇′w + c(y)w2

)
dy +

∫
∂Ω′ g(y)w2 dS(y)∫

Ω′ w
2 a11(y)dy

,

for all w ∈ H1(Ω′)\{0} when n ≥ 3. For the case n = 2, we have ∂Ω′ = {ymin, ymax} for some points
ymin < ymax, and so the boundary integral above is replaced by g(ymax)w2(ymax)+g(ymin)w2(ymin).
It is easy to verify that any critical point of R is in the kernel of L′ (which is also the kernel of L′).
By classical elliptic theory, we have further that

max
w∈H1(Ω′)
w 6≡0

R(w) = ν0 = 0, max
w∈P ′≥1H

1(Ω′)

w 6≡0

R(w) = ν1 < 0, (2.3)

where P ′≥1 := 1 − P ′0. Likewise, a standard argument shows that (2.3) implies there exists κ > 0
such that ∫

Ω′

(
a′(y)∇′w · ∇′w − c(y)w2

)
dy −

∫
∂Ω′

g(y)w2 dS(y) ≥ κ‖w‖2
H1(Ω′), (2.4)

for all w ∈ P ′≥1H
1(Ω′).

We can therefore introduce the projection P0 point-wise in x onto the 0 eigenvalue for the
transverse problem. For functions u = u(x, y), it is defined by

(P0u)(x, y) := P ′0u(x, ·).

One can confirm that P0 is a bounded projection on Xµ for any µ ≥ 0. Continuing the above
convention, set

P≥1 := 1− P0.
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Boundedness of the partial Green’s function. In this section, we seek to understand the solvability
properties of the linearized problem Lu = f for f lying in an exponentially weighted Hölder space.
We begin by characterizing the kernel of L|Xµ when µ ∈ (0,

√
|ν1|).

Lemma 2.1 (Kernel). For all µ ∈ (0,
√
|ν1|),

kerL|Xµ = {(x, y) 7→ Aϕ0(y) +Bxϕ0(y) : A,B ∈ R} .

Proof. Suppose that Lu = 0 for some u ∈ Xµ. It follows that u can be represented via the
eigenfunctions (for the homogeneous boundary condition) as

u(x, y) =
∞∑
k=0

ûk(x)ϕk(y)

where the series above converges in C2(R;L2(Ω′)). Thus, ûk satisfies the ODE

∂2
xûk = −νkûk, for all k ≥ 0. (2.5)

Recalling that νk < 0 for k ≥ 1, this ensures that ûk grows exponentially as x → ∞ with rate√
|νk|. Thus, when µ ∈ (0,

√
|ν1|), it must be that ûk ≡ 0 for k ≥ 1, and hence the kernel of L|Xµ

must lie in P0Xµ. Setting k = 0 in (2.5) then gives

u(x, y) = Aϕ0(y) +Bxϕ0(y),

for some A, B ∈ R. �

One consequence of the above lemma is that composing with the projection P≥1 eliminates the
kernel of L|Xµ . Before considering the inhomogeneous problem for L, it will therefore be useful to
define a projection on Y (which is then inherited by Yµ) that agrees in a natural way with P0.
More precisely, we will need to normalize again by dividing by the coefficient a11. Let

L :=
1

a11
L,

and for v = (v1, v2) ∈ Y , define

(Q0v)(x, y) :=

(
(P0v1)(x, y) + ϕ0(y)

∫
∂Ω′

v2(x, s)ϕ0(s) a11(s)dS(s), 0

)
.

Thus Q0Y ⊂ (P0Y1)× {0} ⊂ Y , and, for any u ∈X ,

Q0Lu =

(
ϕ0(y)

(∫
Ω′

(L1u)(x, s)ϕ0(s) ds+

∫
∂Ω′

(L2u)(x, s)ϕ0(s) dS(s)

)
, 0

)
.

But,

(L1u, ϕ0)L2(Ω′) =
(
∂2
xu, ϕ0

)
L2(Ω′)

+
(
L′1u, ϕ0

)
L2(Ω′)

=
(
∂2
xu, ϕ0

)
L2(Ω′)

− (L2u, ϕ0)L2(∂Ω′) ,

and so combining this with the line above yields

Q0Lu =

(
ϕ0(y)

∫
Ω′

(∂2
xu)(x, s)ϕ0(s) a11(s)ds, 0

)
= LP0u. (2.6)

In keeping with the notation above, let Q≥1 : Y → Y be defined by

Q≥1v := (1−Q0)v for all v ∈ Y .

With Q0 and Q≥1 in hand, we now establish the following elementary fact about the solvability
of Lu = f when the data f ∈ Q≥1Yµ.
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Proposition 2.2 (Partial Green’s function). For any µ ∈ [0,
√
|ν1|/2) and f = (f1, f2) ∈ Yµ such

that Q0f = 0, there exists a unique u ∈ P≥1Xµ such that Lu = f . Moreover,

‖u‖Xµ . ‖f‖Yµ ,

with the implied constant above uniform in µ as µ→ 0. Equivalently, for all µ ∈ [0,
√
|ν1|/2),

L|P≥1Xµ : P≥1Xµ → Q≥1Yµ

is invertible with bounded inverse G : Q≥1Yµ → P≥1Xµ that we call the partial Green’s function.

Proof. Fix µ as above and let f ∈ Yµ be given with Q0f = 0. Following the general strategy of [2,

Theorem 3.1], we introduce a smooth partition of unity {ζ(m)}m∈Z on R such that

ζ ∈ C∞(R), supp ζ ⊂ [−2, 2], ζ = 1 on [−1, 1], ζ even, ζ − 1
2 odd about x = 3

2 on [1, 2],

and taking ζ(m) := ζ( · − 3m).
For each m ∈ Z, consider the cut-off problem

Lu(m) = f (m) := ζ(m)f. (2.7)

Observe that, because the projectors are pointwise in x,

Q0f
(m) = ζ(m)Q0f = 0.

Thus, f (m) ∈ Q≥1Yµ, and the commutation identity (2.6) implies that any solution u(m) of (2.7)
necessarily lies in P≥1Xµ ⊕ kerL|P0Xµ .

As a starting point, we show that there exists weak solutions to (2.7) by introducing the Hilbert
space H := P≥1H

1(Ω). Let B be the bilinear form associated to (2.7),

B[u, v] :=

∫
Ω

(−a∇u · ∇v + cuv) dx dy +

∫
∂Ω
guv dS,

for all u, v ∈H , and where a = a(y) := ∇pA(y, 0, 0, 0). The weak formulation of (2.7) is

B[u(m), ψ] = (f
(m)
1 , ψ)L2(Ω) + (f

(m)
2 , ψ)L2(∂Ω) for all ψ ∈H .

Notice that, because f (m) is compactly supported, the right-hand side above does indeed represent
an element of H ∗ acting on ψ. As the coefficients are CM+3

b , B is bounded. On the other hand,

−B[u, u] =

∫
Ω
a11(∂xu)2 dx dy +

∫
Ω

(
a′∇′u · ∇′u− cu2

)
dx dy −

∫
∂Ω
gu2 dS

≥ ‖∂xu‖2L2(Ω)
+ κ

∫
R
‖u(x, · )‖2

H1(Ω′) dx & ‖u‖
2
H1(Ω)

,

where we have used (2.4) to derive the inequality on the second line. It follows that −B is coercive

on H , and thus Lax–Milgram implies that there exists a weak solution u(m) ∈ H to the cut-off
problem (2.7) for each m ∈ Z.

We must now improve this to classical solutions and estimate their norm in Xµ. Let an integer
` ∈ Z be given and put

X (`)
µ := C2+α

µ ([`, `+ 1]× Ω′), Y (`)
µ := C0+α

µ ([`, `+ 1]× Ω′)× C1+α
µ ([`, `+ 1]× ∂Ω′).

The next stage of the argument involves deriving a priori estimates for u(m) in X
(`)
µ . This will

follow by elliptic regularity theory, but first we must expand the class of admissible test functions
to all of H1(Ω). In particular, observe that if ψ ∈ C1

c (Ω), we may use the splitting above to write

ψ = ψ̂0(x)ϕ0(y) + ψ≥1 ∈ P0C
1
c (Ω)⊕ P≥1C

1
c (Ω).
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It is easy to verify that B[u(m), · ] extends to a bounded linear functional on C1
c (Ω), and indeed

B[u(m), ψ] = B[u(m), ψ≥1] = (f
(m)
1 , ψ≥1)L2(Ω) + (f

(m)
2 , ψ≥1)L2(∂Ω)

= (f
(m)
1 , ψ)L2(Ω) + (f

(m)
2 , ψ)L2(∂Ω) − (f

(m)
1 , ψ̂0ϕ0)L2(Ω) − (f

(m)
2 , ψ̂0ϕ0)L2(∂Ω)

= (f
(m)
1 , ψ)L2(Ω) + (f

(m)
2 , ψ)L2(∂Ω),

since Q0f
(m) = 0, by hypothesis. Thus u(m) is a weak solution of (2.7) in the H1(Ω) sense.

Let Ω(`) := [`−1/4, `+5/4]×Ω′, which is a slight enlargement of the domain associated to X
(`)
µ .

There are precisely two integers m for which supp ζ(m) and Ω(`) have non-empty intersection; as
they are consecutive, let us call them m̃ and m̃+ 1. Conjugating (2.7) with the exponential weight
sech (µx), and applying standard elliptic regularity theory on bounded domains (see, for example,

[18, Chapter 8]), we infer that u(m) ∈X
(`)
µ . Moreover, it obeys the bound

‖u(m)‖
X

(`)
µ
.

{
e−µ|`|‖u(m)‖L2(Ω(`)) for m ∈ Z \ {m̃, m̃+ 1}

e−µ|`|‖u(m)‖L2(Ω(`)) + ‖f‖Yµ for m = m̃, m̃+ 1.
(2.8)

Here, the constants are uniform in µ, `, and m. In order to complete the argument we must justify
the convergence of the series

∑
m u

(m) in Xµ. Looking at (2.8), it is apparent that this hinges on

having sufficiently refined bounds on the L2(Ω(`)) norm of u(m).

First, suppose that m < m̃, so that Lu(m) = 0 on Ω(`). In fact, this holds on the semi-infinite
strip (3m+ 2,∞)×Ω′, and so we may apply elliptic regularity again to conclude that u(m) ∈ C2+α

b

on this set. By construction, u(m) is also in H1(Ω), so in particular this also ensures that u(m) and

∇u(m) decay to 0 as x→ +∞.
We are therefore justified in taking the equation Lu(m) = 0, multiplying by u(m), and then

integrating over the strip (x,∞)× Ω′. This procedure yields the identity

1

2
∂x

∫
Ω′
|u(m)(x, y)|2 a11(y)dy =

∫ ∞
x

∫
Ω′
a′(y)∇′u(m)(s, y) · ∇′u(m)(s, y) dy ds

−
∫ ∞
x

∫
Ω′
c(y)|u(m)(s, y)|2 dy ds

−
∫ ∞
x

∫
∂Ω′

g(y)|u(m)(s, y)|2 dS(y) ds,

which holds for all x > 3m + 2. Using the Rayleigh–Ritz characterization of ν1 in (2.3), this
furnishes the integro-differential inequality

1

2
∂x‖u(m)(x, · )‖2

L2(Ω′) ≤ ν1

∫ ∞
x
‖u(m)(s, · )‖2

L2(Ω′) ds for all x > 3m+ 2.

From this, we may further estimate that

−
∫ ∞
x
‖u(m)(s, · )‖2

L2(Ω′) ds ≤ e
√

2|ν1|(3m+2−x)

∫ ∞
3m+2

‖u(m)(s, · )‖2
L2(Ω′) ds,

for all x > 3m+ 2. Thus,

‖u(m)‖L2(Ω(`)) =

(∫ `+ 5
4

`− 1
4

‖u(m)(s, · )‖2
L2(Ω′) ds

)1/2

. e
√
|ν1|/2(3m−`)‖u(m)‖L2(Ω), (2.9)

where recall we have assumed m < m̃. Now, u(m) is bounded in L2(Ω) in terms of the data f (m)

via Lax–Milgram. Relating this back to f , we find that

‖u(m)‖L2(Ω) . e
3µ|m|‖f‖Yµ for all m ∈ Z.
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Combining this with (2.9) yields

‖u(m)‖L2(Ω(`)) . e
√
|ν1|/2(3m−`)+3µ|m|‖f‖Yµ for all m < m̃.

The same type of reasoning applied to the case m > m̃ + 1 gives a similar bound. For the
exceptional values m = m̃, m̃+ 1, we may use (2.8), so that in total

‖u(m)‖L2(Ω(`)) . e
−
√
|ν1|/2|3m−`|+3µ|m|‖f‖Yµ for all m ∈ Z.

Returning to the preliminary a priori estimate (2.8), we can now conclude that

M∑
m=−M

u(m) −→ u in X (`)
µ as M →∞ for all ` ∈ Z,

and

‖u‖
X

(`)
µ
≤ C‖f‖Yµ ,

with a constant C that depends only on
√
|ν1|/2−µ. As ` on the left-hand side above is arbitrary,

this gives the desired bounds on G. �

In applications, it will often be convenient to use alternative projections onto the kernel of L.
For instance, looking at the statement of Theorem 1.1, we see that the coefficients A and B are
found by evaluating u and ∂xu at (0, 0). With that in mind, suppose that Q is a given bounded
projection from Xµ to kerL which is independent of µ. As in the partial Green’s function analysis,
we expect that L is invertible on the kernel of Q. To make this precise, we adopt the approach
of Faye–Scheel [15] and consider a so-called “bordered” operator where one appends Q to L. The
result is the following.

Lemma 2.3 (Bordered operator). The bordered operator

(L,Q) : Xµ −→ Yµ × kerL, u 7−→ (Lu, Qu)

is invertible with a bounded inverse.

Proof. From Lemma 2.1 and Proposition 2.2, we see that L : Xµ → Yµ has a two-dimensional
kernel and its range includes Q≥1Yµ. If f ∈ Q0Yµ, then it must take the form f = (vϕ0, 0) for

some v = v(x) ∈ C0+α
µ (R). Since w 7→

∫ ( · )
0 w(s) ds is a bounded linear mapping Ck+α

µ (R) →
Ck+1+α
µ (R) for any k ≥ 0, we may let V ∈ C2+α

µ (R) be given so that V ′′ = v. It follows that
u(x, y) := V (x)ϕ0(y) satisfies Lu = f . Thus L is surjective, and so it must be Fredholm index 2.

A standard dimension counting argument shows that the bordered operator has Fredholm index
0; see, for example, [48, Lemma 4.4]. Now, if u ∈ Xµ satisfies (Lu,Qu) = 0, then in particular
u ∈ kerL. On the other hand, Qu = 0, and so it must be that u = 0. Thus, the bordered operator
is injective and Fredholm index 0. It follows that it is invertible, and the boundedness of its inverse
is a consequence of Proposition 2.2. �

2.2. Reformulation as a fixed point. Now, let us return to the full nonlinear problem. The
abstract operator equation (1.4) can be rewritten as

Lw = N (w, λ), (2.10)

where N = (N1,N2) is defined by

N (w, λ) := Lw − 1

a11
F (w, λ).
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Thus, N is “flat” in the sense that N (0, 0) = 0, DuN (0, 0) = 0, and ∂λN (0, 0) = 0. The com-
mutation identity (2.6) permits us to perform a spectral decomposition in both the domain and
codomain to rewrite (2.10) as the system{

L(P0u) = Q0N (P0u+ P≥1u, λ)

L(P≥1u) = Q≥1N (P0u+ P≥1u, λ).

