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ABSTRACT. In the present study several integrable equations with cubic nonlinearity are derived
as asymptotic models from the classical shallow water theory. The starting point in our derivation
is the Euler equation for an incompressible fluid with the simplest bottom and surface conditions.
The approximate equations are obtained by working under suitable scalings that allow for the
modeling of water waves of relatively large amplitude, truncating the asymptotic expansions of
the unknowns to appropriate order, and introducing a special Kodama transformation. The so
obtained equations exhibit cubic order nonlinearities and can be related to the following integrable
systems: the Novikov equation, the modified Camassa—Holm equation, and a Camassa—Holm type
equation with cubic nonlinearity. Analytically, the formation of singularities of the solution to some
of these quasi-linear model equations is also investigated, with an emphasis on the understanding
of the effect of the nonlocal higher order nonlinearities. In particular it is shown that one of the
models accommodates the phenomenon of curvature blow-up.
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1. INTRODUCTION

The theory of water waves embodies the Euler equations of fluid mechanics along with the
crucial behavior of boundaries. Due to the complexity and the difficulties arising in the theoretical
and numerical study for the full system, simpler model equations have been proposed as effective
approximations in various specific physical regimes.

The present paper is along the same line of study. In particular we consider the shallow-water
(or long-wave) approximation to the irrotational gravity water wave system. Such approximation
is usually carried out formally from the governing equations via double asymptotic expansions in
the following two fundamental dimensionless positive parameters (see, for example, [16]):
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the amplitude parameter ¢ := hi’ and the shallowness parameter p := )\—g, (1.1)
0

where a, hg and X are the typical amplitude of the wave, the depth of the water, and the wavelength,
respectively. The shallow-water /long-wave regime then corresponds to assuming p to be small:
u < 1. Further relating € with p then allows one to derive model equations in particular asymptotic
regimes.

Arguably, one of the most famous and simplest long-wave asymptotic models which accommo-
dates genuine nonlinear behavior is the Korteweg—de Vries (KdV) equation [35]. The nonlinear
effect in the KdV modeling is reflected in that the wave amplitude is assumed to be small but
finite: e = O(p). Such a scaling is later implemented to generate a family of asymptotically equiv-
alent equations, namely the BBM-type equations [1]. Both the KdV equation and the BBM class
posses smooth soliton solutions and global solutions for very general initial data, in particular all
physically relevant waves; see, for example, [12} [44].

However some other fundamental nonlinear phenomena, such as wave-breaking and surface sin-

gularities, are prevented from the KdV model, due to its strong dispersive effect that regularizes
1
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the progressively nonlinear steepening. This promotes the need to seek model equations that incor-
porate stronger nonlinear effects to better describe singular wave phenomena for larger amplitude
waves.

A natural approach is to consider regimes that bring higher-order nonlinear terms, characterized
by larger values of ¢, for instance, the so-called Camassa—Holm (CH) scaling for shallow water waves
of moderate amplitude [18|

p<l,  e=0(u2). (1.2)
With this scaling, a two-parameter family of approximation equations are derived [I8] including
the well-known Camassa-Holm (CH) equation

me +umg +2u,m =0, m=u— Uz,
and the Degasperis—Procesi (DP) equation
my+umg +3u,m =0, m=1u— Uyy,

where u is the horizontal component of the velocity field at some specific depth, and m is the
so-called momentum density. The CH equation was first considered in [20] as a bi-Hamiltonian
equation, and the DP equation was first derived in [20] in the study of integrable equation. The
CH equation was later proposed in [5] I8 [32] in the context of water waves. Similar to the KdV
equation, the CH and DP equations are both completely integrable. In contrast to KdV, on the
other hand, both CH and DP, and their multi-component generalizations (for example, [19] 31
41]) accommodate solutions exhibiting certain degree of singularities, namely the breaking waves
[7, 13] [14] 23] B9] and peaking waves [5, 20, [36, [37]. Note that for the full water wave problem, the
traveling wave solutions of greatest height have a peak at their crest; see [10] 11} [15].

The discovery of the CH and DP equations motivates the search for various generalization models
with interesting properties and applications. Since these two equations are both quadratic nonlinear,
one may wonder as the nonlinearity becomes more pronounced, and hence the hyperbolic property
tends to be more dominant, what kind of singularity can be triggered. In the context of asymptotic
modeling, this amounts to considering larger amplitude waves.

For the CH and DP equations, the formation of singularities in the solution that develops from a
localized and smooth initial data is in the form of blow-up of the slope, while the solution remains
bounded [9, [14],139]. One of the motivations of this paper comes from the recent works on a new type
of singularity formation for cubic nonlinear models, namely the curvature blow-up, i.e. the second
derivative u,, of solution becomes unbounded in finite time while the solution u and its gradient
uy remain bounded. Examples can be found in the modified Camassa-Holm (mCH) equation
[6) 25], 28, 29, 411, [42] and the generalized modified Camassa—Holm (gmCH) equation |7, 24) [4T].
Indeed, these equations inherit certain energy conservation and momentum persistence property
that allow the control of u and wu,. Yet the presence of the higher order nonlocal nonlinearity
induces the blow-up of the higher derivative. On the other hand, such CH-type equations with
cubic nonlinearity (also including the Novikov equation [40]) were only studied in the framework of
integrable systems theory and, to the best of the authors’ knowledge, there were limited attempts of
the relations of these equations to the physically relevant models in the context of water waves. To
this end, we would like to perform a modeling under a different scaling from , with the purpose
of deriving cubic nonlinear equations (of CH-type) that may host the aforementioned curvature
blow-up phenomenon.

It is worthwhile pointing out that most of the higher order nonlinear descendants of the CH
equation (like the mCH, gmCH, Novikov, etc.) are derived in the context of integrable systems.
Another goal of the present study is to propose a hydrodynamic approach to derive some of those
cubic nonlinear models, including the mCH and Novikov equations.

Roughly speaking, since we expect the cubic nonlinearity to appear at the order of O(g%u), leaving
the O(p?) terms as higher order ones, this naturally leads to a scaling requirement £ = o(u'/?).
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Therefore we impose
2
p<l,  e=0(us), (1.3)
which also corresponds to a shallow-water regime for waves of moderate amplitude but larger than

the one in the CH scaling regime (|1.2)). Proceeding analogously as for the CH equation, we first
derive an equation for the scaled surface elevation 7

1 3 599 3 3 3 23 5
20000 + 1) + gHaae + 3eme — € e + S€N e et | 15 aNan + (Mleaa
(1.4)
115 23 29 3
+ 1998 M + 0 <16?752 + g Ml + 477277m> =0+ 0(e% 1?).
A similar equation for the surface was also derived in [43| under a larger amplitude scaling ¢ =
O(u'/*). By relating the horizontal velocity « with 7, a cubic nonlinear equation for u is obtained.
Here we adapt the idea of [2] to expand 7 in terms of u together with its derivatives using the

so-called Kodama transformation [33]. In particular, the expansion takes the following form
ne~u4eA+ puB 4 epC + p?D + 2E + 3K + 2uG + e H (1.5)
where
A= Mu?, Bi= oy, E:=Xu, K =Xul, C:=Mu2+ \suty,
D := dguggge, G := /\7uug26 + AslUugz,  H = NgUglgzs + MoUUzzzs + /\Hufm.

This type of transformation was first introduced by Kodama in [33], and was used by Dullin et al.
[21] to derive a shallow water wave model under the influence of surface tension. A further splitting
of u.. together with an equation for u; generates one more degree of freedom v, cf. f.
Then the expected specific form of the equations imposes exactly the same number of constraints on
these parameters, leading to exact parameter values in the resulting model equations. In particular,
this allows us to obtain the following types of equations.

Case 1. The CH-mCH-Novikov equation

me + Uy — o Uaae + 5(2uxm + umyg) + T(( — Buuz)m), + T(u My + 3uu,m)
=0+ 0(% p?), (1.6)
5 69 .
where m = u — Buug,, B = ko = —, and ky ~ —15.1765 is the only real root of

12’ 5
2000k + 106200k? + 1871550k, + 10934031 = 0.
Case 2. The CH-Novikov equation

€ koe? (1.7)
me + Uy — %uxm + 5(2uxm + umyg) + 2T(u2mx + 3uuzm) = 0+ O(e5, 1i?).

Case 3. A cubic CH-type equation

my 4+ u By +§(2u m+um )+k3762 (uQ—l,B,u(uz) Ju| =0+0(, 1?)

46
where k3 = =

Mathematically, under suitable scaling limits the quadratic terms in and can be
dropped out in a formal scaling limit, leaving as the mCH-Novikov equation
mye + k1 ((u® — u2)m)y + ka(u?my + 3uuym) =0 (1.9)
where k1 and ks satisfy conditions given above as in Case 1, and as the Novikov equation
my + ko (u?my 4 3uuzm) = 0 (1.10)
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with parameter ko given as in Case 2.

As is explained earlier, with the cubic nonlinear models at hand, our second goal is to study
the formation of singularities due to the higher order nonlinear effects and construct initial data
that lead to the finite time curvature blow-up. To this end, we will at this moment only focus our
attention on equation (|1.9) where only cubic nonlinearities are present, and consider the following
Cauchy problem

t>0, x€R. (1.11)

my + kr [(u? —uZ)m]  + ko (uPmy + 3uuym) =0,
U(O, .f) = uo(x),

Moreover for mathematical speculation we will allow ourselves to consider a more general range of
parameter values for k; and ks than that which is given in Case 1.

It turns out that the two groups of cubic nonlinearities in play quite different roles in the
blow-up analysis. In the case k1 = 0, becomes the Novikov equation , and when the
initial momentum density mg does not change sign then the solution exists globally for all time [45].
On the other hand when the Novikov nonlinearity is not present (k3 = 0 i.e., the mCH equation),
it is shown [6, 29, B8] that the curvature could still blow up in finite time even if my does not
change sign. This leads to a natural question of understanding how the interaction between these
two groups of cubic nonlinearities would affect the singularity formation mechanism.