Applying the partial Green’s function G of Proposition 2.2 to the second equation then gives

P≥1u = GQ≥1N (P0u+ P≥1u, λ),

while, recalling the explicit form of P0 and L, we see that

∂2
xP0u = Q0N (P0u+ P≥1u, λ). (2.11)

Integrating (2.11) twice we get the full system
P0u = ξ1ϕ0 +

∫ x

0
(∂xP0u)(s, y) ds

P0∂xu = ξ2ϕ0 +

∫ x

0
Q0N (P0u+ P≥1u, λ)(s, y) ds

P≥1u = GQ≥1N (P0u+ P≥1u, λ).

for some constants ξ1, ξ2 ∈ R (the “initial data”). Introducing a parameter β (representing a
rescaling of the axial variable), defining

(P0u)(x, y) =: U1(x)ϕ0(y), (P0∂xu)(x, y) =: βU2(x)ϕ0(y), R := P≥1u, (2.12)

and scaling ξ2, we finally obtain the following integro-differential fixed-point equation in the spirit
of Amick and Turner [3]:

U1(x) = ξ1 + β

∫ x

0
U2(s) ds

U2(x) = ξ2 +
1

β

∫ x

0

∫
Ω′
ϕ0(y)N1(U1ϕ0 +R, λ)(s, y) a11(y)dy ds

+
1

β

∫ x

0

∫
∂Ω′

ϕ0(y)N2(U1ϕ0 +R, λ)(s, y) a11(y)dS(y) ds

R = GQ≥1N (U1ϕ0 +R, λ).

(2.13)

In terms of regularity, we ultimately seek solutions of (2.13) with

(U1, U2, R) ∈ C2+α
b (R)× C1+α

b (R)× C2+α
b (Ω) =: Xb.

Unraveling definitions, this will imply that u ∈Xb. In view of Lemma 2.2, define µ :=
√
|ν1|/2. In

order to obtain a fixed point, we cannot work directly in Xb, but must instead consider the problem
posed in the corresponding exponentially weighted space Xµ for µ ∈ (0, µ).

2.3. Analysis of the nonlinear term. We wish to eventually apply the fixed-point theorem for
systems of the type (2.13) given by Amick and Turner, which is recalled in Appendix A. Towards
that end, it is necessary to look more closely at the form of the nonlinear terms N .

Splitting into bulk and boundary operators as usual, we have N = (N1,N2) where

N1(u, λ) = 1
a11(y)∇ ·

(
A(y, u,∇u, λ)−∇pA(y, 0, 0, 0)∇u

)
+ 1

a11(y) (B(y, u,∇u, λ)− ∂zB(y, 0, 0, 0)u−∇pB(y, 0, 0, 0)∇u) ,

N2(u, λ) = 1
a11(y)

(
G(y, u,∇u, λ)− ∂zG(y, 0, 0, 0)u−∇pG(y, 0, 0, 0)∇u

)
.
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Substituting

u = U1ϕ0 +R, ∂xu = βU2ϕ0 +Rx, ∇′u = U1∇′ϕ0 +∇′R,

we can rewrite this as

a11N1 = ∇ · Ã
(
y, U,∇R, λ, β

)
+ B̃

(
y, U,R,∇R, λ, β

)
,

a11N2 = G̃
(
y, U,R,∇R, λ, β

)
,

for some functions Ã, B̃, G̃ that are CM+4 in all of their arguments. Moreover, they are flat with
respect to (U,R,∇R, λ) in that their Taylor expansions in these variables at the origin contain only
quadratic and higher-order terms. Note that here, and in the sequel, we write U := (U1, U2) to
shorten the equations.

With this in mind, let’s analyze the terms in the fixed-point equation (2.13) and ensure they
take the required form (A.2) for Theorem A.1.

Equation for U1. Looking at (2.13), we see the right-hand side of the equation for U1 is βL1(U,R)
where L1(U,R) =

∫ x
0 U2 dx. Since the operator f 7→

∫ x
0 f ds is bounded and linear C1+α

µ → C2+α
µ

and C1+α
b → C̊2+α

b , L1 satisfies the first component of (A.3). In particular, F1 in (A.1) has the
form (A.2) with H1 = 0.

Equation for U2. In the equation for U2 ∈ C1+α in (2.13), consider the term

1

β

∫ x

0

∫
Ω′
ϕ0

(
∇ · Ã

(
y, U,∇R, λ, β

)
+ B̃

(
y, U,R,∇R, λ, β

))
dy ds.

The boundary integral can be handled in a similar fashion. Writing Ã = (Ã1, Ã′), the contribution

due to Ã1 can be rewritten as

1

β

∫ x

0

∫
Ω′
ϕ0∂xÃ1

(
y, U,∇R, λ, β

)
dy ds =

1

β

∫
Ω′
ϕ0Ã1

(
y, U,∇R, λ, β

)
dy

∣∣∣∣x
0

.

Stripping away the evaluations bars, we recognize this as having the form

1

β
ISg(D(U,R);λ, β),

where

D(U,R) := (U,∇R), If :=

∫
Ω′
ϕ0(y)f( · , y) dy,

and Sg is the superposition operator defined by (A.6) for the function

g(x, y, u, r, λ, β) := Ã1(y, u, r, λ, β).

As D only evaluates derivatives in the R variables, it is easy to confirm that

D bounded and linear Xµ −→ C1+α
µ (R;R2)× C1+α

µ (Ω;R2) =: Yµ,

for any µ ≥ 0, with bounds uniform in µ on compact subsets of [0, µ). Clearly, then, D satisfies
(A.5). The function g is CM+3 and flat as required by (A.7) in light of the regularity assumed on
the coefficients and the presence of the trivial solution family in (1.5). Finally, I simply integrates
in the transversal direction, and hence

I bounded and linear Yµ → C1+α
µ (R) and Yb → C1+α

b (R),

with bounds uniform in µ on compact subsets of (0, µ). In particular, the structural assumption
(A.8) is satisfied.
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Now let us move on to the contribution of Ã′ to the U2 equation:

1

β

∫ x

0

∫
Ω′
ϕ0∇′ · Ã′

(
y, U,∇R, λ, β

)
dy ds.

Stripping off the 1/β and integrating by parts in y, we get

−
∫ x

0

∫
Ω′
∇′ϕ0 · Ã′

(
y, U,∇R, λ, β

)
dy ds+

∫ x

0

∫
∂Ω′

ϕ0N
′ · Ã′

(
y, U,∇R, λ, β

)
dS(y) ds.

These are analogous to the contribution of Ã1 considered above, except that the operator I is
post-composed with f 7→

∫ x
0 f ds. While this is not a bounded map from C1+α

b (R)→ C1+α
b (R), it

is bounded C1+α
b (R) → C̊1+α

b (R), which is all that is required in (A.8). The contribution from B̃
is treated in exactly the same manner; indeed, it is even simpler since no integration by parts is
needed.

Equation for R. The work for the R equation has mostly been done through the study of the
operator G. We know in particular that G, and hence the composition I := GQ≥1, are bounded
Yµ → P≥1Xµ for any µ ∈ [0, µ) by Proposition 2.2. The argument of GQ≥1 is the interior and
boundary components of N (U1ϕ0 +R, λ), each of which can be written as

Sg(U, ∂xU2, R,∇R,D2R;λ, β)

for some suitably flat g that is independent of x. Thus for D we can take

D(U,R) := (U, ∂xU2, R,∇R,D2R),

which satisfies

D is bounded and linear Xµ −→ Cαµ (R;R3)× Cαµ (Ω;R1+n+n2
)

for any µ ∈ [0, µ) with bounds uniform on compact subsets of this interval. This will certainly
satisfy (A.5), and we have

(U,R) 7→ Sg(D(U,R);λ, β) bounded Xµ → Cαµ (Ω),

for all µ ∈ [0, µ) and uniformly on compact subsets. Applying Proposition 2.2, we conclude that I
will then satisfy (A.8):

I is bounded and linear Cαµ (Ω)→ C2+α
µ (Ω) and Cαb (Ω)→ C2+α

b (Ω),

for all µ ∈ (0, µ).

2.4. Truncation and fixed point mapping. We have verified all of the hypotheses of Theo-
rem A.1. As it stands, however, this only tells us about solutions to a truncated version of (2.13)
where the nonlinear terms have been precomposed with cutoff functions. Undoing the various
changes of variable, this leads us to a cut-off version F r (in the sense of (A.9)) of the nonlinear
elliptic operator F , where r > 0 measures the scale of the cut-off function. An advantage of F r is
that it is defined as a mapping Xµ × R → Yµ between weighted spaces. If we increase the weight
on the target space relative to the domain, then we can arrange for F r to have any finite degree
of smoothness: F r ∈ CM+3(Xµ × R; Y(M+6)µ). This rather technical fact is a consequence of [3,
Theorem 2.1]. A slight complication is that the operator F r is no longer local, since it is defined
with reference to the spectral splitting (2.12). But this splitting only occurs in the transverse
variable y, and so F r is local in x. Moreover, F and F r agree in a sufficiently small ball in Xb.

Lemma 2.4. In the setting of Theorem 1.1, suppose that ‖u‖X < r. Then

(i) F r(u, λ) = F (u, λ).
(ii) DuF r(u, λ)

∣∣
Xb

= DuF (u, λ).

(iii) D`
uD

k
λF

r(u, λ)
∣∣
X `

b
= D`

uD
k
λF (0, 0).
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Proof. Part (i) is obvious by the definition of F r in the sense of (A.9). For (ii), we know that for
any v ∈Xb and for ‖u‖X < r one can find ε sufficiently small so that ‖u+ εv‖X < r. Thus

DuF
r(u, λ)v =

d

dε

∣∣∣∣
ε=0

F r(u+ εv, λ) =
d

dε

∣∣∣∣
ε=0

F (u+ εv, λ) = DuF (u, λ)v.

It is also easy to see that Dk
λF

r(u, λ) = Dk
λF

r(u, λ) for ‖u‖X < r and k ≤ M . Repeatedly
differentiating with respect to u, (iii) then follows by induction on `. �

In terms of F r, the result of applying Theorem A.1 is recorded in the following lemma.

Lemma 2.5 (Existence of a fixed point). For any integer M ≥ 2, there exists µ ∈ (0, µ), r > 0,
β ∈ (0, 1], and a CM+1 mapping

W : R2 × R −→ Xµ (ξ1, ξ2, λ) 7−→ (U1, U2, R) (2.14)

so that, for all (ξ1, ξ2, λ), the function u ∈Xµ defined by

u(x, y) = U1(x)ϕ0(y) +R(x, y) (2.15)

is the unique solution to the truncated problem F r(u, λ) = 0 that satisfies the initial conditions

ξ1 = U1(0) =

∫
Ω′
u(0, y)ϕ0(y) dy, ξ2 = U2(0) =

1

β

∫
Ω′
∂xu(0, y)ϕ0(y) dy.

2.5. Proof of main results. We are now ready to prove the main results of this section.

Proof of Theorem 1.1. Our first step is to change variables from the initial data ξ = (ξ1, ξ2) in
Lemma 2.5 to

a = (a1, a2) :=

(
u(0, 0)

ϕ0(0)
,
∂xu(0, 0)

βϕ0(0)

)
.

Towards that end, fix (ξ1, ξ2) ∈ R, and suppose that u is given by (2.15) and (2.14) in Lemma 2.5.
Then we calculate

a1 =
u(0, 0)

ϕ0(0)
= U1(0) +

1

ϕ0(0)
R(0, 0) = ξ1 +

1

ϕ0(0)
W3(ξ1, ξ2, λ)(0, 0),

and, similarly,

a2 =
∂xu(0, 0)

βϕ0(0)
=

1

β
∂xU1(0) +

1

βϕ0(0)
∂xR(0, 0) = ξ2 +

1

βϕ0(0)
∂xW3(ξ1, ξ2, λ)(0, 0).

Thanks to the estimates in Lemma A.2, the mapping ξ 7→ a is a CM+1 near-identity change of
variables. In particular, it has a CM+1 inverse ξ = a + g(a, λ) for some function g ∈ CM+1 which
is flat in that g(0, λ) = 0 for all λ and ∂ag(0, 0) = 0. Introducing the scaled variables A := ϕ0(0)a1

and B := βϕ0(0)a2, we further rewrite this as

ξ1 =
A

ϕ0(0)
+G1(A,B, λ), ξ2 =

B

βϕ0(0)
+G2(A,B, λ), (2.16)

for some G1, G2 that are flat with respect to (A,B) in that G1(0, 0, λ) = G2(0, 0, λ) = 0 for all λ,
while ∇(A,B)G1 and ∇(A,B)G2 vanish at (0, 0, 0).

The Faye–Scheel reduction function Ψ can now be explicitly defined by

Ψ(A,B, λ)(x, y) =

(
W1(ξ1, ξ2, λ)(x)− A

ϕ0(0)
− B

ϕ0(0)
x

)
ϕ0(y) + W3 (ξ1, ξ2, λ) (x, y),

with (ξ1, ξ2) the functions of (A,B, λ) given by (2.16). All of its properties are straightforward to
check, and we obtain the formula (1.11) with x 6= 0 by appealing to the translation invariance of
the problem.
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It remains to derive the ODE (1.9) for v := u( · , 0). Differentiating (1.11) twice with respect to
x we obtain

∂2
xu(x+ τ, y) = ∂2

τΨ(v(x), v′(x), λ)(τ, y).

Setting y = 0 and τ = 0 this becomes

v′′(x) = ∂2
xu(x, 0) =

d2

dτ2

∣∣∣∣
τ=0

Ψ(v(x), v′(x), λ)(τ, 0) =: f(v(x), v′(x), λ),

as desired. �

Proof of Theorem 1.6. Our proof of Theorem 1.1 ensures the existence of the Faye–Scheel reduction
function Ψ which is uniquely determined by QΨ = 0 and

F r

(
A

ϕ0(0)
ϕ0 +

B

ϕ0(0)
xϕ0 + Ψ(A,B, λ), λ

)
= 0. (2.17)

Recall that here we are using

(Qu)(x, y) :=
u(0, 0)

ϕ0(0)
ϕ0(y) +

∂xu(0, 0)

ϕ0(0)
xϕ0(y),

but this argument can be repeated for any choice of projection onto kerL|Xµ . From the regularity
and flatness properties (1.8) of Ψ, we know that Ψ admits an expansion of the form (1.13), and (i)
follows from applying Q to it. Next we differentiate (2.17) to obtain

∂iA∂
j
B∂

k
λ

∣∣∣
(A,B,λ)=0

F r

(
A

ϕ0(0)
ϕ0 +

B

ϕ0(0)
xϕ0 + Ψ(A,B, λ), λ

)
= 0 (2.18)

for i + j + k ≤ M . Since the implied partials of F r are all being evaluated at (u, λ) = (0, 0), we
can then use Lemma 2.4 to replace them with the desired partials of F , proving (ii).

It remains to show that the Ψijk are uniquely determined by these properties. Plugging (1.13)

into (1.14) and recalling that L = 1
a11
DuF (0, 0), we find that

LΨijk + Rijk = 0, (2.19)

where Rijk depends on Ψi′j′k′ for i′ ≤ i, j′ ≤ j, k′ ≤ k and i′ + j′ + k′ ≤ i+ j + k − 1. Lemma 2.3
then allows one to solve Ψijk uniquely from {Ψi′j′k′}. �

3. Extensions to other types of elliptic problems

3.1. Symmetries. Unsurprisingly, symmetries of the nonlinear operator F are reflected in the
reduction function Ψ in Theorem 1.1, and hence in the ODE (1.9). For example, the elasticity
application studied in Section 5 leads us to consider PDEs of the general form{

∆u+∇ ·
(
|∇u|2∇u

)
+ u− λu = 0 in Ω

u = 0 on ∂Ω

where Ω := R × (−π/2, π/2) and a number of constants have been set to 1 for expositional
purposes. Observe that this problem is invariant with respect to the reversal transformation
u(x, y) 7→ u(−x, y), which can be stated abstractly as

F (u ◦ T, λ) = F (u, λ) ◦ T for T :=

(
−1 0
0 1

)
.

Intuitively, this invariance should mean that many terms in the expansion of Ψ must vanish.
Knowing this in advance greatly simplifies the task of computing the reduced equation.
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We will consider only a slightly larger class of symmetries than the above example, as this will
permit us to give a fairly simple argument. Let T ∈ Rn×n be a diagonal matrix with T 2 = id, and
let ε0, ε1, ε2 ∈ {+1,−1}. Suppose that TΩ = Ω, and that

Fi(ε0u ◦ T, λ) = εiFi(u, λ) ◦ T (3.1)

for all u ∈X and λ ∈ R. One can then check that the cutoff operator F r introduced in Section 2.4
satisfies the same identity, where here the key facts are that the splitting of u into U1, U2, R respects
these linear reflections, and that the even cutoff function ηr is ultimately applied component-wise
to U1, U2, R and their partials.

Fix A,B, λ ∈ R and let u = Aϕ0 + Bxϕ0 + Ψ(A,B, λ). Then by the construction of Ψ we have
F r(u, λ) = 0, and hence also F r(ε0u ◦ T, λ) = 0 by the above argument. By the simplicity of the
eigenvalue 0 of L′, ϕ0 ◦ T = ϕ0, and so we calculate

ε0(u ◦ T )(x, y) = ε0Aϕ0(y) + ε0T00Bxϕ0(y) + ε0(Ψ(A,B, λ) ◦ T )(x, y).

Applying Q and appealing to the uniqueness of Ψ, we deduce that

Ψ(ε0A, ε0T00B, λ) = ε0Ψ(A,B, λ) ◦ T, (3.2)

and hence that

f(ε0A, ε0T00B, λ) = ε0f(A,B, λ). (3.3)

3.2. Other boundary conditions. In formulating Theorems 1.1 and 1.6, we chose to focus on
problems that linearize to co-normal boundary conditions. This is not essential: looking at the
proof, it is clear that one can just as easily impose nonlinear Dirichlet conditions of the form

G(y, u, λ) = 0 on ∂Ω, (3.4)

for G that is CM+4 in its arguments. Naturally, for this case the codomain of F should be redefined
to be

Y := C0+α(Ω)× C2+α(∂Ω),

and likewise for Yµ and Yb. In place of the obliqueness assumption (1.3), we now require that

∂zG(y, 0, 0) 6= 0 for all y ∈ Ω′.

By assumption (1.5), we must have G(y, 0, λ) = 0 for all y ∈ ∂Ω′ and λ ∈ R. The above hypothesis
on G justifies using the implicit function theorem to recast (3.4) as u = 0 on ∂Ω. Then the proof
of Proposition 2.2 proceeds as before, only using a priori estimates for linear elliptic PDE with
homogeneous Dirichlet conditions. The fixed point argument is essentially unchanged. One small
modification is that eigenfunction ϕ0 can now vanish on ∂Ω′, and hence we must assume that 0 ∈ Ω′

or else choose a different projection Q.
Likewise, if ∂Ω has two or more connected components, one can freely impose either Dirichlet or

co-normal conditions on each, adjusting the regularity of Y accordingly.

3.3. Internal interfaces and free boundaries. We can also expand the scope of the reduction
theorem to treat nonlinear transmission problems. Suppose that n = 2 and the base Ω′ is the union
of two open intervals:

Ω′ = Ω′1 ∪ Ω′2, Ω′1 := (−1, 0), Ω′2 := (0, 1).

Let Ω := R× Ω′ be the (slitted) cylinder, and say Ωi = R× Ω′i.
Physically, one can for instance imagine this as representing two immiscible fluids confined to

a channel with rigid walls; the interface between them is the line Γ := R × {0}. Of course this
interface is only flat once we have performed a change of variables, and this may introduce terms
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in the interior equation relating to traces (or derivatives of traces) of quantities on the boundary.
With that in mind, we consider the following quite general quasilinear elliptic problem:

∇ · A(y, u,∇u, u|Γ, ux|Γ, λ) = 0 in Ω

G(u1, u2,∇u1,∇u2, λ) = 0 on Γ

K(u1, u2, λ) = 0 on Γ

u = 0 on {y = ±1},

(3.5)

where A1, A2, G, K are CM+4 in their arguments. Here, we are breaking convention slightly by
writing ui := u|Ωi and likewise for A. As before, assume that Ai is uniformly elliptic (1.2). In place
of obliqueness (1.3), we now ask that

N(y) · (∇p1G(z1, z2, p1, p2)−∇p2G(z1, z2, p1, p2)) > χ for all y ∈ Ω′, p1, p2 ∈ Rn, z1, z2, λ ∈ R.

The elliptic problem (3.5) can be rewritten as an operator equation F (u, λ) = 0, with F =
(F1,F2,F3) corresponding to the first three equations and the homogeneous Dirichlet condition
incorporated into the definition of the space. The main restriction is that the linearized problem
is of transmission type, that is,

F1u(0, 0)v := ∇ · (a(y)∇v) ,

F2u(0, 0)v := − JN(y) · a(y)∇vK + g1(y)v1 + g2(y)v2,

F3u(0, 0)v := JvK .
(3.6)

Here J · K := ( · )2−( · )1 denotes the jump of a quantity over Γ, and the coefficients a, gi are obtained
from Ai and G in the obvious way.

In typical applications, one asks for solutions whose restriction to Ωi is smooth up to the bound-
ary. We therefore set

X :=
{
u : u|Ωi ∈ C2+α(Ωi), u|y=±1 = 0

}
, (3.7)

and take as the codomain for the corresponding nonlinear mapping F the space

Y :=
{
w : w|Ωi ∈ C0+α(Ωi)

}
× C1+α(Γ)× C2+α(Γ). (3.8)

While the jump conditions on Γ in (3.6) are somewhat exotic, there is a well-established lit-
erature regarding them, including the Schauder estimates [33] that we require. It is then quite
straightforward to generalize Theorem 1.1 and Theorem 1.6 to the setting of (3.5). Indeed, Amick
and Turner explicitly mention how their fixed point theory accommodates spaces similar to (3.7)
and (3.8) (see, [3, Remark 2.2, Remark 3.2]), and in [2] they apply it to a transmission problem in
hydrodynamics that is a special case of what we consider in Section 7.

Corollary 3.1. Consider the quasilinear elliptic problem (3.5). Assume that the corresponding
linearized operator L is of transmission type (3.6) and the transversal linearized operator L′ satisfies

the spectral hypothesis (1.7). Fix µ ∈ (0,
√
|ν1|/2) and an integer M ≥ 2. Then there exist

neighborhoods U ⊂ X × R and V ⊂ R3 of the origin and a coordinate map Ψ = Ψ(A,B, λ)
exhibiting all the properties claimed in Theorem 1.1, 1.6, and 1.9.

3.4. Diagonal elliptic systems. Another possibility is to study systems of quasilinear elliptic
PDE. To do this in complete generality is beyond the scope of this paper, but, with just a minor
modification, the above argument can treat a special class of systems that are important for the
proof of Theorem 1.9.

Letting Ω again be any connected cylinder as in Section 1, we consider solutions u = (u1, u2) to{
∇ · Ai(y,∇ui, λ) + Bi(y, u,∇u, λ) = 0 in Ω

−N(y) · Ai(y,∇ui, λ) + Gi(y, u, λ) = 0 on ∂Ω,
(3.9)
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for i = 1, 2. We assume that the coefficients Ai, Bi, Gi are CM+4 in their arguments, and also that
uniform ellipticity (1.2) and obliqueness (1.3) hold. Suppose further that the linearized problem at
(u, λ) = (0, 0) is diagonal in the sense that (3.9) can be rewritten as{

Lu1 = N 1(u1, u2, λ)

Lu2 = N 2(u1, u2, λ),
(3.10)

where L : Xb → Yb is a bounded linear operator, and each N i is a divergence form nonlinear
operator that is (i) CM+3 as a mapping Xb × Xb × R → Yb, and (ii) satisfies N i(0, λ) = 0
and N i

u(0, 0) = 0. Arguing exactly as in Section 2.2, this problem can be reformulated as a
fixed-point equation of the form (2.13) but with six components — three each for u1 and u2.
While in Appendix A we only state Amick and Turner fixed-point theorem for a two-dimensional
center manifold, the theory as originally formulated in [3, Section 3] applies to systems of arbitrary
dimension. Using it as before allows us to recover Theorem 1.1 and Theorem 1.6, with the reduction
function now taking values in the product space Xµ ×Xµ.

3.5. Commuting linearization and reduction. With the above center manifold theory for
diagonal systems at our disposal, we are now prepared to prove Theorem 1.9.

Proof of Theorem 1.9. Suppose that we are in the setting of Theorem 1.1. Throughout the argu-
ment, we will work with a fixed value of λ that is taken sufficiently small. For convenience, it will
therefore be suppressed.

Consider the following (truncated) augmented problem

G r(u, u̇) :=
(
F r(u), DuF

r(u)u̇
)

= 0. (3.11)

Recall that F r denotes the truncated nonlinear mapping in the sense of Lemma 2.4. Natu-
rally, (3.11) is a (truncated) diagonal system satisfying (3.9) and (3.10), and so we may ap-
ply the modified version of Theorem 1.1 to classify its small bounded solutions. In particular,
there exists neighborhoods U ⊂ Xb × Xb and V ⊂ R4 of the origin, and a reduction function
(Φ,Υ) ∈ CM+1(R4,Xµ ×Xµ) so that (w, ẇ) ∈ U solves (3.11) if and only if{

w = (A+Bx)ϕ0(y) + Φ(A,B, Ȧ, Ḃ)

ẇ = (Ȧ+ Ḃx)ϕ0(y) + Υ(A,B, Ȧ, Ḃ),
(3.12)

for some (A,B, Ȧ, Ḃ) ∈ V . We are recycling notation here somewhat, as Φ above is not the same
as the one occurring in Remark 1.2. Let us now define

Ψ(A,B) := Φ(A,B, 0, 0).

It is easy to check that this function has all the properties of the reduction function furnished by
Theorem 1.1 to the original (truncated) problem. In particular, this means that any sufficiently
small w ∈Xb satisfying F r(w) = 0 can be written

w(x, y) = (A+Bx)ϕ0(y) + Ψ(A,B)(x, y) in Ω, (3.13)

for some A, B ∈ R. Moreover, v := w( · , 0) solves the reduced ODE (1.9), with f defined by
(1.10). For simplicity, let us also normalize ϕ0(0) = 1, which implies A = v(0) and B = v′(0). Note
also that, by construction, the range of Φ and Υ lie in the kernel of the projection Q onto kerL.
Consequently, the coefficients A and B in (3.13) and (3.12) must indeed coincide.

Fix a small solution u ∈Xb to F (u) = F r(u) = 0, and let u̇ ∈Xb be a solution of the linearized
problem as in the statement of Theorem 1.9. Even though we do not assume that ‖u̇‖X is small,
the structure of the augmented problem problem ensures that, for all δ > 0 sufficiently small, (u, δu̇)
lies in U and

G (u, δu̇) = G r(u, δu̇) = 0.
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In that case, we can use (3.12) with (u, δu̇) in place of (w, ẇ) to see that

δu̇(x, y) = δ(Ȧ+ Ḃx)ϕ0(y) + Υ(A,B, δȦ, δḂ).

As Υ is CM+1, an expansion of the right-hand side above in δ yields

u̇ = (Ȧ+ Ḃx)ϕ0(y) +D(Ȧ,Ḃ)Υ(A,B, 0, 0) · (Ȧ, Ḃ). (3.14)

We claim further that

D(A,B)Ψ(A,B) = D(Ȧ,Ḃ)Υ(A,B, 0, 0). (3.15)

To see this, first observe that the construction of the reduction functions Ψ, and (Φ,Υ) ensure that

F r
(

(A+Bx)ϕ0 + Φ(A,B, Ȧ, Ḃ)
)

= 0,

G r
(
(A+Bx)ϕ0 + Φ(A,B, Ȧ, Ḃ), (Ȧ+ Ḃx)ϕ0 + Υ(A,B, Ȧ, Ḃ)

)
= 0,

for all (A,B, Ȧ, Ḃ) ∈ V . Note that F r is C2 as a mapping Xµ → Y4µ. This permits us to
differentiate the first equation with respect to (A,B), and upon evaluating at (A,B, 0, 0) we find
that

DuF
r(u) [ϕ0 +DAΨ(A,B)] = 0, DuF

r(u) [xϕ0 +DBΨ(A,B)] = 0.

Likewise, the second component of G r is (u, u̇) 7→ F r
u(u)u̇, which is C1 as a mapping Xµ ×Xµ →

Y4µ. Taking its derivative with respect to (Ȧ, Ḃ) and evaluating at (A,B, 0, 0) leads to the identities

DuF
r(u)

[
ϕ0 +DȦΥ(A,B, 0, 0)

]
= 0, DuF

r(u)
[
xϕ0 +DḂΥ(A,B, 0, 0)

]
= 0.

Combining the two identities above we conclude

DuF
r(u)

[
DAΨ(A,B)−DȦΥ(A,B, 0, 0)

]
= 0, DuF

r(u)
[
DBΨ(A,B)−DḂΥ(A,B, 0, 0)

]
= 0.

On the other hand, by construction

Q
[
DAΨ(A,B)−DȦΥ(A,B, 0, 0)

]
= 0, Q

[
DBΨ(A,B)−DḂΥ(A,B, 0, 0)

]
= 0.

We know from Lemma 2.3 that the bordered operator w 7→ (DuF r(0)w,Qw) is invertible Xµ →
Yµ×kerL. Moreover, if u ∈Xb has ‖u‖X sufficiently small, the same is true for w 7→ (DuF r(u)w,Qw)
by a perturbation argument. Hence we have proved the key identity (3.15), at least when A = v(0)
and B = v′(0) correspond to a sufficiently small solution u ∈ Xb. The uniform smallness of u in
particular means that, say by Lemma 2.4, we do not have to worry about the cut-off functions
when performing this perturbative argument.

Theorem 1.9 follows almost immediately. From (1.9), (3.14), and (3.15) we see that v̇ := u̇( · , 0)
solves the reduced equation

v̇′′ = g(v, v′, v̇, v̇′),

for

g(A,B, Ȧ, Ḃ) :=
d2

dx2

∣∣∣
x=0

[
(Ȧ, Ḃ) ·D(A,B)Ψ(A,B)(x, 0)

]
.