It is also worthwhile pointing out that, as was discovered by Brandolese et al [3, 4], many
quadratic nonlinear CH-type equations exhibit a very strong non-diffusive character that extremely
“localized” information about the data is enough to lead to finite time blow-up of solutions. Such
a phenomenon comes from the fact that the nonlinear nonlocal effects are over-dominated by the
local nonlinearities of the equations. This hyperbolic feature seems to be slightly counter balanced
by the stronger nonlocal effects due to higher nonlinearity of the equations, as was explored in
[6) [7]. Thus it would be interesting to study how local structures of the initial data may affect
the evolution of solutions to equation , and in particular, the formation of singularity. Since
the equation involves both the mCH and Novikov types of nonlinearity, it is reasonable to expect
some kind of relaxed local-in-space blow-up criterion in the spirit of [6l [7]. However as pointed out
above, the two types of nonlinearities do not seem to cooperate in a good way to produce blow-ups,
making the analysis rather subtle.

A refined Beale-Kato—Majda type blow-up criterion (cf. Lemma singles out the right blow-
up quantity to look at. Tracking the dynamics of such a quantity along the characteristics reveals
explicit local and nonlocal interplays between the solution and its gradient, cf. Lemma Using
the two conservation laws provides a way to control the nonlocal convolution. This allows one to
derive crucial monotonicity property of u, u, and m along the characteristics, which in turn leads
to a Riccati dynamics for m, cf. Theorem [5.3] This result covers a wide range of parameter values
of k1 and ks, in particular the equation in Case 1.

We also provide a different way of approach which does not rely on the use of the conservation
laws. Instead, taking advantage of the sign preservation of the momentum density m, the nonlocal
terms can be shown to have good signs provided that the initial momentum density does not change
sign. Therefore it remains to examine the local terms. It turns out that a Riccati type inequality
can be obtained as long as the “local oscillation” |u,/u| is reasonably mild. Note that the sign
condition on m already rules out fast oscillations. A further refined analysis on the evolution of
ug/u can be performed to show that mild oscillations will persist along the characteristics with
carefully chosen data, and therefore closes the argument.

The remainder of the paper is organized as follows. In Section [2] the model equation for the free
surface with higher order terms is formally derived from shallow water in the Euler equation for an
incompressible fluid, with the computational details provided in Appendix [A] Section [3] together
with Appendix [B|is devoted to the derivation of a family of asymptotically equivalent equations,
namely the CH-mCH-Novikov equation . Some other equations with cubic nonlinearity will be
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derived in Section 4] Section [5|is focused on the mCH-Novikov equation (1.11]). A blow-up criterion

will be derived and special initial data will be constructed that lead to the curvature blow-up.

2. DERIVATION OF THE FREE SURFACE EQUATION

The main goal of this section is to formally derive of model equation for the free surface
from the Euler equations. Compared with the model equation derived in [32] which is truncated at
the order O(g3, eu), the new model contains more higher order terms which will be useful to
derive a class of unidirectional wave equations including cubic nonlinear terms.

Consider the two-dimensional incompressible irrotational flows in the domain {(z,2) : 0 < z <
h(z,t)} with a parametrization of the free surface h = h(z,t), where the horizontal and vertical
directions are represented by x and z, respectively. The governing system is given by

U + Uty + wu, = —%Px,

1
Wy + Wy + Ww, = —;PZ -9,
ug +w, =0,

Uy, — Wy = 0,

where the pressure is written as P(t,x,z) = pg + pg(ho — z) + p(t, z, z), where p, is the constant
atmospheric pressure, and p is the dynamic pressure. In addition, we pose the “no-flow” condition
on the flat bed, i.e., w|,—9 = 0. On the surface z = hy + 71, the dynamic condition P = p, and the
kinematic condition yield p = pgn and w = n; + un,.

Next we perform the following standard nondimensionalization

A
T — Az, z— hoz, n —an, t — ﬁt, u — v/ ghou, w — \/ pghow, p — pghop.
gho

Recalling (|1.1]), we further assume that u,w and p are proportional to the wave amplitude, that is,
u — eu, w — ew, p — ep. To examine the problem in an appropriate far field, we follow the
approach employing the far field variable with the right-going wave:

E=c?(x—1), =% (2.1)

We also transform w — y/ew to keep mass conservation. Therefore, the governing equations become

—uge +e(ur + uug + wuy) = —pe in 0<z<1+4en,
epf{—we + e(wr +uwe +ww,)} = —p, in 0<z<1+en,

ug +w, =0 in 0<z<1+en,

u; —epwg =0 in 0<z<1+4en, (2.2)
p=n on z=1+e¢en,

w = —ne +e(nr + une) on z=1+en,

(w =20 on z=0.
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Before applying the asymptotic expansion, we Taylor expand the boundary terms: f(1 4 en) =
ST —(62_)n ™ (1) to obtain

n=0
(—u§ + e(ur + uug + wu,) = —pe in 0<z<1,
epf{—we + e(wr + uwe + ww,)} = —p, in 0<z<1,
ug +w, =0 in 0<z<1,
Uy — epwe =0 in 0<z<1,
82772 837’]3
PF+eENp: + 5 Dzz+ —5 P22z =1 on z=1,
627]2 63773 o 627]2 637]3 o
W+ ENW, + —5 Wy + —5 Wz = — Mg T ENr + 6775(” T eEnuz + —5-Uzz + Tuzzz) on z=1,
w =10 on z=0.
(2.3)

A double asymptotic expansion is then introduced to seek a solution of the system formally,

(o) (o)
quZe”umqnm as €—0, u—0,
n=0m=0
where g will be taken to be the functions u, w, p and 7, and all functions ¢y, satisfy the far field
conditions gy, — 0 as |£| — oo for every n, m =0,1,2,3, ...
Substituting the asymptotic expansions of u, w, p, n into , we check all the coefficients at
each order O(e'p?) (i, 7 =0,1,2,3,...). For example at O(1) we obtain

—Up0,6 = —P00,¢ in 0<z<I1,

0 = poo,= in 0<z<I,

ugo,¢ + woo,z =0 in 0<z<l1, (2.4
uo,z = 0 in 0<z<1,

Poo = 7Moo, Woo = —Moo,e on z=1,

wpo = 0 on z=0.

\

From the fourth equation in (2.4]) it follows that wugg is independent of z. Thanks to the third
equation in (2.4)) and the boundary condition of w on z = 0, we get

zZ
/
Woo = Woo|2=0 + / Woo,»dZ" = —ZUgo,¢,
0

which along with the boundary condition on z = 1 implies ugg¢(7, &) = n00,¢(7, §). Therefore

uOO(Ta 6) = 7700(7—7 g)’ Wopo = —Z700,¢,

here use has been made of the far field conditions ugg, oo — 0 as [{] — co. On the other hand,
from the second equation in ([2.4)), it follows that

z
P00 = Poolz=1 + / P00,z Az = 1oo.
1

At O(e' %) = O(e) we obtain

—U10,¢ + U00,r + U00U00,6 = —P10,¢ in 0<z<l1,

0= pio, in 0<z<1,

u10,¢ + w1,z = 0 in 0<z<1,

U10,z = 0 n 0<z< 1, (25)
P10 + P00,2700 = 110 on z=1,

w10 + NooWoo,> = —N10,¢ + Moo,r + UooMoo,e on 2z =1,
\ W10 = 0 on z=0.
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From the fourth equation in (2.5)), we know that uig is independent to z, that is, uijg = uio(7,§).
Thanks to the third equation in (2.5)) and the boundary conditions of w on z = 0, we get

zZ
w10 = Wio|2=0 + / wyo,dz’ = —zuge. (2.6)
0

Hence, from the third equation in (2.5)) and (2.6) and the boundary conditions of w on z = 1, we
obtain that

u10,¢ = N0, — M0o,r — (Uoonoo)e and  wip = 2z(noo,r + 2700700,6 — M10,¢) (2.7)
Thanks to the second equation in (2.5)) , we deduce that

P1o,e = Mo,e = 10,6 + 700, + (L00M00)¢- (2.8)
Taking account of the first equation in and , it must be
—P10,¢ = —U10,¢ 1+ 700, + 700700,¢>
which along with and implies
2n00,7 + 3M007M00,6 = 0.

Similarly, at the orders O(e%ut), O(2u®), O(etpl), O(e3u?), O(e*u®) and O(e2ul), the relation
between p;;, 1i;, wij, w;; and their 7-derivatives can be obtained; see, for example, [30].

As is discussed in the Introduction, the scaling relation suggests us to seek terms up to the
order of O(3p!). Following the same procedure as above (please refer to Appendix |A| for details),
we obtain the following equation for 7

M+ Bme + S et 2P + It e 4 ep( 2 40
e+ 31l + g Wigee — JENM Mg + SEN N + oo € M + Qe + e Jometiee + gnmee
23 5 29 3
+ 62u<1677§ + 5 Menge + 477277&5) =0+ 0(e”, e, p?), (2.9)

where « is some constant we do not specify here.
1 3 3
Recall the original transformation x = e 26 + ¢ 27, t = ¢ 27, namely,

0 _1 0
a—g—e 20, — =c¢

or
The equation (2.9) transforms to

m\w

(0 + By). (2.10)

1
2(Ne + M) + = Wz + 3me + 2 A1 0 + €3 Ao i, + ep(Asnunee + Aanaes)

3 (2.11)
+ Agelnin, + 52/1(A57777xnm + A Npa + A777§) =0+ 0(85, 3, 1?).
WheI‘eAlz—%,AQZ%, Az = 12,A4—*, Aszﬁ,z%:%,fl :16,148 2
Remark 2.1. It is noted that the high-order terms O ,u (2.9) only depend on the function
n and its & derlvatlves By the scaling invariance in 1 O(g”, u*) would not generate any low
order terms in under the transformations in l-i

3. DERIVATION OF MODEL EQUATIONS WITH CUBIC NONLINEAR TERMS

Having derived the equation of the free surface n in Section [2] the focus of the development in
this section is the derivation of the model equations that incorporate cubic nonlinearities of various
kinds including the CH, mCH and Novikov types, as given in (|1.6]).
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3.1. Asymptotic expansion using Kodama transformation. Recall that we assume p < 1

and work in the regime where € = O(,u,%). Since we expect our final model equations to be cubic
nonlinear, a higher-order approximation (in € and p) is needed. Thus it is natural to post the
Kodama transformation of the form

n=u+eA+ uB+euC + D + ?E + 3K + 2uG + e H, (3.1)

where A, B,C, D, E, H, K and G are the parameters which are related to u and its derivatives but
independent of € and p. Doing so allows enough degree of freedom in the expansion that may
later be optimized. For example, to obtain the CH-type terms, as described in [32], one can choose
A = \u?, B = \ug, and K = Agu?, where \g, A\; and Xy are some constants to be determined
later. With such a choice, becomes

n = u+ Meu® + Aoptgy + euC + p2D + e2E + NoePut + e2uG + ep® H. (3.2)

To proceed, we will substitute the Kodama transformation (3.2)) into (2.11f). The resulting equation
will purely consists of u-terms. Collecting at each order we have
Oo(1) := 2(up + ue), Op(e) = 4 e(uuy + uuy) + 3euuy,
00(52) = 252(Ex +E)+ I e2uPu, + Areulug,
Oo(e3) := 383 (uE), + 602303 u, + A e (uh), + Aseduuy + 20063 ((uh), + (uh)y),

A
Op(et) == ¢* <)\0 + A1+ AN Ao + ;) (u®)y + A1e*(W’E),

1 A
OO(N) = 2)\2M(ua:a:x + ux:rt) + g,ufux:(::ra OO(,U?) = 2M2(Dx + Dt) + ?2/1/2UIIIII7

2
Oo(ep) = 2eu(Cy + Ct) + (2A1 + 3X2 + As)epugug, + <3)\1 + 39 + A4) EPUU g s

1
00(52u) = §52,uEmm + 2€2M(G$ + Gy) + 3<€2u(uC');E + 3)\2)\152u(u2um)$ + )\2A1€2,u(u2um)m

+ 20 Aze? pu(uu? )y + Aghie? puPugey + M A pu(u?) s

+ Ase? putigtipy + Age? gy, + A7€2,uui,

1
OO(€N2) = gE,U/zCa:aca; + 28,“2(Hm + Ht) + 35M2(UD)x + 3)\§€M2u$xuxa:ac
+ 143A2€,Uf2 (uacuacacx)x + A4)\2€N2uwxu$mx + A4>\25,U/2uuac$xxa:7

1
Oo(ep?) = 3

+ NA 2 (uu?,), + Are? 1 (u? D)y + Aze? 1% (upCr) e + 2430 Mg 12 (Ut p U )
+ A 112 Cuggy + Aadi doe? 1P 0P Upppae + Aai AQEQ[LQU;EQ;(UZ)me + Aue?1PuChpy

212G rpe + 3N XU (UP D)y + 3N 1% (U O + 32 (Hur) 5

2 2 2, 2 2 2 2
+ *’45A2E K UUgUggar + 145>\2E WUz Ugq + AS)\QE B UUzz Ugrs

+ A6A252M2u2uczzxa}xz + 2A6)\252/~L2uumxuxzx + 3A7)\2€2,U,2U§szx.

And this yields the following equation
ug + Lo Oo(e?) + Op(e®) + Op(1*) + O o) Oo(ep?)] = 0+ O(*p, 2 p, i
¢+ tz + 5[O00(€) + Oo(e7) + Oo(e”) + Oo (k") + Oo(w) + Oo(ep) + Oolen”)]| = 0+ O(*p, &%, 7).

Here the subscript in Oy is just to emphasize that the terms may change at each step.



CUBIC NONLINEAR SHALLOW-WATER MODELS 9

The next step is to eliminate the ¢ derivatives using the equation itself. As before, we expand
the time derivatives, namely

up = — Uy — 2\18(vuy + uuy) — §6uux
. 2 (3.3)

~3 [00(¢®) + Oo(€”) + Oo (1) + Oo (1) + Oo(ep) + Oo(ep®)] + O3, 1%, 1?).

In order to have the whole £22-order terms, we need to bring p? and ep?-order terms back even

though they will be ignored as high-order at the end.

Step 1. At order e, we substitute (3.3) into £0p(e), and it gives

3 3 4
2X1e(uug + uuy) + EUls = SEUUg — g)\%g((ug)x + (u®)g) — M (1), (3.4)

— Meu[Oo(e?) + Oo(e”) + Oo () + Oo(ep) + Oo(p?) + Oo(ep?)].

This expansion generates higher order terms. It leads to the following terms in asymptotic order:

Or(e) = gsuux, Or(2) = 300(52) - gxfcﬂ((ufﬁ)x b)) — M2,
O1 (%) = 300(53) S AMeuOp(e2),  Oy(eY) = %oo(e‘*) ~ AeuO(eY)
Or(em) 1= 5O0ler) ~ MzuOo(),  Or(p) := 300(),
01(12) = 50012, O1(%) = FO0(e) ~ MeuOs(en).
O1(ep?) = %Oo(é‘/f) — MeuOo(p?), O1(e%p?) = %oo&s?u?) — AeuOg(ep?).

Step 2. For O1(e?) term, we can choose E = A\3u>. Then we expand the time derivatives as

3 1
up = —Ugy — 2\1&(uug + uug) — JEUWz — 5 [Oo(p) + Oo(i?) + 00(62)] + O(e%,ep).

Hence the O1(g?)-order term takes the following form,

1 A 9
01(?) = (2A1 + 61> e2(u?)z — (63 — 8P\ e3u? (uug + uuy) — (2)\3 - 6)\%> e3udu,
3
— (2)\3 — 2)\%) e2u? [00(52) + Op () + Oo(/ﬁ)].
We now denote
Iy := the coefficient of f(u).
Then coefficient of u?u, is given by
3 Aq
1 ==-M+—. .
u2ug 2 1+ 9 (3 5)

And the following terms in asymptotic order take the form
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Oa(1) = 01 (1), On(e2) = <2A1 + 1‘;) 22u,, Osep) == Or(ep)

9
Oo(€3) := 01(3) — (6A3 — 8AH) A\ 1e3u? (uuy + uug) — (2)\3 - 6/\%> e3ulu,,

On(e1) = 01 () — @Ag _ 2A%> 2200(2),
3
03(42) = 0112, 0u(e%) = 0r(e%) — (300 = 28 ) 4200,
3
Oo(ep?) == O1(ep?), Oq(e?1?) == 01 (% %) — <2)\3 - 2)&) e2u0(1?).

Now the equation has the form of
up + ug + O1() + Oo(?) 4+ Oa(p) + Oz(ep) + Oa(2p) + Oa(e*) = 04+ O(3, 1),

and the expression for u; is given by

3 1 A 1 1
U =— g — ceuty — | =A 4+ — ) €2(u?)s — =00(1) — =00 (ept) + AeuOg(p)
2 2 6 2 2 (3.6)

1
— L0 + MeuOu(en) + @3 - 2A%> 2200() + O(2, ).

Step 3. We now consider Oz(u) term. Here, another parameter is required. To this end, splitting
the time derivative Aspu,z¢, it appears that

)\Z,Uummt = AQ(l - V)Humxt + )\QV,Uurxty (37)

where v is the new parameter which will be determined later. We remove the ug,: term by elimi-
nating the t derivatives using (3.6]). Thereby, it yields

3
AoV Uggt = — AoV llggy — iz\gueu(uua,)m +Xovp(Feo + Fyy + Fop + Floy)an + O(€3u, EMS),
where we define
Ap

1 1
FEQ = - (2)\1 + 6> 52(U3)x, FM = _>\2/~L(uxxx + uxq:t) - g,ufuxwxa

1 1 3
F. = —500(&7#) + MueOp (1), Fo, = —500(52/1) + MueOg(ep) + (2)\3 — 2)\%) £2u200 ().
This way O2() takes the form

1 1 3
>\2M(uz:m: + Uzzt) + éﬂuzx:c = <)\2(1 - V) + 6) UUgze + >\2(1 - V)Mu:rxt - 57/)\25#(3“1“1:6 + Uszz)

+ Xovi(Fe + Fy+ Fop + F2p)a
The coefficient of u,;; can be written as
quzt = )\2(1 — I/).

This procedure leads to the following terms in asymptotic order:
1
Os3(p) :== (A2(1l —v) + g)uumx + Ao (1 = ) ptigs,  O3(€3) := 0y(e3),
3
O2(ep) — iVAQE/J,(?)UxeQ; + Ulgyy), O3(e?) := Oy(e%)

02(52M) + Aevp(Fe2)za, OS(NQ) = OQ(MQ) + Xovi(Fy)zx

O3 (6#) :
Os(?p)
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Os3(ep?) := O2(ep®) + Aovi(Fep) e, O3(*p?) == Oa(*1®) + Xavp(Frzyy) -

Proceeding systematically, we continue to compute the O3(epu) terms, O4(e?), O5(e?), and finally
all the e?p-order terms generated in the asymptotic expansions. For the purpose of keeping the
presentation simple, the details of the computation are provided in Appendix

3.2. The special form of the CH-mCH-Novikov equation. Having obtained the asymptotic
expansion up to sufficiently high order, we are ready to turn to the procedure of deriving equa-
tion . Notice that this requires choosing specific values of the parameters in the Kodama
transformation, which can be determined through the following procedure.