But, recalling the definition of f (1.10), this becomes exactly the claimed ODE (1.16). �

4. General strategy to apply the reduction procedure

In the course of proving Theorem 1.6, we have shown that each term Ψijk can indeed be uniquely
determined by iteratively solving a hierarchy of equations of the form (2.19), where the terms of the
right-hand side involve information about various Fréchet derivatives of F at (0, 0). In this section,
we briefly illustrate how this process is carried out in practice, and also how the reduced equation
(1.9) can be rescaled to obtain homoclinic or heteroclinic solutions. To simplify the presentation,
we will assume that a11 = ∇p1A( · , 0, 0, 0) ≡ 1, and hence L = L.
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4.1. Iteration. The smoothness of F r and Lemma 2.4 allow us to write

F r(u, λ) =
∑

1≤`+k≤K
λkD`

uD
k
λF

r(0, 0)[u, u, . . . , u] +O

( ∑
`+k=K+1

‖u‖`Xµ
|λ|k

)
(4.1)

in Y(K+4)µ for any integer K ≤ M , where the D`
uD

k
λF

r(0, 0) are symmetric bounded `-linear

mappings (Xµ)` → Y(K+4)µ. For i+ j + k ≤ K, the remainder terms in (4.1) do not contribute to
Rijk in (2.19). Therefore, when solving (2.19), it is sufficient to work with the truncated version
of (4.1) that results from simply setting these remainder terms to zero.

For an integer K ≥ 1 and a smooth function g = g(A,B, λ), we define TKg to be the K-th order
Taylor expansion of g at 0, that is,

TKg(A,B, λ) :=
∑

i+j+k≤K
∂iA∂

j
B∂

k
λg(0, 0, 0)AiBjλk.

Plugging (4.1) and (1.13) into (2.17) we see that, for 1 ≤ K ≤M ,

TK
∑

1≤`+k≤K
λkD`

uD
k
λF (0, 0)[u(K), . . . , u(K)] = 0, (4.2)

where

u(K)(x, y;A,B, λ) := TK [Aϕ0(y) +Bxϕ0(y) + Ψ(A,B, λ)(x, y)]

= Aϕ0(y) +Bxϕ0(y) +
∑

2≤i+j+k≤K
i+j≥1

Ψijk(x, y)AiBjλk.

More explicitly, at K = 1, the definition of u(K) reads simply u(1)(x, y) = Aϕ0(y) + Bxϕ0(y).
For K ≥ 2, we may use the facts that

Dk
λF (0, 0) = 0, and u(K) = u(K−1) +

∑
i+j+k=K
i+j≥1

Ψijk(x, y)AiBjλk (4.3)

to derive the equations for Ψijk when i + j + k = K. Below we give two example calculations for
K = 2, 3. As all of the derivatives of F are evaluated at (0, 0), the base point will be suppressed
for notational convenience.

When K = 2, (4.2) and (4.3) imply that

L

( ∑
i+j+k=2
i+j≥1

ΨijkA
iBjλk

)
= −λDuDλFuλu

(1) −D2
uF [u(1), u(1)],

from which {Ψijk : i+ j + k = 2}, and hence u(2), can be uniquely solved by applying Lemma 2.3.
At K = 3, a similar calculation gives

L

( ∑
i+j+k=3
i+j≥1

ΨijkA
iBjλk

)
= −Lu(2) − λDuDλFu(2) −D2

uF [u(2), u(2)]

− λ2DuD
2
λFu(1) − λD2

uDλF [u(1), u(1)]−D3
uF [u(1), u(1), u(1)].

The right-hand side is explicit. Grouping like terms and applying Lemma 2.3 we may determine
u(3).

This process repeats at each stage: we have to iteratively solve linear equations of the form

LΨijk = Fijk, QΨijk = 0, (4.4)

where i+ j + k = K and Fijk depends only on u(K−1).
In summary the procedure for calculating Ψijk can be explained in the following way. First, one

Taylor expands the terms in F to order M to obtain a Taylor-truncated operator that is naturally
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defined on weighted spaces. The composition of the K-th order Taylor-truncated operator with
u(K) is a polynomial in A,B, λ whose YKµ coefficients depend on the Ψijk. Setting the coefficients

of AiBjλk for i + j + k ≤ K equal to zero, we obtain a series of equations for the Ψijk. Working
in order of increasing i+ j + k, this becomes a sequence of linear problems of the form (4.4) where
Fijk is known. Lemma 2.3 ensures that these equations can be solved uniquely.

4.2. Anticipated scaling. The reduced ODE (1.9) always admits two degrees of freedom: we
may select a length scale for the x-variable as well as an amplitude scale for the unknown. Making
intelligent choices can vastly simplify the expansion procedure. For example, if we hope to find
a heteroclinic solution, the reduced ODE must have a certain structure, and this leads to an
anticipated scaling.

By design, (1.9) always has an equilibrium at the origin. In applications we are interested in cases
where the linearized problem there is nondegenerate in that D(A,B)f(0, 0, λ) has no zero eigenvalue
for 0 < |λ| � 1. Treating λ as fixed and performing a double expansion in (A,B) we have

f(A,B, λ) = ∂Af(0, 0, λ)A+ ∂Bf(0, 0, λ)B +
1

2
∂2
Af(0, 0, λ)A2 + ∂A∂Bf(0, 0, λ)AB

+
1

2
∂2
Bf(0, 0, λ)B2 +

1

6
∂3
Af(0, 0, λ)A3 +O

(
(|A|+ |B|)2|B|

)
.

(4.5)

Note that the nondegeneracy condition forces ∂Af(0, 0, λ) 6= 0. For nontrivial heteroclincic or
homoclinic solutions, we need a second rest point, which in terms of the above expansion translates
to the right-hand side of (4.5) being nonlinear in A. Therefore, let us assume that there is a least
integer m ≥ 2 such that ∂mA f(0, 0, λ) 6= 0.

Now, we introduce a rescaling of the axial variable X = κx and amplitude v = aV . Given the
above discussion, we want v′′, v, and vm to appear as O(1) terms in the corresponding rescaled
version of the reduced ODE (1.9). This balancing forces the inverse length scale κ and the amplitude
scale a to satisfy

aκ2 ∼ a∂Af(0, 0, λ) ∼ am∂mA f(0, 0, λ) as λ→ 0. (4.6)

Clearly, then, κ and a involve roots of fA and ∂mA f . To avoid this inconvenience, we may reparam-
eterize λ = λ(ε), and consider

λ = λpε
p, κ = κnε

n, a = aqε
q (4.7)

for some p, n, q ∈ N. It then follows from (4.6) that

ε2n ∼ ∂Af(0, 0, εp) ∼ ∂mA f(0, 0, εp)ε(m−1)q as ε→ 0. (4.8)

In particular, this implies that when we carry out the iteration procedure of Section 4.1, A, B,
and λ have differing orders of magnitude. It therefore suffices to compute the Ψijk for i, j, k in the
index set

J =
{

(i, j, k) ∈ N3 : qi+ (q + n)j + k ≤ q + 2n, i+ j + k ≥ 2, i+ j ≥ 1
}
.

Notice that we have not taken into account the contribution of ∂Bf(0, 0, λ)B in the expansion
(4.5). This can be justified, for instance, when the system has the reversal symmetry (v(x), v′(x)) 7→
(v(−x),−v′(−x)). However, if ∂Bf(0, 0, λ) 6= 0, the length scale will be over-determined since there
is a linear term in B in (4.5) which also suggests a choice of κ. For this to be compatible with
(4.6), we must therefore have

|∂Af(0, 0, λ)| ∼ |∂Bf(0, 0, λ)|2 as λ→ 0. (4.9)

With enough parameters in the problem, one can always arrange for this to hold; see, for example,
Section 6.
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5. Anti-plane shear

Consider a homogeneous, incompressible, isotropic elastic cylinder D = Ω × R with generators
parallel to z-axis and cross section Ω ⊂ R2 in the (x, y)-plane. Anti-plane shear describes the
situation where the deformation takes the form

id + u(x, y)e3, (5.1)

where e3 is the standard basis vector (0, 0, 1)T . That is, the displacement of each particle is parallel
to the generators of the cylinder and independent of its axial position.

For an isotropic elastic solid, the strain energy density W is a function of the three principal
invariants I1, I2, I3 of the Cauchy–Green tensor. In this section, we will consider a polynomial
rubber elastic model, which corresponds to the case where W is a polynomial in I1 and I2 [47].
Thus we can write

W(I1, I2) :=
N∑

i+j=1

Cij(I1 − 3)i(I2 − 3)j .

Note that when N = 1, C01 = 0, this reduces to the standard neo-Hookean solid model [49]. Values
of N > 2 are rarely used in practice because it is difficult to fit such a large number of material
properties to experimental data. Therefore, we restrict our attention to the quadratic case N = 2;
this will result in a quasilinear PDE with a 4-Laplacian term, cf. (5.8).

Assuming incompressibility, it is shown in [30] that under an “ellipticity condition”

d

dR

[
R

(
∂W

∂I1
(I1, I2) +

∂W

∂I2
(I1, I2)

)∣∣∣∣
I1=I2=3+R2

]
> 0 for all R ≥ 0,

the energy function W is admissible if and only if there exists some constant k ∈ R such that

k
∂W

∂I1
(I1, I2) + (k − 1)

∂W

∂I2
(I1, I2) = 0.

For this reason, we will consider a class of quadratic neo-Hookean materials whose strain energy
density takes the form

W(I1, I2) := C10(I1 − 3) + C20(I1 − 3)2 (5.2)

Imposing the anti-plane shear ansatz (5.1), we know that the principal invariants satisfy I1 = I2 =
3+ |∇u|2 =: I, and I3 = 1. Hence, we may identifyW with the functionW(I) =W(3+ |∇u|2); see,
for example, [30, 25]. At infinitesimal deformations, the shear modulus is given by 2W ′(3) which is
supposed to be positive. For simplicity, we normalize W ′(3) = 1. Then the quadratic neo-Hookean
model (5.2) becomes

W(I) = (I − 3) + w1(I − 3)2, W ′(3 + |∇u|2) = 1 + 2w1|∇u|2, (5.3)

where w1 :=W ′′(3)/2 is a material constant.
While there has been an extensive literature on the sustainability of anti-plane shear deformation

in various constitutive settings [26, 45], the analytical results concerning the existence of nontrivial
equilibria are mostly restricted to the variational construction of Sobolev solutions [17, 52]. Our
contribution in this section is the construction of a new class of solutions on an unbounded cylinder
which limit to distinct limits as x → −∞ and x → +∞. We call these equilibria anti-plane shear
fronts.

Following Healey and Simpson [22], we suppose that the body is subjected to a parameter-
dependent “live” body force b = b(u, λ). As in, e.g., [27, 25], we consider the geometrical setting
where Ω = R× (−π/2, π/2) is an infinite strip and homogeneous Dirichlet boundary conditions are
imposed on {y = ±π/2}.
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z

y

x

Figure 2. Leading-order approximation of the front-type solutions in Theo-
rem 5.1(a). The graph z = u(x, y) is the image of the strip {z = 0, |y| < π/2}
under the anti-plane deformation (5.1).

A static equilibrium then satisfies{
∇ ·
(
W ′(3 + |∇u|2)∇u

)
− b(u, λ) = 0 in Ω

u = 0 on ∂Ω.
(5.4)

The system (5.4) carries a variational structure with the energy

E(u) :=

∫
Ω

[
W(3 + |∇u|2) +B(u, λ)

]
dx dy,

where Bu = 1
2b. Note that (5.4) is invariant under the “reversibility” reflection u(x, y) 7→ u(−x, y)

about the (y, z)-plane. We will assume in addition that it is invariant under the reflection u 7→ −u,
which forces

b( · , λ) is odd, and hence B( · , λ) is even. (5.5)

The eigenvalue problem for the linearized transversal operator corresponding to (5.4) is simple
to compute: {

wyy − bu(0, 0)w = νw in (−π/2, π/2)

w = 0 on {y = −π/2, π/2}.

If the body force b satisfies

bu(0, 0) = −1, (5.6)

then ν = 0 is a simple eigenvalue, and the rest of the spectrum is negative. The kernel of the
linearized operator is generated by

ϕ0(y) := cos y.

To make things concrete, we introduce a specific ansatz for the body force:

b(u, λ) = −u+ λb1u+ b2u
3. (5.7)

Note that this satisfies both (5.5) and (5.6). One can of course add higher-order terms in u if
desired; see Appendix B. Following (4.7), we reparametrize λ = λ2ε

2 (see Section 5.1 for more
details). The model (5.4) then becomes{

∆u+ 2w1∇ ·
(
|∇u|2∇u

)
+ u− b1λ2ε

2u = 0 in Ω

u = 0 on ∂Ω.
(5.8)

Theorem 5.1 (Fronts in anti-plane shear deformation). Consider the anti-plane shear problem
(5.8) with strain energy W given by (5.3) and a live body force b of the form (5.7) with b2 = 0.
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(a) When b1λ2 < 0, w1 > 0, there exists ε0 > 0 and a family of front-type solutions{
(uε, ε) ∈ C2+α

b (Ω)× R : −ε0 < ε < ε0

}
bifurcating from the unforced state (u, ε) = (0, 0). It exhibits the asymptotics:

uε(x, y) = a1ε tanh (κ1εx) cos(y) +O(ε2) in C2+α
b (Ω), (5.9)

where a1 =

√
−2b1λ2

3w1
, κ1 =

√
−b1λ2

2
.

(b) When b1λ2 > 0 and w1 < 0, there exists ε0 > 0 and a family of homoclinic-type solutions{
(uε, ε) ∈ C2+α

b (Ω)× R : −ε0 < ε < ε0

}
bifurcating from the unforced state (u, ε) = (0, 0). It exhibits the asymptotics:

uε(x, y) = a1ε sech (κ1εx) cos(y) +O(ε2) in C2+α
b (Ω), (5.10)

where a1 =

√
−4b1λ2

3w1
, κ1 =

√
b1λ2.

See Figure 2 for an illustration of the solutions in case (a).

Remark 5.2. It is worth emphasizing that more detailed information about uε can be obtained by
combining Remark 1.12 and the form of the reduced ODE (1.9) found in Section 5.2 below. For
instance, it is possible to check that uε inherits the monotonicity properties (in the axial variable
x) of its leading-order approximation in (5.9) or (5.10).

Remark 5.3. Including the cubic term in (5.7) for the body force allows one to treat more general
rubber elastic material. In that setting, there exist families of front-type solutions (5.9) when
b1λ2 < 0 and b2 + 2w1 > 0, and homoclinic solutions of the form (5.10) when b1λ2 > 0 and
b2 + 2w1 < 0; see Appendix B.

5.1. Center manifold reduction. The linearized operator of (5.4) at (u, ε) = (0, 0) with assump-
tions (5.3) and (5.6) is simply

L := 1 + ∆: Xµ → Yµ,

where

Xµ :=
{
u ∈ C2+α

µ (Ω) : u|∂Ω = 0
}
, Yµ := C0+α

µ (Ω).

Here, we are exploiting the fact that the boundary conditions are linear by including them in the
definition of Xµ. The kernel of L is the two-dimensional space

kerL = {u(x, y) = (A+Bx)ϕ0(y) : A,B ∈ R} .

The bounds for the partial Green’s function follow exactly from Proposition 2.2. As for the pro-
jection Q onto the kernel in Remark 1.8, we choose it to be

Qu :=
(
v(0) + v′(0)x

)
ϕ0(y) where v(x) := u(x, 0).

Applying Theorem 1.1, we find that all small solutions (u, ε) of (5.8) are of the form

u(x, y) = v(0)ϕ0 + v′(0)xϕ0 + Ψ(v(0), v′(0), ε)(x, y)

for a CM+1 coordinate map Ψ: R3 → C2+α
µ . The function v then satisfies the reduced ODE

v′′ = f(v, v′, ε), where f(A,B, ε) :=
d2

dx2

∣∣∣
x=0

Ψ(A,B, ε)(x, 0). (5.11)

From Section 3.1 we see that the reversibility symmetry u(x, y) 7→ u(−x, y) of (5.8) implies

Ψ(A,−B, ε)(−x, y) = Ψ(A,B, ε)(x, y), (5.12a)
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while the additional symmetry u 7→ −u implies that

Ψ(−A,−B, ε)(x, y) = −Ψ(A,B, ε)(x, y). (5.12b)

Plugging (5.12) into (5.11), we find that f has the symmetries

f(A,−B, ε) = f(A,B, ε), f(−A,−B, ε) = −f(A,B, ε). (5.13)

We now use Theorem 1.6 to expand the coordinate map Ψ and hence the function f . That is,
we seek solutions u ∈Xµ with the Faye–Scheel ansatz

u(x, y) = (A+Bx)ϕ0(y) +
∑
J

Ψijk(x, y)AiBjεk +R, (5.14)

where the index set J can be determined from the anticipated scaling described in Section 4.2.
In fact from (5.8) we have

Lu = b1λu− 2w1∇ · (|∇u|2∇u).

Expanding f as in (4.5), we see that fA(0, 0, λ) ∼ λ. Since w1 6= 0, then the right-hand side of
the above is indeed cubic in u so that ∂3

Af(0, 0, λ) ∼ 1. Recalling (4.8), this predicts a balancing
ε2n ∼ εp ∼ ε2q. We therefore take n = q = 1 and p = 2, which explains the reparametrization
λ = λ2ε

2 in (5.8), and leads to the index set J given by

J :=
{

(i, j, k) ∈ N3 : i+ 2j + k ≤ 3, i+ j + k ≥ 2, i+ j ≥ 1
}
, (5.15)

and the error term R is of the order O
(
(|A|+ |B|1/2 + |ε|)4

)
in Xµ. This truncation anticipates a

scaling where A ∼ ε, B ∼ ε2. Recall from Theorem 1.6 that Ψijk(0, 0) = ∂xΨijk(0, 0) = 0.
Plugging (5.14) into the nonlinear term in (5.8), we obtain

∇ · (|∇u|2∇u) = −A3∇ ·
(

0
sin3 y

)
+O

(
(|A|+ |B|1/2 + |ε|)4

)
in Xµ.

Therefore, for each (i, j, k) ∈ J , the equation for Ψijk is
∑
J
L(Ψijk)A

iBjεk = b1λ2ε
2(A+Bx) cos y + b1

∑
J

ΨijkA
iBjεk+2 + 6w1A

3 sin2(y) cos y

QΨijk = 0.

By Lemma 2.3, the above problem has a unique solution, and indeed we find:

Ψ101 = Ψ011 = Ψ110 = Ψ200 = 0,

Ψ102 =
b1λ2

2
x2 cos y,

Ψ300 =
3w1

16

(
4x2 cos y − cos y + cos(3y)

)
.

5.2. Reduced ODE and truncation. From Theorem 1.1 we know that a small solution u of
(5.8) solves the reduced ODE of the form (1.9) where v(x) = u(x, 0). Using the computed values
of Ψijk we see that

f(A,B, ε) =
∑
J

d2

dx2

∣∣∣
x=0

Ψijk(x, 0)AiBjεk + r(A,B, ε) = b1λ2Aε
2 +

3w1

2
A3 + r(A,B, ε)

where the error term r ∈ CM+1 and

r(A,B, ε) = O
(
|A|(|A|+ |B|1/2 + |ε|)3 + |B|(|A|+ |B|1/2 + |ε|)2

)
.

Setting r = 0, we obtain the truncated reduced ODE

v0
xx = b1λ2ε

2v0 +
3w1

2
(v0)3.
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When b1λ2 < 0 and w1 > 0, this has an explicit heteroclinic orbit,

v0(x) = a1ε tanh (κ1εx) , where a1 :=

√
−2b1λ2

3w1
, κ1 :=

√
−b1λ2

2
.

On the other hand, when b1λ2 > 0 and w1 < 0, there is a homoclinic solution

v0(x) = a1ε sech (κ1εx) , where a1 :=

√
−4b1λ2

3w1
, κ1 :=

√
b1λ2.

5.3. Proof of existence. It remains now to confirm that the homoclinic and heteroclinic orbits
above persist for the full reduced ODE (that is, when r is reintroduced). For the heteroclinic case,
it is often useful to examine invariant quantities. Here, however, the symmetry properties in (5.13)
are strong enough that a simpler argument is possible.

Proof of Theorem 5.1. Introducing the scaled variables

x = ε−1X, v(x) = εV (X),

the reduced equation (5.11) can be written as the planar system
VX = W

WX = b1λ2V +
3w1

2
V 3 +R(V,W, ε),

where the rescaled error term R(V,W, ε) = O (|ε|(|V |+ |W |)). At ε = 0, this corresponds to a
rescaling of the truncated equation.

Consider the situation in part (a), where b1λ2 < 0, w1 > 0. At ε = 0, the explicit solution
V = a1 tanh(κ1X) crosses the W -axis transversely. As usual, this implies that for small nonzero ε,
the unstable manifold of the negative equilibrium will transversely intersect the W -axis. Combin-
ing the reversibility symmetry (V (X),W (X)) 7→ (V (−X),−W (−X)) with the reflection symmetry
(V (X),W (X)) 7→ (−V (X),−W (X)), we obtain existence of a (reversible) heteroclinic orbit con-
necting the two nontrivial equilibria.

A similar argument works for part (b), where b1λ2 > 0, w1 < 0. When ε = 0, the explicit
solution V = a1 sech(κ1X) crosses the V -axis transversely. This intersection persists for small ε,
and reversibility then guarantees the existence of a (reversible) homoclinic orbit to the origin. �

6. Fronts in 2D Fisher–KPP

As a second application of our general theory, we consider a reaction diffusion equation arising in
mathematical biology. The classical Fisher–KPP equation [16, 31] is the one-dimensional problem

vt = vxx + σv(ρ2 − v), (6.1)

where v = v(t, x) : R+ × R → R. This models the propagation of an allele within a population;
σ > 0 measures the advantageousness of the mutant gene, while ρ2 > 0 describes the carrying
capacity. It is well known that Fisher–KPP supports traveling fronts moving at any wave speed
greater than 2ρ

√
σ. However, it has been observed experimentally by Möbius, Murray, and Nelson

[43] that, in the presence of obstacles, invasion fronts may slow down and display two-dimensional
characteristics. Recently, Minors and Dawes [42] proposed a two-dimensional version of Fisher–
KPP with certain “reactive” boundary conditions as a possible explanation for this phenomenon.
For traveling waves, it takes the form

∆u+ λux + u(ρ2 − u) = 0 in R× (0, 1)

uy = 0 on {y = 0}
uy + βu = 0 on {y = 1}.

(6.2)
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Here the unknown u = u(x, y), β > 0 is an absorption constant, λ is the wave speed, and ρ2 > 0
is the carrying capacity of the allele. Note that Minors and Dawes discuss a slightly more general
problem. For instance, we scaled the domain to be the infinite strip of unit height Ω := R× (0, 1).
Also, they allow Robin or Neumann conditions to be imposed on either boundary.

In [42], numerical evidence is given that the two-dimensional Fisher–KPP equation (6.2) does
indeed have fronts that move arbitrarily slowly in certain regimes. As the main contribution of this
section, we give the first rigorous proof of the existence of these waves.

Theorem 6.1 (2D Fisher–KPP fronts). Fix β > 0, let ρ0 > 0 be the unique solution to ρ0 tan(ρ0) =
β on (0, π/2), and choose a positive constant λ1 > 2. There exists 0 < ε0 � 1, and a family of
front solutions (u, λ, ρ2) to the two-dimensional Fisher–KPP equation,{

(u, λ, ρ2) = (uε, λ1ε, ρ
2
0 + ε2) ∈ C2+α

b (Ω)× R× R : −ε0 < ε < ε0

}
with

uε(x, y) = ε2V ε(εx) cos(ρ0y) +O(ε3) in C2+α
b (Ω).

Here, V ε is to leading order a front for the one-dimensional Fisher–KPP equation (6.1) with car-
rying capacity 1/σ and σ given by (6.9).

6.1. Center manifold reduction. The first step is to choose parameters so that the spectral
condition (1.7) is satisfied. The eigenvalue problem for the transversal linearized operator at (u, λ) =
(0, 0) is simply 

wyy + ρ2w = νw in (0, 1)

wy = 0 on {y = 0}
wy + βw = 0 on {y = 1}.

An elementary calculation shows that there are no eigenvalues ν ≥ ρ2, and ν < ρ2 is in the spectrum
if and only if

tan(
√
ρ2 − ν) =

β
√
ρ2 − ν

ρ2 − ν
. (6.3)

Taking β > 0 to be fixed, the critical value for the parameter ρ is defined to be the unique ρ0 so that
the only nonnegative solution of (6.3) is ν = 0. Clearly, this occurs precisely when tan(ρ0) = β/ρ0,
and in that case the kernel is generated by

ϕ0(y) := cos(ρ0y).

Now, we reconsider the full problem posed on Ω. As in the previous application, we take advan-
tage of the linearity of the boundary conditions by encoding them directly into the definition of
the space: let

X :=
{
u ∈ C2+α(Ω) : uy|y=0 = 0, (βu+ uy) |y=1 = 0

}
, Y := C0+α(Ω).

with the exponentially weighted counterparts Xµ and Yµ, respectively. The linearized operator at
(u, λ) = (0, 0) is thus

L := ∆ + ρ2
0 : Xµ → Yµ, (6.4)

and its kernel is the two-dimensional subspace

kerL = {u(x, y) = (A+Bx)ϕ0(y) : A,B ∈ R} .
We have some freedom to choose a projection Q onto kerL. As the boundary condition the bottom
of the strip is simplest, a reasonable option is to take

Qu :=
(
v(0) + v′(0)x

)
ϕ0(y) where v(x) := u(x, 0).

Applying Theorem 1.1, we infer the existence of a center manifold that must contain any suffi-
ciently small solution to (6.2). To find the corresponding reduced equation, we will use Theorem 1.6
and follow the general procedure outlined in Section 4.
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As in Section 5.1, we write the PDE as

Lu = −λux − (ρ2 − ρ2
0)u+ u2,

where L is the linearized operator (6.4). From this we do not immediately see a length scale unless
we assume certain parameter dependence on ρ2−ρ2

0. The ux term imposes a compatibility condition
(4.9), which, in the FKPP case, reads fA(0, 0, λ) ∼ |ρ2− ρ2

0| ∼ λ2. The quadratic term in the PDE
suggests that m = 2 and fAA(0, 0, λ) ∼ 1. Plugging this in (4.8) we see that ε2n ∼ ε2p ∼ εq, and
hence one can pick n = p = 1 and q = 2. This choice corresponds to the reparametrization

λ = λ1ε, ρ2 = ρ2
0 + ρ2ε

2,

and the index set J given by

J :=
{

(i, j, k) ∈ N3 : 2i+ 3j + k ≤ 4, i+ j + k ≥ 2, i+ j ≥ 1
}
. (6.5)

Expressed in the new parameter regime, the PDE becomes

Lu = −ρ2ε
2u− λ1εu+ u2. (6.6)

Seek solutions u ∈Xµ with the Faye–Scheel ansatz

u(x, y) = (A+Bx)ϕ0(y) +
∑
J

Ψijk(x, y)AiBjεk +R(x, y), (6.7)

where the error term

R = O
(

(|A|1/2 + |B|1/3 + |ε|)5
)

in Xµ.

Note that, in contrast to the previous section, the truncation condition anticipates an eventual
scaling where A ∼ ε2, B ∼ ε3. As in the previous section, computing the coefficients Ψijk can be
performed according to the general strategy. Substituting (6.7) to (6.6) it follows that

L

(∑
J

ΨijkA
iBjεk

)
= −ρ2ϕ0Aε

2 − λ1ϕ0Bε− ρ2xϕ0Bε
2 − ρ2

∑
J

ΨijkA
iBjεk+2

− λ1

∑
J
∂xΨijkA

iBjεk+1 +

(
(A+Bx)ϕ0 +

∑
J

ΨijkA
iBjεk

)2

,

which results in four equations

LΨ101 = 0, LΨ011 = −λ1ϕ0, LΨ102 = −ρ2ϕ0 − λ1∂xΨ101, LΨ200 = ϕ2
0

augmented with QΨijk = 0. The unique solvability of each of these problems is ensured by
Lemma 2.3. In particular, one can verify immediately that Ψ101 = 0 and hence LΨ102 = −ρ2ϕ0.
Therefore

Ψ011 = −λ1

2
x2 cos(ρ0y), Ψ102 = −ρ2

2
x2 cos(ρ0y).

Solving for Ψ200 is much more complicated. Differentiating the equations for Ψ200 with respect to
x, we know that L(∂xΨ200) = 0. Hence ∂xΨ200 = (c1 + c2x)ϕ0(y) for some constants c1 and c2.
Antidifferentiating, this means that

Ψ200 =

(
c1x+

1

2
c2x

2

)
cos(ρ0y) + g(y),

for some function g. The constants c1, c2 and the function g will be determined from the projection
condition and the PDE. Combining these, we obtain{

g′′ + ρ2
0g + c2 cos(ρ0y) = cos2(ρ0y) in (0, 1)

g′(0) = g′(1) + βg(1) = 0, g(0) = c1 = 0.
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This is an elementary ODE that can be solved explicitly, resulting in a somewhat complicated
expression for Ψ200. However in the reduced ODE we only need to find

d2

dx2

∣∣∣
x=0

Ψ200(x, 0) = c2 =
4 sin(ρ0)(3− sin2(ρ0))

3(sin(2ρ0) + 2ρ0)
.

Finally, this gives the expansion

f(A,B, ε) = −ρ2Aε
2 − λ1Bε+

4 sin(ρ0)(3− sin2(ρ0))

3(sin(2ρ0) + 2ρ0)
A2 + r(A,B, ε).

6.2. Reduced ODE and truncation. Having the coefficients Ψijk in hand, we may then apply
Theorem 1.1(i) to calculate the reduced ODE. Letting v := u( · , 0), we see it is given by (1.9) with

f(A,B, ε) =
∑
J

d2

dx2

∣∣∣
x=0

Ψijk(x, 0)AiBjεk + r(A,B, ε),

where the remainder term r ∈ CM+1 satisfies

r(A,B, ε) = O
(
|A|(|A|1/2 + |B|1/3 + |ε|)3 + |B|(|A|1/2 + |B|1/3 + |ε|)2

)
in some neighborhood of (0, 0, 0). Inserting the computed values of Ψijk, reveals that

v′′ = σv2 − ε2v − λ1εv
′ + r(v, v′, ε), (6.8)

where

σ :=
4

3

sin(ρ0)(3− sin2(ρ0))

2ρ0 + sin(2ρ0)
> 0, (6.9)

because ρ0 ∈ (0, π/2). Rearranging (6.8) slightly and truncating the remainder term, this becomes
the following one-dimensional Fisher–KPP equation:

v0
xx + λ1εv

0
x + σv0

(
ε2

σ
− v0

)
= 0.