Note that the CH-type equation requires

Iuth = _/87 quxmg = _g’ quum = _5

for some parameter 8. It is determined that § = % and A1, Ao, v are given by

Al —v) =5,
{Al +3(1 -3+ 4 =5 (3.8)

On the other hand, equation (|1.6]) requires that
1 1
Iu2uz = 1(3]61 + 4k2), Iu?umz = —Zﬂ(lﬂ + kg).
Therefore from (3.5)) and (B.1]

SN+ AL = L(3ky + 4ky), (3.9)
%(1—1/)/\1)\24-%(1—1/))\2—1—%144)\1—1—%146: —%5(1@'1—1—/{32). .
where A; = —3/4, A3 = 23/12, Ay = 5/6,A¢ = 3/4. Combining this with (3.8) we have
ki 189 ki 179 69 10k1 + 204
Tt 2T Y e T VT ok 4 179’ (310)

where k1 € R is arbitrarily. The coefficients of (u?), and (u°), must vanish for equation (T.6)) to

emerge, and hence from (B.2)) and (B.3))

3 1 1
I(u4)w = é)\g + gAQ + 1)\1141 =0,

1 3., 49 Ag 3
Isy, = — | 1900 — SAT+ — A1+ = — SAg + 2427 — 51 =
(u®)g 10 < 9\ 4/\1 + 3 AL+ 5 2/\3 +24)\7 -5 )\1)\3> 0,
where As = 3/8 and Ag = 115/192. Then it gives
ki 23 3 ., 13083 , 1189081 108125767
_ k23 _ 9y 19989 . 11
As=p Ty and Ao = gk T M e M 000 (3.11)

Also, for other terms, we require from (B.5|) that

1 1
Iui = _Zﬁkla Tuipuze = _15(4]{1 + 3ks).
With this choice, it in turn implies that

A3 — %)\4 + %A7 — )\2V(3A1 + A1)+ A\ = —iﬁkl,
33 — 3)\5 — 9(1 — V))\Q)\l + Al(l — 31/))\2 + (Ag + 3A4))\1 + %A5 — 2)\% = —iﬁ(ﬁllﬁ + 3]{}2),
where Ay =29/8, A7 = 23/16. Then we obtain
671 B 56327 67 B 30437

1 1
M =——k?— —k — — d Ms=—-k?— —k —— . 12
4T T T 120" T 1200 MM 61 1517 1200 (3.12)



12 R.M. CHEN, T. HU, AND Y. LIU

This way v and \; (i =1,...,5) are obtained in terms of ko = % and any k.
Lastly, the coefficients of 2u?-order terms should satisfy that:

_ _ _ _ 2 _ 2

Since the coefficient of the term u%mxm needs to be zero, from it follows that
A
——4>\16 - 75 Aos + >\ 2X\g — f)\1>\5 =0,

where g = —2 and \; (i = 1,2,3) only depend on kl. This way the parameter k; should be a real
root of the following equation

2000k3 + 106200k7 + 1871550k; + 10934031 = 0. (3.13)

And then k; ~ —15.1765. Notice that since the determinant of the matrix in (B.7) is nonzero, we
can obtain A7, Ag, Ag, Aig for any parameters Ag and Ai;.
In summary, if we take the Kodama transformation to be
N = u+ Aeu? + Aopitigy + epp( Mgt + Asutizy) 4+ €2 A3u> + 3 Xt + 12 (NsUazzae)

2 2 2 2 2 (314)
+e ,U,()\7’U/U,m + )\SU umc) +eu ()\QU:qumc + )\IOUU:L‘Q:MC + )‘llumx)v

where the parameters satisfy conditions (3.10)—(3.13)) and Ag, A\11 can be any real number, then we

arrive at (|1.6]).

4. OTHER RELATED NONLINEAR EQUATIONS WITH CUBIC NONLINEARITY

Using the method as in Section [3] other shallow-water models can be derived when we choose
suitable parameters in the Kodama transformation. In particular, the CH-Novikov equation and
a new cubic nonlinear peakon equation will be derived in this section. Moreover, after certain
rescaling, the mCH-Novikov and Novikov equations can also be obtained.

The CH-Novikov equation. Con81der the same form of Kodama transformation as before. Now

we impose I,2,, = ko, L2, . = —*51432, recalling (3.5)) and ({ - that is,
A+ S =k
A 1 1 1 (4.1)
{2(1 - V)/\1>\2 + S (1 = v)do + A4\ + 5 A6 = — 5 Bk,
where Ay = —3/4, A3 = 23/12, Ay = 5/6, Ag = 3/4. Together with (3.8), it follows that
)\1:@ 2:@ k‘2:@ I/Z%.
20’ 60 ’ 5’ 179
Setting I (1), = I(y5), = I3 = 0 and Lyy,u,, = —4{:25 with 8 = 12, and using , and
, we know that
e 23 N = 108125767 _ 56327 _ 30437
T 5 7~ 114000 T 1200 ° T 1200
Then
— @5 2 @lmm —ep <56327 2, 30437 > n § 2,8 4 108125767 5 4
20 60 1200 1200 5 114000
These choices give the so-called CH-Novikov equation which takes the form of
ut + Uy — Bitleat — 7 llage + geuua; - 6#%5(2%%1 + Ullgrg) + k2e*u g
(4.2)

3 1
- Zk:2652,uuuxum - ZkgﬁEQ,uuzumx =0+ 0(55, u2).
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The mCH-Novikov and Novikov equations. Applying the scaling transformation
u— 2y, t— (ﬁp)_%t, x — (ﬁp)_%m,
to equation (1.6 leads to the equation

3
mg + Uy — 7 Uzaa + 2uym + umg + k1 (u? — u2)m) e + ko(u*mg + 3uuy,m) = 0. (4.3)

If we further scale t — 62t and u — 6 'u, then (4.3) takes the form of

52 my + up — %umx b6 L (Quym + umy) + k16 2((U2 — 12)m)s + kab~2(uPma + Sungm) = 0.

Rewriting it as
3
me + 6%uy — 525“”“ + 6(2ugm + umy) + ki ((u? — u)m), + ko (u?my + 3uuym) = 0 (4.4)

and taking 6 — 0, then formally in the limit function u(t, z) satisfies the mCH-Novikov equation

2
T

my + k1[(u? — u2)m]e + ka(u®my + 3uuzm) = 0. (4.5)
Similarly, the Novikov equation can be obtained, viz.,
ms + ka(u*my + 3uugm) = 0. (4.6)
Indeed under a further scaling in time t +— kot the above equation becomes exactly the Novikov
equation [40].

A cubic CH-type equation. Choose I,2, = %]{3, Lz, = —%Bkjg, namely,

{% o=k (4.7)
S(1—v)Mda + GH(L =)Ao + S AN + 246 = —LksB.
As a CH-type model, it should satisfy . Then we have
97 29 46 112
)\1:%, )\2:2—0, k‘gzg, I/:W.
For other terms, we choose [(,4), = I(ys5), =0, L3 = —%ﬁkg, Lywyugs = —%Bkg. It then gives
that
A3+ Az + $A A =0,
—1900 — 3AT+ BN + 485 — 23+ 2423 — 51N A3 =0 (4.8)

Y = §Aa+ A7~ Ao (31 + A1) + Ashy = — Fksf,
33— 3A5 — 9(1 =)Ao As + A1(1 = 3v)A2 + (A3 + 3A2) A1 + 545 — 2AF = —3 ks,

where Ag = 3/8, A5 =29/8, A7 = 23/16. Hence, we obtain

Ao = 13067089 \ = 23 L= _@ and \s — @
114000 ’ 10’ 1200’ 600
Then
n=u-+ %aﬂ + §/lu:m: +ep (mmuum - 10373u2> §52u3 71306708953u4
20 20 600 1200 * 10 114000

It then follows that
1 1 1 1
my + Uy — Zﬂuxxz + 55(2uzm + umx) + Zk352 <(u2 - 4B:u(u2)m€)u> =0+ 0(55a :u2)' (4'9)
X

Applying the scaling transformation
1

w— 2 u, ¢ (Bp) 72t @ — (Bp) 7w,
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the equation becomes

3 1
mg + Uy — 7 Uzaa + (2ugm 4+ umy) + ks <(u2 — 4(u2)m)u> =0. (4.10)

5. CURVATURE BLOW-UP

Having derived the model equations in Section [3| and Section |4} our attention is now turned to
the blow-up analysis. In particular, as explained in the Introduction, we will consider the Cauchy
problem for the mCH-Novikov equation , with ki, ks € R.

It can be shown that the following two functionals are conserved quantities for

Hiu] = /R (u? + u?) du, Hs[u] = /}R (u + 2uu2 — %u > d. (5.1)

The local well-posedness theory can be obtained following the standard argument of [27] with a
slight modification.

Theorem 5.1. Let ug € H® with s > g Then there exists a time T > 0 such that the Cauchy

problem (L.11) has a unique strong solution u € C([0,T]; H*) N C1([0,T); H*™1).
It is also shown in [§] that equation ([I.11)) posseses the single and multi-peakon solutions. More-
over the single peakons are indeed orbitally stable in H'.

5.1. Blow-up criterion. Similar to the other CH-type equations, can be reformulated into
a nonlocal transport form. Therefore from standard transport theory, a Beale-Kato—Majda type
of blow-up criterion can be obtained. A further refined analysis leads to the following lemma. The
proof of this result follows a similar idea as in [29], and hence we will omit it for the brevity of the
presentation.

Lemma 5.1. Let ug € H® with s > g and u be the corresponding solution to (1.11). Assume that
Ty, > 0 1s the mazimum time of existence. Then

T
Ty, <00 = /0 ’ lk1mag (T) + 2kauug (T)|| Lo dT = 0. (5.2)

Remark 5.1. The blow-up criterion (5.2)) implies that the lifespan Tj; does not depend on the
regularity index s of the initial data wug.

As usual, now we proceed to obtain an improved blow-up criterion which is in some sense “point-
: 99
wise”.