6.3. Proof of existence. In contrast to the elasticity problem in Section 5, the 2D Fisher–KPP
system (6.2) lacks reversibility and reflection symmetry. In their place, we make use of the robust-
ness of the heteroclinic solutions to the 1D Fisher–KPP equation.

Proof of Theorem 6.1. Working in the scaled variables,

x = ε−1X, v0(x) = ε2V 0(X),

we see that V 0 solves

−λ1V
0
X = V 0

XX + σV 0

(
1

σ
− V 0

)
.

In the usual way, this can be converted to a first-order planar system
V 0
X = W 0

W 0
X = −σV 0

(
1

σ
− V 0

)
− λ1W

0,
(6.10)

which has rest points (V 0
+,W

0
+) := (0, 0) and (V 0

−,W
0
−) := (1/σ, 0). A quick calculation shows that,

for any λ1 > 2, (V 0
+,W

0
+) is a sink while (V 0

−,W
0
−) is a saddle. Following the classical argument of

Kolmogorov, Petrovsky, and Piskunov [31], one can show that there exists a triangular region

T 0 =
{

(V,W ) ∈ R2 : W < 0, W + c1V > 0, W − c2(V − V 0
−) > 0

}
,

for some explicit c1, c2 > 0, so that (i) the vector field for (6.10) enters T 0 transversally along each
of the boundary components, and (ii) the unstable manifold at (V 0

−,W
0
−) enters T 0 non-tangentially
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V

W

(V ε
+,W

ε
+)

(V ε
−,W

ε
−)

T ε

Figure 3. The positively invariant triangular region T ε

there. As a result, T 0 is positively invariant, and one can conclude that there exists a heteroclinic
orbit (V 0,W 0) contained in T 0 and satisfying V 0(X)→ V 0

± as X → ±∞.
Finally, we must show that this orbit persists for the full reduced equation (6.8). Applying the

same rescaling x 7→ X and v 7→ V gives the planar system
VX = W

WX = −σV
(

1

σ
− V

)
− λ1W +R(V,W, ε),

(6.11)

where the remainder term R(V,W, ε) = O(ε(|V |+ |W |)). At ε = 0, this is precisely the truncated
problem (6.10). Moreover, for each ε ≥ 0 sufficiently small, (6.11) has two rest points, (V ε

±,W
ε
±),

with (V ε
+,W

ε
+) = (0, 0), and (V ε

−,W
ε
−) = (V 0

−+O(ε), 0). It follows from the robustness of transversal
intersections that there is a positively invariant triangular region T ε for (6.11) that limits to T 0 as
ε→ 0; see Figure 3. By the same reasoning as above, we have that T ε contains a heteroclinic orbit
(V ε,W ε) satisfying V ε → V ε

± as X → ±∞. The theorem now follows by undoing the scaling. �

7. Rotational bores in a channel

Our final application, and our initial motivation for writing this paper, pertains to water waves.
Like the anti-plane shear problem in Section 5, it has a reflection symmetry in x, and so we expect to
have to expand f(A,B, ε) to third order in A to obtain fronts. Unlike the anti-plane shear problem,
however, there is no additional reflection symmetry in u. Thus the existence and persistence of
heteroclinic orbits can no longer be described in terms of a transverse intersection in the plane, and
we must instead introduce a second physical parameter. To solve for this auxiliary parameter in
terms of ε, we will make heavy use of a conserved quantity called the flow force [5]. In particular,
we will investigate the so-called conjugate flow equations which give a necessary condition for the
existence of a front connecting two x-independent solutions [4]. This analysis is quite involved,
so much so, in fact, that the expressions for the Taylor coefficients of the coordinate map Ψ in
Theorems 1.1 and 1.6 are too large to reproduce here. For this reason we will also highlight several
important special cases where the formulas simplify drastically.

7.1. Statement of the problem. Working in dimensionless variables, we consider an infinite
channel bounded by horizontal walls at Y = 0 and Y = 1. Inside the channel there is a lower layer
of fluid with density normalized to 1, and an upper layer of lighter fluid with density 0 < ρ ≤ 1.
There is a sharp interface between the two layers at the height Y = h+ η(x) where h ∈ (0, 1) is a
reference height to be chosen later. See Figure 4 for an illustration.

This physical setting is sometimes called channel flow. It is widely used as a model in geophysics,
for example, where the dynamics in the upper atmosphere are not expected to have much relevance
for the motion of the interface. It is interesting to note, however, that if we instead allow the
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upstream downstream

1

h
h+

h+ η(x)

c

fluid 2

fluid 1

Figure 4. The class of bores under consideration. There are superposed fluid
layers bounded by rigid plates at Y = 0 and Y = 1. The upper layer has constant
density ρ and constant vorticity ω, while the bottom layer has unit density and zero
vorticity. In the “upstream limit” x → −∞, the lower layer has thickness h, while
in the downstream limit this thickness is h+. At intermediate values of x, the layers
are separated by a sharp interface a height Y = h + η(x). In the moving frame,
the upstream velocity in the lower layer is −c. Finally, the upstream velocity is
continuous across the interface, but the downstream velocity may not be.

upper boundary to be free, then monotone bores of the type we construct here do not exist; see [7,
Corollary 4.12]. A survey of the literature on both channel flow and the two free boundary case
can be found in [21, Section 7], for example.

Suppose that there is no surface tension along the interface and hence that the pressure is
continuous across it. For water, it is reasonable to assume that the particle velocity field is incom-
pressible (that is, divergence free) in each fluid region. Thus there are so-called stream functions,
ψ1 in the lower fluid and ψ2 in the upper fluid, so that the velocity field in the i-th fluid is
∇⊥ψi := (−∂Y ψi, ∂xψi). Lastly, we suppose that the curl of the velocity field is some constant
ω ∈ R in the upper layer, but 0 in the lower layer. Standard arguments involving Bernoulli’s law
then lead to the following free boundary problem for the functions ψ1, ψ2, η:

−∆x,Y ψ1 = 0 for 0 < Y < h+ η, (7.1a)

−∆x,Y ψ2 = ω for h+ η < Y < 1, (7.1b)

ψ2 = −m2 on Y = 1, (7.1c)

ψ1 = ψ2 = 0 on Y = h+ η, (7.1d)

ψ1 = m1 on Y = 0, (7.1e)

1
2ρ|∇x,Y ψ2|2 − 1

2 |∇x,Y ψ1|2 + (ρ− 1)η = Q on Y = h+ η. (7.1f)

The boundary conditions (7.1c)–(7.1d) are called kinematic boundary conditions, while (7.1f) is
called the dynamic boundary condition. The constants m1,m2 are the mass fluxes in each layer,
while Q is a Bernoulli constant. We will always consider classical solutions where the functions
ψ1, ψ2, η are all C2+α

b on (the closures of) their respective domains.
While our methods can also be used to construct solitary wave solutions of (7.1), we will focus

on the much more difficult case of fronts, sometimes called bores in the literature. That is, we will
seek solutions where ψ1, ψ2, η have well-defined limits as x → −∞ (“upstream”) and as x → +∞
(“downstream”) that do not coincide. For simplicity, and because this is the case of most interest
in applications, we assume that the velocity in the upstream state is continuous. The upstream
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limit is then uniquely determined by requiring

ψ1Y (x, 0), ψ2Y (x, 0)→ −c, η(x)→ 0 as x→ −∞. (7.1g)

Here the Froude number c is a dimensionless wavespeed as measured in a reference frame where
the fluid particles on the bed are stationary in the upstream limit; this is in keeping with typical
conventions for periodic and solitary waves without vorticity. The second requirement that η → 0
as x→ −∞ means that h is the upstream thickness of the lower fluid region.

Throughout this section we will view ρ, ω as fixed and treat c, h as parameters. This is in part
motivated by the fact that ρ and ω are both constants of motion for the time-dependent problem.

7.2. Main results. Our main existence result is informally described in Theorem 7.1 below. A
crucial part of the proof is an understanding of the so-called conjugate flow equations which con-
strain the upstream and downstream depths h, h+ of the lower layer and the Froude number c. To
streamline the presentation, we defer a detailed discussion of these equations to Section 7.3 below.
There, we also prove Lemma 7.7, which gives sufficient conditions for the conjugate flow equations
to be locally solvable for c and h+ in terms of h.

Theorem 7.1 (Existence of rotational bores). Consider the water wave problem (7.1) with fixed
density ratio 0 < ρ ≤ 1 and (constant) vorticity ω, and suppose that the height h0 ∈ (0, 1) and
Froude number c0 satisfy the hypotheses (7.12) of Lemma 7.7 as well as (7.19) below. Then, for
0 < |ε| � 1, there is a family of bore-type solutions of (7.1) with upstream depths hε = h0 + ε,
Froude numbers cε = c0 +O(ε), and

ηε(x) = a1ε
1 + tanh(κ1|ε|x)

2
+O(ε2),

ψε1(x, Y ) = −cε(Y − hε) + cεηε(x)(1− Y ) +O(ε2),

ψε2(x, Y ) = −cε(Y − hε)− 1
2ω(Y − hε)2 + cεηε(x)(1 + Y ) +O(ε2),

(7.2)

in C2+α
b of their respective domains, for some constants a1 6= 0 and κ1 > 0.

Remark 7.2. The characterization of ηε as a solution of a second-order ODE actually furnishes
much more detailed information. In particular, we can check that ηε inherits the strict monotonicity
properties of its leading order approximation. Combining this with a maximum principle argument
yields monotonicity of the full solutions; see Theorem 7.8.

The various assumptions in Theorem 7.1, as well as the explicit formulas for the parameters
a1, κ1 in (7.2), can all be stated explicitly in terms of h0, c0, ρ, ω. Sadly, the formulas are quite
lengthy, and so it is perhaps more instructive to look at special cases. The most classical and
well-studied of these is the irrotational regime where ω = 0.

Corollary 7.3 (Irrotational bores). The hypotheses of Theorem 7.1 are satisfied if we set

ω = 0, h0 =
1

1 +
√
ρ
, c0 = ±

√
1− ρ

1 +
√
ρ
.

The relevant family of conjugate flows (hε, hε+, c
ε) and constants a1, κ1 in (7.2) are given by

cε = c0, hε+ = h0, a1 = −1, κ2
1 =

3(
√
ρ+ 1)4

4
√
ρ(ρ−√ρ+ 1)

.

This is the case treated by Mielke [41]. Notice that, in particular, the solutions (hε, hε+, c
ε)

have exact formulas and that hε+ and cε are actually constants [34]. This simplifies the analysis
enourmously.
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When ω 6= 0, interesting new phenomena can occur. For example, the upper fluid may contain
critical layers, curves along which ψ2Y = 0. In the setting of Theorem 7.1, there will always be
such a critical layer provided c0, h0, and ω satisfy the inequality

c0(c0 + (1− h0)ω) < 0. (7.3)

The upstream height of the critical layer is then hε − cε/ω. Perhaps the simplest situation where
this arises is when ρ = 1 so that the fluid density is homogeneous.

Corollary 7.4 (Homogeneous-density bores). The hypotheses of Theorem 7.1 are satisfied if we
set

ρ = 1, h0 =
2

3
c0 = −2ω

9
6= 0.

The relevant family of conjugate flows (hε, hε+, c
ε) and constants a1, κ1 in (7.2) are given by

cε = c0 +
ω

3
ε, hε+ = h0 − ε, a1 = −2 κ2

1 =
243

16
.

In particular, there is an upstream critical layer at height 8/9 + 2ε/3.

As with the irrotational case, we can solve the conjugate flow equations explicitly, this time with
hε+, c

ε both linear functions of ε.
For general but fixed ρ < 1 and ω 6= 0, even the necessary condition (7.12a) for h0, c0 cannot be

solved explicitly, let alone the full conjugate flow equations (7.11) for h, h+, c, and a comprehensive
analysis of these systems of polynomial equations is beyond the scope of the present paper. On
the other hand, for fixed h0, c0, one can solve (7.12a) for ρ and ω. The resulting formulas are
long and not particularly informative, and one must of course additionally check that ρ lies in
the physical range (0, 1]. Provided the remaining nondegeneracy hypothesis (7.12b) in Lemma 7.7
holds, one then obtains the existence of a family of conjugate flows which can be expanded in the
small parameter ε. We content ourselves with two concrete examples obtained in this way, whose
parameter values were carefully chosen so as to avoid a profusion of nested radicals.

Example 7.5 (An example without critical layers). The hypotheses of Theorem 7.1 are satisfied if
we set

ρ =
25

52
, ω = − 9

10
, h0 =

2

3
, c0 =

1

2
.

The relevant family of conjugate flows (hε, hε+, c
ε) and constants a1, κ1 in (7.2) are given by

cε = c0 −
6

29
ε+O(ε2), hε+ = h0 −

179

725
ε+O(ε2), a1 = −904

725
, κ2

1 =

(
226

145

)2 243

43
.

None of these solutions have critical layers.

Example 7.6 (An example with critical layers). The hypotheses of Theorem 7.1 are satisfied if we
set

ρ =
1

28
, ω = −18, h0 =

2

3
, c0 = 1.

The relevant family of conjugate flows (hε, hε+, c
ε) and constants a1, κ1 in (7.2) are given by

cε = c0 +
3

4
ε+O(ε2), hε+ = h0 +

11

10
ε+O(ε2), a1 =

1

10
, κ2

1 =
243

3040
.

In particular, there is a critical layer upstream at height 13/18 + (25/24)ε+O(ε2).

7.3. Conjugate flows. This subsection is devoted to the statement and proof of Lemma 7.7 on
the existence of conjugate flows. Interesting in its own right, it is also one of main tools in proving
Theorem 7.1.
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Upstream limit and downstream limits. Under mild regularity assumptions, the existence of the
downstream and upstream limits

ψ±1 (Y ) := lim
x→±∞

ψ1(x, Y ), ψ±2 (Y ) := lim
x→±∞

ψ2(x, Y ), η± := lim
x→±∞

η(x)

forces (ψ±1 , ψ
±
2 , η

±) to each be x-independent solutions of (7.1). In particular, ψ±1 are linear in Y
while ψ±2 are quadratic. We will generally eliminate η± in favor of the upstream thickness h and
downstream thickness h+ := h+ η+ of the lower fluid.

Upstream, we have the additional restrictions (7.1g), as well as the continuity assumption
ψ−1Y (h) = ψ−2Y (h) at the interface. Thus the upstream state is completely determined by the
parameters c, h, ω:

ψ−1 = −c(Y − h), ψ−2 = −c(Y − h)− 1
2ω(Y − h)2. (7.4)

Sending x→ −∞ in (7.1) we recover similarly explicit formulas for the fluxes m1,m2 and Bernoulli
constant Q:

m1 = ch, m2 = c(1− h) + 1
2ω(1− h)2, Q = (ρ− 1)1

2c
2. (7.5)

Now we turn to the downstream limit. In general, we cannot require it to also have a continuous
velocity field, and hence the two constants

c+
1 := ψ+

1y(h+), c+2 := ψ+
2y(h+)

may differ. In terms of c+
1 and c+

2 , the analogues of (7.4) and (7.5) are

ψ+
1 = −c+

1 (Y − h+), ψ+
2 = −c+

2 (Y − h+)− 1
2ω(Y − h+)2, m1 = c+

1 h,

m2 = c+
2 (1− h+) + 1

2ω(1− h+)2, Q = 1
2

(
ρ(c+

2 )2 − (c+
1 )2
)

+ (ρ− 1)(h+ − h).
(7.6)

Eliminating m1 and m2 between (7.5) and (7.4), we can easily solve for c+
1 and c+

2 in terms of
the other parameters. Further eliminating Q we obtain a single equation relating the remaining
parameters h, h+, c, ρ, ω. Eventually, this equation simplifies to

h+ − h
(1− h+)2h2

+

p(h, h+, c) = 0, (7.7)

where p = p(h, h+, c) is a polynomial its arguments (as well as ρ, ω),

p := ω2h2
+(h+ − h)(2− h+ − h)2ρ+ 4h2

+(2h2
+ − c2h+ − 4h+ − c2h+ 2c2 + 2)ρ

+ 4cω(1− h)h2
+(2− h+ − h)ρ− 4(1− h+)2(2h2

+ − c2h+ − c2h).
(7.8)

Since we are only interested in configurations where h+ 6= h and neither h nor h+ is 0 or 1, (7.7)
reduces to the polynomial equation p(h, h+, c) = 0.

Flow force. To obtain a second constraint on the parameters h, h+, c, ω, ρ, we introduce a quantity
called the flow force, which is related to the conservation of momentum [5]. In our variables, it
takes the form

S(x) :=

∫ h+η

0

(
1

2
(ψ2

1Y − ψ2
1X)− Y +

1

2
c2 + h

)
dY

+ ρ

∫ 1

h+η

(
1

2
(ψ2

2Y − ψ2
2X)− Y − ωψ2 +

1

2
c2 + h

)
dY.

(7.9)

For solutions of (7.1), one can check that this quantity is independent of x. In particular, sending
x→ ±∞ and simplifying we eventually obtain the polynomial equation

0 = q̃(h, h+, c) := ω2h+(h+ − h)(h+ + 3h− 4)ρ+ 12h+(h+ − c2 − 1)ρ

+ 12cω(h− 1)h+ρ− 12(h+ − 1)(h+ − c2).
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Here as above we have used our assumptions that h+ 6= h and h, h+ 6= 0, 1 to drop some nonzero
factors.

Constructing conjugate flows. The equations p = q̃ = 0 are called the conjugate flow equations for
our problem [4]. Because of a degeneracy in this system when h+ = h, it will be easier to work
with an equivalent system where the polynomial q̃ is replaced by

q(h, h+, c) :=
2(h− 1)h

h+ − h

(
q̃(h, h+, c)−

q̃(h, h, c)

p(h, h, c)
p(h, h+, c)

)
, (7.10)

which one can verify is also a polynomial in its arguments (as well as ω, ρ). We denote this
“desingularized” set of conjugate flow equations by

P(h, h+, c) :=
(
p(h, h+, c), q(h, h+, c)

)
= 0, (7.11)

where p and q are defined in (7.8) and (7.10) above.
Using the implicit function theorem, it is now straightforward to give conditions guaranteeing

the existence of a one-parameter families of conjugate flows, that is, solutions (h, h+, c) of (7.11).
We record one such result in the following lemma.

Lemma 7.7 (Existence of conjugate flows). For a fixed density ρ and vorticity ω, suppose that the
depth h0 ∈ (0, 1) and Froude number c0 6= 0 satisfy

P(h0, h0, c0) = 0 (7.12a)

as well as the nondegeneracy conditions

detP(c,h+)(h0, h0, c0) 6= 0, det
(
Ph + Ph+ , Pc

)
(h0, h0, c0) 6= 0. (7.12b)

Then there exists a family of solutions {(hε, hε+, cε)} to the conjugate flow equations (7.11) for
|ε| < ε0 � 1 that depends analytically on ε and satisfies

hε = h0 + ε,

hε+ = h0 + h+,1 ε+ h+,2 ε
2 +O(ε3),

cε = c0 + c1ε+ c2ε
2 +O(ε3).

Moreover, h+,1 6= 1 so that, perhaps after shrinking ε0, hε 6= hε+ for ε 6= 0. Thus these conjugate
flows are nontrivial in that the upstream and downstream states are distinct.

7.4. Reformulating the problem. In this subsection we reformulate (7.1) as the elliptic trans-
mission problem (7.16) in a fixed domain. From now on we assume that the hypotheses of Lemma 7.7
are satisfied so that hε, hε+, c

ε are all defined.

Flattening the interface. Our problem (7.1) is a free boundary problem in that the interface Y =
hε + η between the two regions is itself an unknown. As usual, it is helpful to switch to new
coordinates where this boundary is fixed. In the absence of critical layers, one can use an elegant
partial hodograph transformation in which ψ1, ψ2 are thought of as independent variables and Y
the dependent variable [13]. We are interested in bores with critical layers, and therefore must allow
for ψ2 to be a multivalued function of Y . This leads us to instead make a simple piecewise-linear
change of coordinates in the vertical variable Y :

y :=


−1 +

1

hε + η
Y for 0 < Y < hε + η

1− 1

1− hε − η
+

1

1− hε − η
Y for hε + η < Y < 1.

(7.13)
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Thus the lower layer 0 < Y < hε + η is mapped onto the strip −1 < y < 0 while the upper layer
hε + η < Y < 1 is mapped onto the strip 0 < y < 1. Using subscripts Y1, Y2, y1, y2 to denote the
vertical variables in the two layers, we have the chain rules

∂x1 = ∂x −
1 + y

hε + η
ηx∂y1 , ∂x2 = ∂x −

1− y
1− hε − η

ηx∂y2 ,

∂Y1 =
1

hε + η
∂y1 , ∂Y2 =

1

1− hε + η
∂y2 ,

(7.14)

where the partials on the left hand side are with respect to the original (x, Y ) variables and those
on the right are with respect to the transformed (x, y) variables.

Subtracting off the trivial solution. The upstream flow itself obviously solves (7.1), and so we work
with normalized differences u1, u2 between our stream functions and these “trivial” ones:

u1(x, y) :=
ψ1(x, Y )− ψ−1 (Y )

cε
, u2(x, y) :=

ψ2(x, Y )− ψ−2 (Y )

cε
. (7.15)

Note that the ψ−i terms on the right hand side of (7.15) are functions of the original variable Y and
not the transformed variable y. It is straightforward to obtain the corresponding functions of y by
first solving (7.13) for Y and then plugging into the explicit formulas (7.4). Neither this choice nor
the normalizing factor of cε are essential, but both are convenient in later calculations.

Final form of the equations. We now plug (7.15) into (7.1) and use (7.14) to obtain a system of
the form (3.5) for u := (u1, u2) alone. We use one of the kinematic boundary conditions, (7.1d), in
order to write η as the trace of u1,

η(x) = u1(x, 0),

thus eliminating it from the problem. Abusing notation slightly, we will nevertheless continue to
write η instead of u1|Γ whenever convenient. The transformed problem is then

∇ · A1(y, u1,∇u1, u1|Γ, u1x|Γ, ε) = 0 in Ω1 := R× (−1, 0), (7.16a)

∇ · A2(y, u2,∇u2, u1|Γ, u1x|Γ, ε) = 0 in Ω2 := R× (0, 1), (7.16b)

G(u1, u2,∇u1,∇u2, ε) = 0 on Γ := R× {0}, (7.16c)

K(u1, u2, ε) = 0 on Γ, (7.16d)

u1 = 0 on R× {−1}, (7.16e)

u2 = 0 on R× {1}, (7.16f)

where the functions A,G,K are given by

A1(y, u1,∇u1, u1|Γ, u1x|Γ, ε) :=

(
(hε + η)u1x − (y + 1)ηxu1y

(hε + η)−1((1 + y)2η2
x + 1)u1y − ηx(y + 1)u1x

)

A2(y, u2,∇u2, u1|Γ, u1x|Γ, ε) :=

(
(1− hε − η)u2x − (1− y)ηxu2y

(1− hε − η)−1((1 + y)2η2
x + 1)u2y − (1− y)ηxu2x

)
K(y, u1, u2, ε) := u2 − u1 −

ω

2cε
u2

1

G(u1, u2,∇u1,∇u2, ε) :=
ρ

2

(
u2

2x −
2ηxu2xu2y

1− hε − η
+

(1 + η2
x)u2

2y

(1− hε − η)2
− 2(cε + ωη)u2y

1− hε − η

)
− 1

2

(
u2

1x −
2ηxu1xu1y

hε + η
+

(1 + η2
x)u2

1y

(hε + η)2
− 2cεu1y

hε + η

)
+
cεωρ+ ρ− 1

(cε)2
η +

ω2ρ

2(cε)2
η2.

(7.17)
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We write (7.16) as F (u1, u2, ε) = 0 where F : X ×R→ Y with X ,Y defined in (3.7) and (3.8).

7.5. Center manifold reduction. The linearized operator at (u, ε) = (0, 0) is

Lu =


∇ ·
(
h0u1x, h

−1
0 u1y

)
∇ ·
(

(1− h0)u2x, (1− h0)−1u2y

)
h−1

0 u1y − ρ(1− h0)−1u2y + c−2
0 (c0ωρ+ ρ− 1)u1

u2 − u1

 , L : Xµ → Yµ

which has the desired form (3.6). Moreover, straightforward calculations using the assumption
p(h0, h0, c0) = 0 in Lemma 7.7 show that the spectral hypothesis (1.7) is satisfied, and that

kerL = {u(x, y) = (A+Bx)ϕ0(y) : A,B ∈ R},

where

ϕ0(y) :=

{
1 + y −1 ≤ y ≤ 0

1− y 0 ≤ y ≤ 1.

For the projection Q we choose

Qu := (v(0) + v′(0)x)ϕ0(y), where v(x) := u1(x, 0) = η(x).

Applying Corollary 3.1, we obtain that all small solutions (u, ε) ∈Xb×R of (7.16) are of the form

u(x, y) = v(0)ϕ0 + v′(0)xϕ0 + Ψ(v(0), v′(0), ε)(x, y)

for a CM coordinate map Ψ: R3 →Xµ. In this case the function v satisfies the reduced ODE

v′′ = f(v, v′, ε), where f(A,B, ε) :=
d2

dx2

∣∣∣
x=0

Ψ(A,B, ε)(x, 0). (7.18)

Remarkably, this is an ODE for the free surface elevation η alone. From the analysis in Section 3.1
— specifically (3.2) and (3.3) — we see that the reversibility symmetry u(x, y) 7→ u(−x, y) of (7.16)
implies that Ψ(A,−B, ε)(x, y) = Ψ(A,B, ε)(−x, y) and hence that f is even in B.

Corollary 3.1 moreover allows to expand Ψ (and thereby f) as in Theorem 1.6, leading to the
ansatz

u(x, y) = (A+Bx)ϕ0(y) +
∑
J

Ψijk(x, y)AiBjεk +R.

Anticipating a scaling where A ∼ ε and B ∼ ε2, we work with the index set

J :=
{

(i, j, k) ∈ N3 : i+ 2j + k ≤ 3, i+ j + k ≥ 2, i+ j ≥ 1
}
,

so that R is O
(
(|A|+ |B|1/2 + |ε|)4

)
in Xµ.

In principle, it is now straightforward to expand (7.16) and find the relevant Ψijk by collecting
like terms and solving a sequence of linear equations of the form (4.4). In practice, however, these
calculations are extremely tedious, partly due to the unwieldy form of the water wave problem (7.17)
but more seriously because of the lengthy expressions for the coefficients c1, c2 in the expansion of cε

in Lemma 7.7. Lastly, in order to check if complicated rational functions of h0, c0 are in fact zero, we
must appeal to the highly nonlinear system of polynomial conjugate-flow equations P(h0, h0, c0) =
0. We accomplished this latter task by transforming P into a Gröbner basis and performing
reductions using a computer algebra system. In certain situations, for instance the irrotational
regime treated in Corollary 7.3 and the homogeneous-density case considered in Corollary 7.4, the
conjugate flow equations have simple exact solutions, and so the analysis is substantially easier.
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7.6. Reduced ODE and truncation. In the general case, we eventually find that f(A,B, ε) has
the form

f(A,B, ε) =
∑
J

d2

dx2

∣∣∣
x=0

Ψijk(x, 0)AiBjεk + r(A,B, ε)

= f102ε
2A+ f201εA

2 + f300A
3 + r(A,B, ε)

where the error term r ∈ CM and

r(A,B, ε) = O
(
|A|(|A|+ |B|1/2 + |ε|)3 + |B|(|A|+ |B|1/2 + |ε|)2

)
.

The coefficients are given by

f300 =
3

2

(1− ρ)h3
0 + c2

0(4− 5h0)

c2
0h

3
0(1− h0)2(ρ+ (1− ρ)h0)

,

f201 =
9

2

(
c2

0

(
1− h0 − 2ρ+ h3

0(1− ρ)2 + h2
0(4ρ− 1)

)
− (1− h0)2(3h2

0 − 3h0 + 2)(1− ρ)
)

·
(
c0h0(1− h0)2(ρ+ (1− ρ)h0)

(
c0(c2

0h
2
0 + (1− h0)(c2

0h0 + 2h0 − 3c2
0))

− ω(1− h0)2h0(h0 − c2
0)
))−1

,

f102 =
2f2

201

9f300
.

Using the assumptions (7.12) of Lemma 7.7, one can show that none of the above denominators
vanish, and that f300, f201, f102 are all nonzero. We additionally assume that f300 > 0, which is
equivalent to requiring that

h3
0(1− ρ) + 4c2

0(1− h0) > c2
0h0. (7.19)

The truncated version of (7.18) is then

v0
xx = f102ε

2v0 + f201ε(v
0)2 + f300(v0)3, (7.20)

which has the explicit solution

v0(x) = a1ε
1 + tanh(κ1εx)

2
, (7.21)

where

a1 = − f201

3f300
, κ2

1 =
f2

201

18f300
.

We note that (7.20) is the extended Korteweg–de Vries equation, more widely known as the Gardner
equation, specialized to traveling waves. This is a common model for long internal waves [23].

7.7. Flow force on the center manifold. Arguing as in Section 5, we can show that many
features of the phase portrait of the truncated ODE (7.20) persist in the full equation (7.18).
In particular, there are three equilibria: saddles at 0 and a1ε + O(ε2) and a center in between.
Unfortunately, this is not enough information for the persistence of the heteroclinic orbit connecting
the two saddles. For this we take advantage of the flow force S defined in (7.9).

Performing the various changes of variable, we can think of the flow force at a fixed x as a
functional of (u, ε): S = S(u, ε;x). Subtracting off its (constant) value at the trivial solution u = 0
and setting x = 0, we consider the difference

S̃(u, ε) = S(u, ε; 0)− S(0, ε; 0).
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Since S̃ only involves the values of u and ∇u at x = 0, it is a smooth function both Xb × R → R
and Xµ × R→ R. We record the useful formula

S̃u(0, ε)u̇ = ρ(cε)2(u̇2 − u̇1)(0, 0) (7.22)

for its Fréchet derivative at u = 0.
When (u, ε) corresponds to a solution on the center manifold, we can write

S̃(u, ε) = s(v(0), v′(0), ε), where s(A,B, ε) := S̃
(
(A+Bx)ϕ0 + Ψ(A,B, ε), ε

)
.