Lemma 5.2. Suppose that up € H*(R) with s > % Then the corresponding solution u to the

Cauchy problem (1.11)) blows up in finite time T* > 0 if and only if

htm%nf mf {kim(t, z)ug(t, ) + 2kou(t, x)ug (¢, z) } = —oo. (5.3)
—T* zxe

Proof. In view of Remark [5.]] -, it suffices to consider the case s = 3. Suppose that if kymu, + kouu,
is bounded from below on [0, T}; ) x R, i.e., there exists a constant K > 0 such that

(kimug + 2kouug) (t, ) > —K  on [0, T, ) x R. (5.4)
Multiplying (1.11]) by m and integrating over R, and then integration by parts, we have
/ m? dx +/ (krugm + 2kouuy) m? dz = 0. (5.5)
2dt R

The initial condition implies that mo € H5"2 C L1 for any 2 < q < co. From ([5.5)) we see that

/m d:c<K/m dx.
2dt
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Applying Gronwall’s inequality yields that
Im(®)l2: < 2K mol2. for te[0,TL). (5.6)

b uo

Moreover using integration by parts and Sobolev embedding,

()| = /R (0 a2y + 202) do > Jul%e > oz

Similarly we have

2dt/m dl’—l—k’l/ ((u —u )m)mmx dac+k‘2/ (uQmm+3uul~m)xm$ dr = 0.
R

Integrating by parts the second term yields

2
k:l/ [(u2 —ui)m] my dr = / (5k1ugm) m2 d:z—/ (kluxm> m?dz.
R o R R \3

Integrating by parts the third term can be computed as

k:g/ (uzmz + 3uu$m)$ my = / (dkouuy) mi dx —/
R R

(6kouuy) m2dx—/12k2uma,m2dx.
R

R
This way we have

2
/ m dx + / (5k1uzm + 4kouuy) m dr — / Zkyugm + 6kouuy | m2dr — / 12kqumzm?>dz = 0.

So together with (| , we have

1d
sdt Js (m? +m?) do = — / (kyugm + 2kouug) m? dx —/ (5k1ugm + 4kguuy) m? dx
R R

2
+/ <3k1uwm+6k2uum> dex—i—/ 12k2umwm2d:v
R R
=— | (krugm + 2kouuy) | -m* +5my | dr+ | kouuy 6m — —m* | dz
R 3 R 3
+4 / kou,m>da
R
< (5K + 6[ka||luts || oo + 4lka|[[ull g ml| £2) [lm1 3
Applying Gronwall’s inequality and (5.6|) it follows that
Hm(t)H%{l < exp (5[(,5 + eblkzlllvollg1llmoll L2 (e‘“—l)/K) Hmo||§{1

for t € [0, Tp;,). From Theorem this implies that the solution does not blow up in finite time.
On the other hand, if

lim inf [mf (kim(t, z)ug(t, z) + 2kou(t, x)uy(t, x))} = —00,
tTquO zeR

then either u, or m blows up in finite time. The proof of Lemma is hence completed. O

5.2. Dynamics along the characteristics. We are going to perform our blow-up analysis along
the characteristics of equation (1.11)). So let us define the characteristics associated to the mCH-

Novikov equation ([1.11)) as

{ gt(((;f:;f)) (k1 (u? = u2) + kou?] (£, q(t, @), zeR, tel0,T). (5.7)

One can easily verify that
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Proposition 5.1. Suppose ug € H*(R) with s > %, and let T > 0 be the maximal existence time
of the strong solution u to the corresponding initial value problem (1.11). Then (5.7) has a unique
solution ¢ € C1([0,T) x R, R) such that q(t,-) is an increasing diffeomorphism of R with

qz(t, ) = exp (2/0 (kimug + kauug) (s, q(s, x)) ds> >0, V(tx)el0,T)xR. (5.8)

Moreover, for all (t,z) € [0,T) x R it holds that

m(t,q(t,z)) = mo(z) exp <—/0 (2kimug + 3kauug)(s, q(s, x)) ds> , (5.9)

where mo(z) = m(0,x).

A direct consequence of Proposition is that the momentum density satisfies the sign-persistence
property as in the following corollary. We want to point out that such a feature proved to be the
key to several qualitative results about the CH and DP equation. In that context, this invariance
is related to a geometric interpretation of these model equations (see the discussion in [9, 22]), but
we are not aware of such an interpretation in the general case considered in this paper. Note that
the geometric structure is quite restrictive [17, [34].

Corollary 5.2. Suppose ug € H*(R) with s > % Let T > 0 be the mazimal existence time of the
strong solution u to the corresponding initial value problem (L.11)). If mg(x) > 0 for all x € R, then
m(t,x) >0 for all (t,x) € [0,T) x R.

Denote p(z) = %e‘m the fundamental solution of 1 — 92 on R, and define the two convolution
operators py,p_ as

pert@) =5 [ twin pr i@ =5 [T e iwiy (5.10)

Then we have the relation
p=p++p—, Pz =DP—- — P+

Now we compute the dynamics of a few important quantities along the characteristics ¢(t, zo).
Denote ' the derivative 9; + (kl (u? —u2) + k:2u2) 0, along the characteristics, and

u(t) :=u(t,q(t,x0)), uz(t) :=ug(t,q(t,x0)), m(t):=ml(t, q(t,x0)), J\/Z(t) = (mugy)(t, q(t, xo)).

Lemma 5.3. Let ug € H*(R), s > 5/2. Then u(t,x), u,(t,x), m(t,z) and (muy)(t,x) satisfy the
following integro-differential equations

~ 2 . (ki k

@0 =~ 3h + (547 ) el s ) ata) Ga)
— s o kot 5
Uy (t) = k1 ¥ — Ul + T(U —Uy") (5.12)

ke 3 31 (L, q(t
- §+§ [p+*(u—um) +p_* (u+ ug) ] (t,q(t,x0)),

R(E) = — (kg + Skotily) M, (5.13)
M () = —2k M2 + % [(2k1 + k)2 — (61 + 21@)@2] (5.14)

o <k31 + k;) m [p+ * (u — ugc)3 +p_* (u+ ux)3] (t,q(t, z0))-
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Proof. The proof of (5.13]) can be immediately obtained from the equation (1.11]).
In view of (1.11)), it follows that

U = —kip * [(u2 - ui)m]m — kop % (u2mx + 3uuxm) . (5.15)

The structure of the right-hand side of the above equation suggests that we may recall the results
from [6] and [7]. First, from [6, (3.1)] we know that

2 1
p* [(u® — ui)m]m = (u® — u)ug + gui ~3 [Py * (u—ug)® — po * (u+ug)?] .

From [7, (3.7)] we have
1
P * (u2mx + 3uu$m) = vwlu, — 5 [p+ s (u—ug)® —p_* (u+ ux)?’] )

Plugging the above two into ((5.15)) we obtain ((5.11)).
The proof of (5.12) can be proceeded the same way. Differentiating (5.15)) we obtain

o = ke [0 0], — o+ s2m + Bt ) (516)

From [6l (3.2)], it follows that

Tx x

1 1
P * [(u2 - ui)m] o = (u? — U )y + <3u3 - uui) —3 (P4 * (u— )+ p_ * (u+ Uz)?)] .

From [7, (3.8)], we know

U 1
mg + 3uugm) = g, — §(u2 —u?) — B [P * (u—ug)® +po * (u+uy)?] .

Therefore (5.12)) is obtained by combining the above two equations.

Finally (5.14) can be derived from (5.12)) and (5.13]). O

5.3. Choice of data and blow-up: 2k; + 3ky # 0. Note that this parameter regime is consistent
with what appears in , where k1 ~ —15.2 and ko = 13.8.

The blow-up criterion together with the conservation law Hip[u] indicates two possible
scenarios for the formation of singularity, namely the wave-breaking (|u,| — o0) or curvature blow-
up (|m| — oo) in finite time. Here in this section we seek data which lead to the latter one.

px (u?

5.3.1. General data. We start by considering a general momentum density mg and look for the
blow-up data. In this case we make use of the conservation laws Hp[u] and Hs[u], which will be
the key to obtain the convolution estimates. Such a control of the nonlocal terms allows us to
propagate certain monotonicity property that can lead to a Riccati dynamics.

1
§Hu$|]‘i4 = / (ut + 2uu2) do — Haluo] < 2||ul|F e Hi[uo) — Haluo) < Hilug] — Halug).
R
Therefore
lluzl|7e <3 (H%[Uo] — Ha[ug)) . (5.17)
Therefore the convolution estimates follow as

[P (0 F ua)®| < lIpxllpee [| (0 F ua)®|| o < 2 (lulls + lluallzs)

(5.18)
< /2B ug] + 2/3H: [uo) (HZ{u] — Haluol) =: K.

The blow-up result in this section is the following.
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Theorem 5.3. Suppose k1 < 0 and —%kl < ko < —2ky. Let ug € H*(R) with s > 5/2. Assume
that there exists an xg € R and some 0 < § < 1 such that

mo(xo) > — 3k Hl[u0]7 ug(wo) >0, wuoz(x0) > VA1, and
dr(1—0)V 2 : (5.19)
2k1 + 3ko

where

Al = —7]/61 + 3k2K, A2 = 2K —|— 71[’1110] 5
2k 2

and K is given in (5.18]). Then the solution u(t,x) blows up in finite time with an estimate of the
blow-up time T™ as
1

T < — :
- 2]€157R0(CE0)U0,$($0>

Remark 5.1. Note that clearly Theorem applies to the case where k1 and ko are obtained in
Section |3| (and hence in equation (1.6))).

Proof. Plugging (5.18]) in (5.11) and (5.12]) we obtain that

9 9
> gt - 2t

3 3
- ko\ o 2k + 3k H 3/2
Um/2—<k1+;>uum2—l—g3 2 2K+< 1£u0]> ]

Hence we know that @ is increasing when @,° > Ay, and @, is increasing when
ko\ 2k 3k
— <k1 + 22) UUI2 > %AQ

From the assumption (5.19) we know that the above two conditions are satisfied initially. Hence
a continuity argument yields that over the time of existence of solutions, u(t) and u,(t) are both
increasing. In particular,

a(t) > uo(zo) >0, Uy (t) > uo(z0) > v A1 > 0. (5.20)
Recall that m satisfies m' = —uzm(2kim + 3kau). At the initial time we see from (5.19) that

~ 3k2 Hl[uo] 3k2 ~
< — < —
2k1m(0) . 5\/ 5 . 5u(0) <0,

and hence 2k1m(0) + 3kou(0) < 0. Together with ([5.20]) we see that m(t) increases initially. Then a
continuity argument ensures that m increases (and hence is positive) over some time interval [0, ¢,]
for t, > 0. Therefore on [0, t,]

~ ~ 3k2 Hl[uo] 3]{32 ~
< < — <
2kym(t) < 2kim(0) < . 5\/ 5 S T1o 5u(t),

2y (t) + 3koti(t) < 2k10M(t) <0 on [0,4,].

Thus another application of the continuity argument yields that m increases over the entire time
of existence, and the dynamics of m(t) gives

m = —uAmT/I\l(leT/f\L + 3/62@) > —2]{1(5@7/7\12 > —2]@‘1(5’11,0@(%0)7/)\12.

leading to
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Hence m(t) blows up to 400 in finite time with an estimate on the blow-up time 7™ as

1
N 2k10myg (wo)uo,z (xO) .

T <

Since Uy (t) > up (o) > 0 and u(t) is bounded, we see that in fact
kEym(t)ug (t) 4+ 2kou(t)uy (t) — —oc0, as t— T™.

Hence from Lemma we see that the solution blows up in finite time, which completes the proof
of the theorem. 0

Using similar techniques but with less restrictive assumption on the initial momentum mg one
can prove the following result when k1ko > 0.

Corollary 5.4. Suppose kiky > 0. Let ug € H*(R) with s > 5/2. Assume that there exists an
zo € R such that

2k1 + 3k2

ST 0N d
=302kt k) 2 "

mo(zo) >0, ug(wo) >0, ug(wo)ug (o)

5.21
. Bl, when kl, ko < 0, ( )

(w0){ =
where
%43k
2k,

and As and K are given in Theorem . Then the solution u(t,x) blows up in finite time with an
estimate of the blow-up time T* as

Bli

1

T < - :
2k1mo(x0)uo 2 (x0)

Proof. We will sketch the argument for the proof. For simplicity we only consider the case when
k1,ke < 0. The other case can be dealt in the same way. The dynamics of u and u, yield

A 2. 2k 3k
> _gkluxg + %K,

. ko 2k, + 3k
Uy > — <k:1 - 22> a2 + o

6 2

2K + <W>3/2] |

Hence by a similar argument as in the proof of Theorem we conclude that as (5.21)) holds, u

and u, are both increasing:

U(t) > uo(xo) >0,  Up(t) > ugz(zo) > /By > 0. (5.22)

Plugging the above into the dynamics of m and using (5.21)) again indicates that m increases (and
hence is positive) over the time of existence. Therefore

T/T\L, == @(—2]{31@2 - 314:27%&) Z —2]{31@7/7\712 2 —2k1u0,x(:c0)fr\z2.

Hence m(t) blows up to +oo in finite time with an estimate on the blow-up time T* as

1

B QkilTTLO (CUO)UO,:J: (-’EO) ’

T <

which completes the proof of the corollary. O
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5.3.2. Non-sign-changing data. Next we will utilize the sign-persistence property, cf. Corollary
to consider data with positive momentum mg > 0. From the identities

U(t,l‘) :p*m(ta IL‘), uﬂf(ta‘r) :pft*m(t?'x)
we have
u(t,z) >0, utuy =2py xm > 0. (5.23)
This allows us to control the convolution terms in Lemma [5.3] and we can obtain

Theorem 5.5. Suppose that k1 < 0, 2k1/3 < ko < —2k1/9. Let ugp € H*(R) for s > 5/2 and
mo > 0. Assume that there exists some point zog € R such that mo(xzg) > 0 and

o (20) > 1o () - max \/2k1+3k2 \/2k1+3/€2
02150/ = 00 Ak OV 6k + 21k [

Then the corresponding solution u(t,x) blows up in finite time with an estimate of the blow-up time
T* as

(5.24)

1

2k‘1m0 (:L‘o)U()@ (1‘0) '
Proof. From Corollary we know that m(¢,x) > 0 and m > 0. It then follows from ([5.23) and
Sobolev embedding that

VHiu]/2 > u(t,x) > |ug(t,x)] >0, u(t) > 0. (5.25)

Therefore u, does not blow up, and then Lemma [5.2] indicates that it suffices to consider the
quantity M(t,z) = (mug)(t, x).

From the condition of the theorem, (5.25)), and ([5.14)) it holds that

T <

A~

M = —2k, M2 + % [(Qk:l + 3k)a2 — (6k1 + 211@)@2}

o (k; + k;) m [P+ * (u — u:c)g +p_* (u+ ux)g] (t,q(t,z0)) (5.26)

> ok M2 + % [(%1 + 3ko)a2 — (61 + 211@)6;2} .

Since u,m > 0, it is now clear that in order to arrive at a Riccati-type inequality M pe M 2 one
would like to have (2k; + 3ka) — (6k1 + 21k2)u/\x2/02 > 0. From the assumptions on k; and ko we
see that such a condition can be written as,
s o 2k + 3k
a2 T 6k + 21k
which involves the competition between u and its derivative u, along the characteristics. In partic-

(5.27)

ular, a finite-time blow-up of M can be realized if the ration |uz/u| stays reasonably big along the
characteristics. A quick computation shows that

—~ ! —\ 2 —\ 4
Ug ~9 k’l kQ /62 (" le Uy
-x — -2 Z)V -k 4 % -7 22
<a) “[(3*2) (“2)(@)*3 @
2k1 +3ko . __ o~
— e @ T x (u— )’ 4 (@~ T)p— * (ut us)’]

__ __ 5.28)
R ki ko ko w\?: 2k () (
S| =42 - == e ]

sat (B 8) - (00 ) (3) 5 (5)

_ kg | (T || (T _ 2kt 3k
3 a u 4k,
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From ([5.24)), we have chosen the initial data so that

@ (0) > max \/2]61 + 3ko \/ 2k1 + 3ko
u - 4kq ’ 6k1 + 21ko '
Recall from ([5.25) that ‘“ﬁ‘ <1 T}f assumptions on ki and ko ensure that the right-hand side of

the above is less than 1. Therefore %¢ increases initially, and a continuity argument implies that it
decreases for later time, and hence

U U 2k1 + 3k» \/ 2k1 + 3ko
Zl)y> (=2 > )

In particular we have

Uy’ o 2k1 + 3k
u? T 6k + 21ko
Plugging this into it yields that ]\7’(7&) > —2k1]\/4\2, and thus M(t) blows up in finite time
with an estimate of the blow-up time T as
1 1
2% M (0)  2kimo(xo)uox(z0)’

(5.29)

completing the proof of the theorem. O

Remark 5.2. Using a similar argument one can prove the finite time blow-up for data such that
mo < 0, mp(xg) < 0 and

o (x0) < (o) - max \/2k1+3k2 \/2k1+3k2
0,10/ = TOLH0 4k ’ 6k + 21ko '

Recall from Lemma that when m does not change sign, the true blow-up quantity is kymu,.
In the setting of Theorem [5.5]and Remark [5.2] where k1 > 0, we seek data which lead to mu, — —oc.
Thus using a similar argument we can handle the case when k1 < 0, as indicated in the following
corollary.

Corollary 5.6. Suppose that k1 > 0, —2k1/9 < ko < 2k1/3. Let up € H*(R) for s > 5/2 and
mo > 0. Assume that there exists some point xog € R such that mo(xg) > 0 and

2k1 + 3ko \/ 2k + 3ko
< _ . ) .
oz (z0) < —up(zp) - max {\/ .\ 6k 5 21k, } (5.30)

Then the corresponding solution u(t,x) blows up in finite time with an estimate of the blow-up time
T* as

T < L
- 2kimyg (wo)uO@ (33‘0) '

Proof. We still consider the dynamics of M and look to have M — —ooc in finite time.

M = —2k, M2 + % [(%1 ¥ 3k)a2 — (6k1 + 211@)6;2}
k ka\ .
— <31 + ;) M [py * (u—uz)® 4+ po * (u+uy)®] (¢,q(t,20)) (5.31)

AN A

3
< 2% M2+ %

—~2
(%
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Now the goal is to have (2k; + 3ko)u? — (6k; + 21k2)@2 < 0, that is,
e o 2k + 3k

- 2 5.32
u? T 6k + 21ky’ ( )
and this again leads to considering u,/u. From ([5.28)) we have
—~ ~2  ~2
u u? 3 2 3
2k1 + 3k [, . PO
- 16722 [(u + U:e>p+ * (u - ua:)g + (u - um)p— * (u+ Uz)g] (5.33)
2k @2_1 @2_%14—3%2
3 U u 4k
Therefore we know that when (5.36) is satisfied, u, /u decreases, and thus
Uy’ 2ky + 3ky  2k1 + 3k
-5 Z max 5 .
u2 4k1 6k1 + 21]{72
This way we obtain the desired Riccati inequality for M
M'(t) < —2k M2,
— 1
which implies that M (t) — —oo as t — T where T* < O

B 2k1m0(a:0)u0,x (LU()) '
Remark 5.3. Note that when ko = 0, equation (|1.11)) becomes the mCH equation. Condition (5.24])
becomes g ;(29) < —uo(z0)/V/2, which agrees with the one obtained in [6, Theorem 1.1].

5.4. Choice of data and blow-up: 2k; + 3ky = 0. In the previous section, we require that
2k1 + 3ko # 0. In fact when 2ky + 3ky = 0, the dynamics in Lemma [5.3] can be simplified as

~ 2. __
= _gklua?gv
. ko\ 2.
) = — <k1 + 2> W2 = —=kituy>,
2 3 (5.34)
m' = —(2kyMuy + 3kotitiy ) = —2k1 My (M — 1),

In particular, the convolution terms all vanish and the dynamics is completely local. However, the
dynamics of M does not immediately lead to a Riccati type inequality. Instead, it involves the
competition between u and m.

5.4.1. The case when k1 < 0. Note from (5.34) that when k1 < 0,
sign(@') = sign(uy), sign(u,’) = sign (7). (5.35)
Using this we first derive the following theorem which requires m to be non-sign-changing.