Moreover, s(v, v′, ε) will be constant for solutions of (7.18). We now claim that s has the expansion

s(A,B, ε) = s400A
4 + s301A

3ε+ s202A
2ε2 + r̃(A,B, ε)

= 2s020

(
1

2
B2 − f300

4
A4 − f201

3
A3ε− f102

2
A2ε2

)
+ r̃(A,B, ε),

(7.23)

where

s020 = −1
6c

2
0(ρ+ (1− ρ)h0) < 0 (7.24)

and the CM error term r̃ satisfies

r̃(A,B, ε) = O
(
|A|(|A|+ |B|1/2 + |ε|)4 + |B|(|A|+ |B|1/2 + |ε|)3

)
.

In particular, up to the nonzero factor 2s020, the truncation of s is precisely the Hamiltonian for
the truncated ODE (7.20).

Using the reversibility symmetry, we check that s is even in B, and so the smoothness of s implies

sB(A,B, ε)

B
= 2s020 +O(|A|+ |B|+ ε), (7.25)

where s020 = 1
2sBB(0, 0, 0). Determining s020 in principle requires the coefficient Ψ020 in the

expansion of Ψ. When we actually go about calculating this coefficient and plugging it into (7.22),
however, we see that it actually does not contribute, and that (7.24) holds. It is then straightforward
to obtain (7.23) by combining s020 6= 0, (7.25), and the fact that s is a conserved quantity.

7.8. Proof of existence. Combining the previous subsection with Section 7.3, we are now in a
position to prove Theorem 7.1.

Proof of Theorem 7.1. Introducing the scaled variables

x = |ε|−1X, v(x) = εV (X), vx(x) = ε|ε|W (X), s(v, vx, ε) = 2ε4s020S(V,W, ε),

the reduced ODE (7.18) can be written as the planar system{
VX = W

WX = f102V + f201V
2 + f300V

3 +R(V,W, ε)

with conserved quantity

S(V,W, ε) =
1

2
W 2 − f102

2
V 2 − f201

3
V 3 − f300

4
V 4 + R̃(V,W, ε),

and where the error terms satisfy

R(V,W, ε) = O(|ε|(|V |+ |W |)), R̃(V,W, ε) = O(|ε|(|V |+ |W |)).

When ε = 0, we have the explicit heteroclinic solution V = a1(1 + tanh(κ1X))/2 connecting
(V,W ) = (0, 0) with (V,W ) = (a1, 0). This is the scaled version of v0 in (7.21). Both of these
equilibrium have same value, namely 0, of the conserved quantity S. For ε 6= 0, the equilibria at
(0, 0) remains fixed while the equilibrium at (a1, 0) persists but is perturbed. From Lemma 7.7
on conjugate flows, we in fact know that its exact location is (ε−1hε+ − 1, 0) and moreover that
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it continues to have S = 0. The persistence of the full heteroclinic orbit then follows from its
characterization as a nondegenerate level curve of the conserved quantity S. �

7.9. Critical layers and streamline pattern. Finally, in this section, we explore some qualita-
tive features of the waves constructed above. As we have seen, there are certain parameter regimes
for which a streamline in the unperturbed flow is a critical layer. For small bores, that streamline
will split either upstream or downstream, opening into a “half cat’s eye” with its pupil at infinity.

Theorem 7.8 (Streamlines). In the setting of Theorem 7.1, suppose that (7.3) holds so that there
is a critical layer, and suppose for concreteness that ω < 0 (so that c0 > 0) and a1ε < 0. Perhaps
shrinking ε further, the streamlines of the corresponding solution (ψε1, ψ

ε
2, η

ε) have the qualitative
features of Figure 1. Specifically,

(a) (Monotonicity) The interface is strictly monotone with ηεx < 0. Moreover, ψεx < 0 for
Y 6= 0, 1 so that the vertical velocity is positive.

(b) (Critical layer) There is a unique C1 curve Cε in the interior of the upper fluid where
ψε2Y = 0. Above this curve, ψε2Y > 0, and below it ψε2Y < 0. There are two streamlines,
one above Cε and one below, that both limit to Cε upstream. In the region they enclose (the
eye), every streamline is a horizontally unbounded curve that opens to the right and has a
unique turning point which is located on Cε. Outside the eye region, all streamlines extend
from upstream to downstream.

Remark 7.9. In (7.26) below we will see that the vertical extent of the eye is O(|ε|1/2). In particular,

for the specific parameter values from Example 7.6, we see that the width of the eye is
√

330|ε|/90+
O(ε), while the downstream width of the upper layer is 1/3 + O(ε). Changing the sign of ω
(and hence c0) changes the sign of the horizontal velocity throughout the fluid but preserves the
streamline pattern. Changing the sign of a1ε changes the signs of ηx and ψx, reflecting the streamline
pattern in Figure 1 but preserving the sign of the horizontal velocity.

Proof. We start by confirming monotonicity (a). From the proof of Theorem 7.1, our assumption
that a1ε < 0, and Remark 7.2, we know that v′ = ηεx < 0. The asymptotics (7.2) also give
ψε2Y < 0 along Y = hε + ηε. Differentiating the kinematic condition (7.1d), we see that this implies
ψε2x = −ηεxψε2Y < 0 there as well. But, ψε2x is harmonic and vanishes on the upper boundary {y = 1}
and at infinity. The maximum principle therefore implies that ψε2x < 0 in the interior of the upper
fluid. Similarly, we find that ψε1x < 0 in the interior of the lower fluid.

Now we turn to the more detailed claims in (b). Setting ε = 0, we have

ψ0
2(x, Y ) = ψ0

2(Y ) = −c0(Y − h0)− 1
2ω(Y − h0)2.

Differentiating, we find that ψ0
2Y = 0 at the unique height Y 0

c := h0 − c0/ω, which lies in (h0, 1)

by (7.3). Since ψ0
2Y Y = −ω > 0 and ψε2 = ψ0

2 + O(ε) in C2+α
b by (7.2), the existence of Cε now

follows from the implicit function theorem. Indeed, it is the graph of a single-valued function of x.
Moreover, ψε2Y Y > 0 for 0 < ε � 1 so that ψε2Y > 0 above Cε and ψε2Y < 0 below. From (7.2) we
also have ψε1Y < 0 in the lower fluid.

Examining the explicit formula for the upstream state (7.4), we see that for 0 < −εa1 � 1,
the critical upstream height perturbs to Y ε

c := hε − cε/ω with the stream function value (cε)2/2ω.
There are exactly two heights downstream at which the stream function takes on this value; the
corresponding streamlines bound the eye region. Looking at (7.6), we see that these heights are
given by

Y 0
c ±

1

ω

√
2c0(c0 + ω(1− h0))

1− h0
a1ε+O(|ε|). (7.26)

From the assumptions a1ε < 0 and (7.3), we have that the radicand is strictly positive and O(|ε|).
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Pick any point inside the eye region. Applying the implicit function theorem, we see that the
streamline through this point is globally parameterized as a graph {x = ξ(Y )} for some C1 function
ξ. Moreover, the discussion above shows that ξY = 0 only on Cε, and ξY Y > 0 there. The desired
qualitative features of the streamline pattern inside the eye now follow. On the other hand, outside
this region, ψεY 6= 0, so all streamlines must extend from x = −∞ to x = +∞. �
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Appendix A. Amick–Turner fixed point theory

In this section, we present a highly abbreviated version of Amick and Turner’s fixed point the-
orems in [2, 3]. Rather than state those results in full generality, we have specialized to the case
most relevant to our needs. An effort has also been made to simplify and standardize the notation.

Following the procedure in Section 2.2 leads us to study equations of the general form
U1 = ξ1 + F1(U1, U2, R;λ, β)|x0
U2 = ξ2 + F2(U1, U2, R;λ, β)|x0
R = F3(U1, U2, R;λ, β).

(A.1)

Here, (U1, U2, R) are the unknowns. Motivated by (2.13), where U2 arises as a scaled derivative of
U1, we work in the space

W := (U1, U2, R) ∈ Ck+α
µ (R)× Ck−1+α

µ (R)× Ck+α
µ (Ω) =: Xµ

for some µ ∈ [0, µ), integer k ≥ 1, and α ∈ (0, 1). As before, let X̊µ denote the corresponding
homogeneous space, and Xb := X0.

In (A.1), there are three types of parameters: ξ = (ξ1, ξ2) is “initial data” for U = (U1, U2);
λ ∈ R is the main parameter of bifurcation; and β ∈ (0, 1] is, essentially, a rescaling of time needed
to obtain a fixed point.

Next, we impose some conditions on the nonlinear mappings in (A.1). Assume that

F (W ;λ, β) = βLW +H(W ;λ, β), (A.2)

where L = (L1,L2, 0) is a zeroth order linear mapping in the sense that

L is linear and bounded Xµ → Xµ and Xb → X̊b (A.3)

with bounds uniform in µ on compact subsets of (0, µ).
Finally, suppose that each component of the nonlinear function H = (H1,H2,H3) takes the

general form

Hi(W ;λ, β) =
1

βp
ISg(DW ;λ, β). (A.4)

Here, p > 0 corresponds roughly to the homogeneity of the nonlinearity created by Sg. Intuitively,
we think of D as losing some number of derivatives, while I is smoothing. Between them is the
mapping Sg, a general (parameter dependent) superposition operator. Note that p, D, Sg, and I
can vary for each component, but we will suppress this dependence to simplify notation. Also, one
can assume more generally that Hi consists of a finite sum of terms of the form (A.4).
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To state things more precisely, we introduce two (lower regularity) spaces:

Yµ := Cj+αµ (R;R`)× Cj+αµ (Ω;Rm), Zµ := Cj+αµ (Ω),

for some integers j ≥ 0, `,m ≥ 1 (again, each of these will in principle vary in i). Now, assume
that

D is linear and bounded Xµ → Yµ and Xb → Yb (A.5)

with bounds uniform in µ on compact subsets of (0, µ). The superposition map Sg is defined by

Sg(Y ;λ, β)(x, y) := g(x, y, Y1(x), . . . , Y`(x), Y`+1(x, y), . . . , Y`+m(x, y);λ, β), (A.6)

for all Y ∈ Yµ and (x, y) ∈ Ω. Here, the function g is assumed to satisfy

g = g(x, y, w;λ, β) ∈ CM+3(Ω× R`+m × R× (0, 1];R),

g(x, y, 0; 0, β) = 0, gw(x, y, 0; 0, β) = 0, gλ(x, y, 0; 0, β) = 0.
(A.7)

One can show that (A.5)–(A.7) together ensure that

W 7→ Sg(DW ;λ, β) is bounded Xµ → Zµ and Xb → Zb.

Finally, I is supposed to be smoothing in that it satisfies

I is linear and bounded Zµ → Xi,µ and Zb → X̊i,b, (A.8)

with bounds uniform in µ on compact subsets of (0, µ).
As is always the case with center-manifold constructions, Amick and Turner do not treat (A.1)

directly but rather a truncated problem where each function g in (A.7) is replaced by

gr(x, y, w1, . . . , w`+m;λ, β) := g(x, y, ηr(w1), . . . , ηr(w`+m);λ, β) (A.9)

for an appropriate cutoff function ηr, which we will always take to be even. We write the resulting
fixed-point equations as 

U1 = ξ1 + F r1 (U1, U2, R;λ, β)|x0
U2 = ξ2 + F r2 (U1, U2, R;λ, β)|x0
R = F r3 (U1, U2, R;λ, β).

(A.10)

From [3, Lemma 4.1,Theorem 4.1] we know that, for each M ∈ N, we can choose β, r, µ > 0
sufficiently small so that F r hasM+1 Lipschitz-continuous derivatives acting from Xµ×R2×R×R→
X(k+M+3)µ.

Theorem A.1 (Fixed point). Consider the truncated fixed-point equation (A.10) under the struc-
tural assumptions (A.2)–(A.8) enumerated above. Then, for any integer M , there exists µ ∈ (0, µ),
r > 0, and β ∈ (0, 1] so that the unique solution to (A.10) is given by

W = (U1, U2, R) =: W (ξ1, ξ2, λ) ∈ Xµ

where the mapping W : R2 × R→ Xµ is CM+1.

Proof. This result is found by combining Theorem 3.1, Theorem 3.3, Remark 3.2, and Theorem 4.1
of [3]. �

The coordinate mapping W has flatness properties analogous to (1.8). A particular instance of
this which we will need is the following.

Lemma A.2. Under the assumptions of Theorem A.1, we have

|W3(ξ, λ)(0, 0)|+ |∂xW3(ξ, λ)(0, 0)| . |ξ|(|ξ|+ |λ|). (A.11)
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Proof. From the uniqueness of W we have W (0, λ) = 0 for all λ. Moreover, differentiating the third
equation in (A.10) with respect to ξ we discover

DξW3 = DWF
r
3 (W )DξW .

At (ξ, λ) = (0, 0), this becomes simply

DξW3(0, 0) = βL3DξW (0, 0),

where L is the operator in (A.3). But we have assumed that the third component L3 of this operator
vanishes, and so we simply obtain DξW3(0, 0) = 0. Thus ‖W3(ξ, λ)‖Xµ . |ξ|(|ξ| + |λ|), which in
particular implies (A.11). �

Appendix B. Iteration for anti-plane shear with a general body force

In this section, we revisit the center manifold reduction of the anti-plane shear problem where the
live body force b takes a more general form. Recall the problem (5.4) with the original parameter
λ. Plugging in the ansatz (5.3) for the strain energy we can write the problem as

∆u+ 2w1∇ ·
(
|∇u|2∇u

)
− b(u, λ) = 0. (B.1)

Taylor expanding b and using (5.5) and (5.6) we obtain

b(z, λ) = −z + b1λz +
1

2
bzλλ(0, 0)λ2z + b2z

3 +O
(
(|λ|+ |z|)4

)
,

where

b1 := bzλ(0, 0), b2 :=
1

6
bzzz(0, 0).

Because of the cubic term in (B.1), we would like to expand the reduced ODE (1.9) to third
order. Following the general strategy in Section 4.1, we can replace (B.1) by its truncation at order
K = 3,

Lu = b1λu+
1

2
buλλ(0, 0)λ2u+ b2u

3 − 2w1∇ ·
(
|∇u|2∇u

)
. (B.2)

From a similar argument as in Section 5.1 we find the appropriate reparametrization λ = λ2ε
2 and

the index set J given by (5.15) as before.
With the scaling settled, we make the ansatz (A + Bx)ϕ0 +

∑
J ΨijkA

iBjεk for u in (B.2),
obtaining

L

(∑
J

ΨijkA
iBjεk

)
= b1λ2Aε

2 cos y + b2A
3 cos3 y + 2w1A

3(sin3 y)y.

Grouping like terms yields

LΨ101 = LΨ200 = LΨ110 = LΨ011 = 0,

LΨ102 = b1λ2 cos y, LΨ201 = 0, LΨ300 = b2 cos3 y + 6w1 sin2(y) cos(y).

Applying Lemma 2.3 allows us to iteratively solve these equations, and ultimately we find that

Ψ101 = Ψ200 = 0, Ψ110 = Ψ200 = Ψ201 = 0,

Ψ102 =
1

2
b1λ2x

2 cos y, Ψ300 =
3b2 + 6w1

8
x2 cos y +

b2 − 6w1

32
(cos y − cos(3y)).

Thus,

f(A,B, ε) = b1λ2Aε
2 +

3(b2 + 2w1)

4
A3 + r(A,B, ε).
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9 (1992), pp. 497–572.
[7] R. M. Chen, S. Walsh, and M. H. Wheeler, Existence and qualitative theory for stratified solitary water
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