Theorem 5.7. Suppose that k1 < 0, 2ky 4+ 3ky = 0. Let ug € H¥(R) for s > 5/2. Assume that
(a) mo > 0 and there exists some point xog € R such that

4
mo(zo) >0, wox(zo) >0, mo(xg) > §U0($0)7 or (5.36)

(b) mo <0 and there exists some point xg € R such that

4
mD(Io) < O, uo,x(mo) < 0, mO(CCQ) > §U0($0)~ (537)



CUBIC NONLINEAR SHALLOW-WATER MODELS 23

Then the corresponding solution u(t,x) blows up in finite time with an estimate of the blow-up time
T* as
1

T < — .
k1mo(zo)uo,. (o)

Proof. Because k1 < 0, the goal is to show that M — +o0 in finite time.
(a) Since now m > 0, m > 0 and k; < 0, we know from (5.35) that @ > 0 and hence u,; > 0. So
uz(t) > 0 if u,(0) > 0. Then the last equation in ([5.34]) suggests that in order to derive a Riccati

type inequality for M , one would like to have m — %ﬂ > em, for some € > 0, that is,

m 2
m . 5.38
u — 3(1—¢) (5.38)
Now we can check the dynamics of m/u.
~ / AN~ A~~~
m 2k1mu PR 1 2k1mu 4
(ﬂ) = —% (mu T 3%2) > —% <mu — 3u2> , (5.39)

where we have used |u;| < u to obtain the last inequality.
Therefore 711/U increases when i > 3. So when m(0) >

4

indicating that we may take € = % in (5.38). Thus from the last equation in ({5.34]) we have

u(0) we have

~

(1) >

D

M > —k M2,
leading to M\(t) — +00 as t — T where T™ satisfies
1

 krmo (o) uo o (x0)

T <
proving part (a).
(b) Similarly as in (a), we can deduce from (5.37)) that
m(t) <0, u(t) <u(0) <0, uy(t) <uy(0)<DO0. (5.40)

To obtain a Riccati type inequality for M , it suffices to ask that m — u < em, for some € > 0,

which leads to (5.38]) again.
Following the dynamics of m/u and keeping track of the signs as in ((5.40)) it follows that (5.39)
O

still holds. Hence the rest of the argument goes the same way as in (a).

5.4.2. The case when k1 > 0. In this case it follows from ([5.34) that
sign(@') = —sign(uy), sign(u, ) = —sign(a). (5.41)
The corresponding blow-up results are as follows.

Theorem 5.8. Suppose that k1 > 0, 2k + 3ky = 0. Let ug € H*(R) for s > 5/2. Assume that
(a) mo > 0 and there exists some point xo € R such that

4
mo(l'o) > 0, uO’x<$0) <0, mO(.CIZ(]) > §u0(~750)7 (5.42)
or
(b) mo < 0 and there exists some point xg € R such that

4
mo(ﬂ?o) < 0, uo,x(mo) > 0, mO(CCQ) < gUO(JUO)y (543)
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Then the corresponding solution u(t,x) blows up in finite time with an estimate of the blow-up time
T* as
1

T < — .
~ kimo(xo)uoz (o)

(5.44)

Proof. Tracking the dynamics of M and using ([5.41]) we see that to obtain a Riccati type inequality
for M it suffices to have ([5.38) for some € > 0, for both cases (a) and (b). Thus computing (m /)’

and using that |u;| < u we get

m\’ ki (. 5 1 2kymuy [ 4,
— | = mMu—-u"—=-uy | >———— (mu—=u" ),

3 u2 3
which implies that

m m

increases if
U u

4
> . 5.45
> (5.5)
This in turn leads to M’ < —kll\/Z 2 and hence the blow-up of M , with an estimate of the blow-up

time as ((b.44)).
Finally the theorem is proved by realizing that (5.45) is satisfied if ([5.42)) or (5.43)) holds. O
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APPENDIX A. COMPUTATION FOR THE DERIVATION OF THE 7 EQUATION

In this section we provide the details in deriving (2.9). Recall the asymptotic expansion of (2.3)
at orders O(e*y?) in Section for i+2j < 4. For the O(e3u!)-order approximation when 0 < z < 1,
the following system is obtained

—P31,¢ = —U31¢ + U217 + (upou21 + urou1r + U20Uo1 )¢
+woot21,z + WioU11,2,
—P31,. = —Wa0,¢ + Wi0,7 + UooWi0,¢ + Ut0Wo0,¢ + (Woow10)2, (A1)

uz ¢ +wsy, =0,

uz1,; — woe = 0.
The boundary condition on z = 0 is w31 = 0, and on z = 1, the conditions read
731 = P31 + 1721P00,z 1 M00P21,2 + N11P10,2 + N10P11,2z + 720P01,2 + 1M01P20,2 + %77302?11,%,
2

w31 + M21We0,z + NooW21,z + N11W10,z + N0W11,2 + N20Wo1,2 + Mo1W20,2 — N21,r + gﬁum,zz
= —M31,¢ + U21M00,¢ + U00M21,¢ + U20M01,¢ + U017M20,6 + U10M11,6 + U11M10,¢ + 700700,6U11,2-

Next, we plug wio = —zm0,¢(¢ = 0,1, 2) which can easily be obtained from [30] into the second
equation in (A.1)). It takes the form of

P31,z = — ZUg0,¢¢ + 2U10,¢r + ZU00U10,¢¢ + 2U10700,6¢ — (WoOW10)2-
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Taking the £ derivative of the above and integrating in z on [1, z], we know

z
P31.¢ —/ P31, edz + pa1gla=1
1

2
zc—1
=3 (= u20eee + wi0.¢er + (voour0,6e + w10M00,66)e) + (Woow1o0)elz=1

(A.2)

1
— (woow10)¢ + M31,¢ + (77107700,55 + 100710,66 + 2M00750.¢ + 577807700’55)6'

On the other hand, we have ug; , = wig¢ and w11, = woo¢ from [30]. Then the first equation in

(A.1)) becomes

—P31,¢ = — u31,¢ + U217 + (uooU21 + utou1l + u20uo1 )¢ + (Woowio)e- (A.3)
Combining (A.2) with (A.3]), it leads to
0 = — us1,¢ + u21,r + (woou21 + urou11 + u20uo1)e + N31,¢ + (Woowio)e|-=1
1
2 2
+ <7710?700,gg + M00M10,¢¢ + 21M007M50,¢ + 577007700’&)5 (A.4)
22 -1
+ (— u20,gee + ur0,66r + (wooui0,e6 + ur0m00,¢¢ )¢ ) -

2
Now we will simplify equation (A.4)). Because the fourth equation in (A.1) gives that
52
u3le = — 5 Uz0gee + 0:®31(7,€).

for some ®31(7,¢) independent of z, the third equation in (A.1) and the boundary condition on
{z = 0} for ws; yield that

z z 23
w31 = w31]z=0 + / w31, dz = —/ uzl ¢ dz’ = G H20.868 — 20cP31 (7, ).
0 0

Hence, combining with the boundary condition for ws; on {z = 1}, we have

1

1
g u20.666 — Oe®31(7,8) = =316 + o1+ + Haglom1 — 5(77307700,56)57

where Hy := ugon21 + u21700 + u20M01 + wo17m20 + w11m10 + wioni1. Therefore ®31(7, £) satisfies
1 1
0:®31(7,6) = M31,6 — M21,7 + gUz06¢ — Hygel.=1 + 5(77807700765)6-
This in turn implies that
22 1

1
Uzle = N31,e — M1, — <2 - 6> ugo,ecc — Haglo=1 + 5(77307700,55)5'

It then follows from (A.4) that

1 1
0 = 2121+ + (u20m01 + Moon21 + w10M11)¢ — §(U1077007701)5 + (Moomo.ee)e — g(nooum,gg)g

5
+ 6(77107700,55) + Hygl.—1 — (u()()/nllﬂ' df) — (ugoHz|2=1)¢ — /7711,7—7 d§ — Har|.=1 (A.5)
3

1

1 1, 3.,
— JWoger + Fungee + (1100.6m0.¢ )¢ + 57 (Moom00.¢)e + 5 (Mootoo ¢ )e

where Ha := ugoni1 + w11700 + 10m01 + Uo1710-
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From [30], it is easy to see that

—2 <7]00/7711,7- df)5 (A.6)

13

3 1 5
= 3(ngoma + moomonon)e — 7 (Moon)e + 3 (Moomo.ge)e + 57 (Moomo.e)e + & (Gomoo e e-

and

/7711,7'7 dg + H2,T’Z=1
3, 3, , 1 1 1 3 A7
—4(77007701)5 4 (77007711)é 1277007710,555 1277107700,555 67710,557 5 (77007}107701)5 (A7)

13, , 53, 3,
+ E(Uoo,wm)& + @(77007700,55)5 — g'Too"oo gg¢-
To obtain an equation for n only, we substitute uig, uo1, u20,u21 and (A.6), (A.7) into (A.5) to
get that
1 3,
0 = 2n21,+ + 3(noon21 + Mo1720 + NioM11)e + 3720666 — 1(77007711 + 2101710700 )¢

3 5 23
+ g(ﬁgoﬁm)g + 6(77107700,555 + Moonio gee) + E(Uoo,gmo,gg + Mo0,e6M10,¢) (A.8)

21 5 3 4
+ 175(?700,5) - E(WOOUOO,{”O(I&) - 1(77007700,§£§)~

The asymptotic expansion introduced before shows
1= 100 + €10 + €220 + €730 + prno1 + epm + €21 + O, ).
In view of [30], the 7;; equations are given by

2100, + 3M007M00,¢ = 0,

1
2101, + 3(n00m01 )¢ + 3"00.gee = 0,

1
2107 + 3(N00M10)¢ — 1(7730)5 =0,

3 3 3
2120, + 3(Moon20 + 577%())5 - 1(77(%07710)5 + @(7730)5 =0

3

3
21307 + 3(M00M30 + M10720)¢ — 1(77(2)07720 + moonio)e + g(’lg’omo)é

23

23 5y _
+192(7700)§ 07

1 3 23 5
2111,7 + 3(Moon11 + M0Mo1)e + 370 — 1(77807701)5 + ﬂ(ﬁgo,g)s + 6(77007700,&6) =0,
and hence (2.9) is obtained.

APPENDIX B. COMPUTATION OF THE HIGHER ORDER TERMS IN THE u EQUATION

In this section we provide the detailed computation for the asymptotic expansion of the surface
equation when substituting the Kodama transformation (3.2)). In Section |3| we already
computed the coefficients in lower order terms. In the following we continue to proceed to the
higher order terms.

Step 4. We now consider Oz(eu) term. Choose C' = M\u2 + Asutiy,. From (B.6), the expression
for wuy is given by
3

1
Up = —Up — SEWg — §(OO(M) + Og(ep)) + MueOg(p) + O(p, 1, €%).
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This operation produces Os(ep) of the form
ep(Ca + Cr) — Mepu(2X2(Uazz + Uaat))

= — 3)\452,uux(uux)x - g)\562uuuxum - <g)\5 - 3)\1)\2) 52,uu(uuag)m
1 1
— Mepuz (Oo(p))z — )‘BEMUMC§OO(M) - (2)\5 - )\1)\2> epuOo () v
A
— Mepug (Op(ep) + 2>\1u500(,u))x - ?‘E’sﬂumOo(su) + As A utigre? uOo (1)

1
- <2/\5 - )\1/\2> epuOo(ep)zz + (N5 — 2M1 A2) A 1% pu(uOo (1)) -
The ep-order term turns out to be
3 1 3 3 1 9
e |:<2>\2 + 5144 — 2V>\2> Ulgrr T <>\1 + 5)\2 + 5143 — 27/)\2> uxum] .
Denote the coefficients of uty, and uzug, by

{qumr = %)\2 =+ %A4 — %I/)\Q,

B.1
Lijug, = A1+ %)\2 + %Ag — %l/)\g. (B.1)

The terms in asymptotic order are
Oa(p?) :=03(1%), Ou(e”) = O3(£?), Ou(e") := O3(e"),

3
O4(e? 1) :=03(p) — 3\ pug (uny)p — ;)\552,uuumum — (2)\5 — 3/\1)\2> 2 pu(uiiy ) gz
1 1
Ou(ep?) :==03(ep”) — Mgz (Oo (1)) — Aseptizz 5 Oo(p) — <2/\5 - )\1>\2> epu(Oo (1)) za,s

A
O4(2?) :=03(?) — Aaepiug (Oo(ep) + 221eu0 (1)) — é’s,uumOo(eu) + As A pung Oo (1)

1
— (2)\5 — )\1)\2) EIUU(O(](&U));M + ()\5 — 2/\1)\2))\162uu(u00(p))m.
Step 5. Next we consider £3-order which has the form

O4(e3) = %Oo(eg) — MeuOp(e?) — (6A3 — 8AD A 130 (uny + uug) — <g)\3 - 6/\%> e3udu,
— § 1 1 3(,,4 3 4 4
= 8)\3 + 8A2 + 4)\1141 € (u )x + 2Xge ((U )x + (u )t),

where we have replaced u; by —u, — %suul«. The coefficient is denoted by

3.1

1
I(u4)m : 8)\3 + SAQ + Z)\1A1. (B.Q)

Also, at e*-order we have

1 3
Os(e?) := 500(54) — MeuOq(e3) — (2)\3 - 2)&) e2u?0p () =121 ut .

Since

A
Op(e?) =&t (/\0 A AN AN+ ?8 + Al/\3> (u®),
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we can simplify Os as
3

1
Os(e*) = 500(54) — MeuOg(e?) — (2)\3 — 2A%> e2u0g(e?)— 12X utu,

1
5( —19X0 + 5\ + 5A1)\% + 549\ + Ag + 5A1)\3)54u4ux

3
— Mgt (1223 + 6AF + 441 M\ + Ag)utu, — (2/\3 — 2A%) (9N + Ar)utug

1 3 49 As 3
4+ ( 942 | * 48 9 3 _ 5
€ 10( 19X 4)\1 + S A1+ 5 2/\3 + 24)\7 51>\1)\3) (u”)g.

Then
1 3 49 Ag 3

Iiysy, = 0 <—19)\0 — 1)\% + @/\1 + T 5)\3 + 2403 — 51)\1)\3> ) (B.3)

and the terms which involve y remain the same.

Step 6. Finally, we consider the e2pu-order which has the form
1 3
Oy(e?p) = 500(52/” — MeuOg(ep) — u? (2)\3 - 2)\%> e200(1) + Aovpn(F2) e
2 3. o 3 2
— 3\ pug (uug ), — 5/\55 LU U — 5)\5 — 3\ e | e pu(uuy ) gy

We choose G = A7uu? + Aguuz, to keep the scaling in the equation. From (3.6]), the expression
1
for uy is given by uy = —uy — Aopt(Upgr + Ugat) — guuzm. We eliminate u; by (3.6)) itself, namely

1
Up = — Uy — gﬂumx + O(ep). (B.4)
Thereby, there appears the relation
1 1 1
52H(Gr + Gt) = _6>\752M2U§Uxxx - §>\752,Uf2uuxumcxx - 6)\852N2uzuxxxxr - g)\852ﬂ2uuxxux:m-

Hence, $O00(¢%) takes the form

1 1 3 3 3
iOo(EQM) = —2ud3(u?) g + S2pAa(un?), + 562/;/\5(112%;5):0 + 5)\2)\1€2u(u2u$x)x

6 2
1 1 1

+ 552,u/\2Al(u2um)x + 52uA1A3(uu§)w + 5144/\182#“2%331: + 552/¢)\1A4u(u2)$m
1 1 1 1

+ §A552,uuuzum + §A662Mu2uzxx + §A762,uui — 6/\752u2u926umm
1 1 1

- g)\752/ﬁ2uuzuxmxw - 6)\852M2u2ux:r:p:vx - g)\852ﬂ2uuaj:pu:pxw-

We now deal with —\ueOg(cp). By definition C' = A\ju2 + Asuug, and (B.4)), it follows that
1 1 1
_2)\152NU(01 + Ct) = _52N2 <_3>\1)\4uuzuzx:px - 6)\1/\5uumxumx:r - 6/\1)\5U2szx:rx> .

Then we know

2
—AueOg(ep) = — Me2p Kg)q + 3o + Ag) UG Uy + (3)\1 4+ 3\ + A4> u2umx]

1 1 1
+ 52M2 <3A1>\4uuxumcxa: + 6)\1)\5uuxxuxmc + 6)\1)\5u2ux1‘xxx> .
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Similarly, we have
3 1 2 1 2
— (2)\3 - 2)\%> €2u200(,u) = — (2/\3 - 3)\%) 2 1P Uy gy — Ao (2/\3 - 3)&) 21120 U s,

and Aovu(Fo2)pe = —)\21/52#(%)\1 + %)(Ug)zmx-
Putting the above together, we have

1 3 9 3 9 3
Os(e?p) = 652pA3(u )z + € 2pdg(unu?), + 3¢ ,uAg,(u2um) + f)\z)qu,u(uQum)z

1 1
+ 562/1)\2141(11 Ugy )z + € /MlAg(uu )z + A4>\15 P U + 28 MA1A4u( )xm

1
+ §A552,uuuxum + 7A6€2,uu2umx + §A7&? ,uuw o ,u(§/\1 + 3 + A3)utyUgy
2 1 2.9\ 2 9 2 Ay
— et 3/\1 + 3o + Ay ) vPugys — 5)\3 — §A1 €7 U Uz — NoVES LU /\1 + 5 () poa
2 3. 9 3 2
— 3 e pug (g )y — §A56 U Uy — 5)\5 =3 M\ ) e pu(uuy) gy

More precisely, the coefficient of these terms are

3 A 1 1
Iu2u:pzz = 5(1 — I/))\l)\g + ?1(1 — I/))\Q + §A4A1 + §A6,
1
quzuzz = 33 — 35 — 9(1 — V))\Q)\l + A1(1 — 31/))\2 + (Ag + 3A4))\1 + 5145 — 2)\%, (B-5)

1 3
Iug = §A7 + A3 — )\QI/(3>\1 + Al) — 5)\4 + A\
In the asymptotic order, we have
2 1 2
Os5(p”) == 500(,“ ) + )‘2VH(FAL)$:E»
1
Os(ep?) == §Oo(s,u2) — AeuOo (%) + Navie(Fep) v
1 1
— Mt (O0(p))s — Mgtz £ Oul) - (2A5 - >\1A2> 4100 (1)
1 3
Os(e?p?) = 50 0(e%p?) — MeuOy(ep?) — (2)\3 - 2)\%) eu?(Oo(1?) + Aova(Flz),) o
A
— Mepug (Og(ep) + 2MueOp(p))z — 75811%9500(5#) + )\5)\1uum€2,u00(u)
1
— </\5 — )\1/\2> epu(Oo(et))zz + (A5 — 2M1 A2) A 12 (uOo (1)) v
2 1 1 1 2.0\ 229
+ 5 1% )\1 3)\4uuxuxmzx + 6)\5uumcumzx + 6)\5u Ugrxxx | — >\2 *>\3 - g)\l EN U Ugpgzaa
1

2 2 2.2 2 2
- *)\75 H UpUgpe — )\75 N UUgpUgrre — 6)\85 MU Upprrr — 3 e ASUUIIUIILE

This procedure can be continued successively, and finally the coefficients of the terms at the order

of e2p2-order are obtained as



30 R.M. CHEN, T. HU, AND Y. LIU

Iu2umxwmac = Cl’ qu’l‘u’l‘l"l"l‘ = AS - 6)\10 - 4A1)\6 + 027

qucumm = A7+ Ag — 104106 — 30A1 A g — 6Ag + CYy, (B'6)

9 15
I“zug%x = 2M7 + g — 15A1 g — 451 g — 5)\9 — ?)\11 + 05,

where C;(i = 1...5) are constants depending on A1, ..., A\s and v, and satisfy the following:
0 1 O —6 )\7 quzuza:zz - 02 + 4141)\6
1 1 —6 0 Ag - Iu%uzm — Cy + (301 + 10A41) X¢ ’
2 1 —% 0 A10 quu%z —C5 + %)\11 + (45)\1 + 15A1)/\6
01 0 -6
. 11 0 -—-15 | . . . .
Note that the 4 x 4 matrix 11 -6 0 is invertible. Thus, for any choice of parameters
2 1 -3 0

and any choice of Ag, A\11, there exists unique tuple A7, Ag, Ag, A1 solve the above equation.
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