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W 1,∞ INSTABILITY OF H1-STABLE PEAKONS

IN THE NOVIKOV EQUATION

ROBIN MING CHEN AND DMITRY E. PELINOVSKY

Abstract. It is known from the previous works that the peakon solutions of the Novikov
equation are orbitally and asymptotically stable in H

1. We prove, via the method of char-
acteristics, that these peakon solutions are unstable under W 1,∞-perturbations. Moreover,
we show that small initial W 1,∞-perturbations of the Novikov peakons can lead to the finite
time blow-up of the corresponding solutions.

1. Introduction

The integrable Novikov equation

ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx (1.1)

is proposed by Novikov [25] from a Lie symmetry analysis of nonlocal partial differential
equations. Reformulating (1.1) in terms of the momentum density m = u − uxx yields the
following evolution form

mt + u2mx +
3

2
(u2)xm = 0. (1.2)

Hence, this Novikov equation can be regarded as a cubic nonlinear generalization of the
Camassa–Holm (CH) equation [3] (derived earlier in [14]):

mt + umx + 2uxm = 0. (1.3)

The Novikov equation shares many common analytical properties with the CH equation.
It belongs to the class of completely integrable equations thanks to the existence of the Lax
pair [18, 25] and the bi-Hamiltonian structure [18]. The Novikov equation can exhibit the
phenomenon of wave-breaking [19] (see also recent work in [5]). Another remarkable feature
of the Novikov equation is the existence of peaked traveling wave solutions (called peakons):

u(t, x) = ϕc(x− ct− x0), c > 0, x0 ∈ R (1.4)

with

ϕc(x) =
√
ce−|x|, x ∈ R, (1.5)

with corner singularities at the peaks [15, 17, 18]. In what follows, we will be dealing with
the peakons propagating with the unit speed, for which we denote ϕ := ϕc=1.
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1.1. Previous works. The (local) well-posedness theory for strong solutions to the Novikov
equation (1.1) is a well-studied subject [16, 24, 26, 27, 29]. However, these results are not
applicable to the scopes of our work since we have to consider weak solutions due to the
wave breaking occurrence and the presence of peakons.

The Novikov equation (1.1) can be rewritten in the convolution form

ut + u2ux + (1− ∂2
x)

−1∂x

(

3

2
uu2

x + u3

)

+ (1− ∂2
x)

−1

(

1

2
u3
x

)

= 0, (1.6)

which suggests H1 ∩ W 1,3 as a natural space for weak solutions. It turns out that, by
incorporating one of the conservation laws

E(u) :=

∫

R

(

u2 + u2
x

)

dx, (1.7)

the existence and uniqueness of global weak solutions can be established in H1∩W 1,∞ under
an additional constraint on the initial datum u0 that m0 := u0 − u0xx is a positive Radon
measure [27, 28]. The sign condition m0 ≥ 0 was replaced by u0 ≥ 0 in [20] and a weak
solution in H1∩W 1,4 with the one-sided L∞ bound on the gradient of u is obtained through a
viscous approximation, at the price of losing the conservation of E and hence the uniqueness
of solutions.

If another conservation law

F (u) :=

∫

R

(

u4 + 2u2u2
x −

1

3
u4
x

)

dx (1.8)

is taken into account, the global weak solution theory can be casted in H1 ∩W 1,4 without
any restrictions on the initial datum [4]. The data-to-solution map is shown to be Lipschitz
continuous on bounded sets of H1 ∩W 1,4 under an optimal transport metric [2].

The importance of the two conservation laws E(u) and F (u) is also manifested in the
stability analysis of the peakons. In [21], a Lyapunov function was constructed from the
two conserved quantities, through which an H1-orbital stability of peakons was established.
Among various assumptions on the initial perturbation u0 ∈ Hs with s ≥ 3, a crucial one in
[21] was positivity of m0 := u0−u0xx. Such a sign property is preserved in the time evolution
of the Novikov equation, from which one can control |ux(t, x)| ≤ |u(t, x)| ≤ E(u0), leading
to a global solution in Hs, s ≥ 3. The same sign condition is a key to the construction of
the Lyapunov function for peakons in [21].

Applying this orbital stability and utilizing the finite speed propagation property, an H1-
asymptotic stability of the Novikov peakon was obtained in [6] for the initial datum u0 ∈ H1

with m0 being a nonnegative Radon measure.
The sign condition on m0, and hence the boundedness of |ux(t, x)|, presents a serious

obstacle in the analysis of W 1,∞-instability of peakons and might even exclude this kind
of instability. Therefore, for our work we need an H1 orbital stability result for the initial
datum without the sign condition on m0. In a recent work [12], such a sign constraint was
removed, at the price that the global strong solutions in [21] were replaced by the local strong
solutions. The following theorem records the corresponding result from [12].

Theorem A(H1-orbital stability) For every 0 < ε ≪ 1 and for every u0 ∈ Hs(R) with
s > 5/2 satisfying

‖u0 − ϕ‖H1 < ε4,
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the corresponding solution u ∈ C([0, T ), Hs) to the Novikov equation (1.1) with initial datum
u0 and the maximal existence time T > 0 satisfies

sup
t∈[0,T )

‖u(t, · )− ϕ( · − ξ(t))‖H1 < 2
(

4 + ‖u0x‖1/2L∞

)

ε

where ξ(t) is a point of maximum of u(t, · ).
Theorem A only considers smooth solutions, whereas for our instability argument we need

to control the evolution of solutions that are only Lipschitz. For this purpose, we need to
reexamine the H1 stability in a weaker regularity framework, which we do in Theorem 3.9.

1.2. Main results and methodology. The purpose of the current work is to understand
the stability of peakons in the Novikov equation under theW 1,∞ perturbations which preserve
the original smoothness of peakons. In particular, we will consider piecewise C1 perturbations
to a single peakon and study their evolution under both the linearized and nonlinear flows
associated to the Novikov equation (1.1). As is formulated in the following two theorems, we
will prove that piecewise C1 perturbations to a single peakon may grow in the W 1,∞ norm
in spite of being bounded in the H1 norm both in the linearized and nonlinear flows.

First we derive in Section 2.1 the Cauchy problem for the linearized evolution of a pertur-
bation v(t, x) to the peakon ϕ(x) in the form

{

vt + (ϕ2 − 1)vx + ϕx [v(t, 0)− ϕv] = 0,

v|t=0 = v0,
(1.9)

which, following the idea of [23], motivates us to work in the space C1
0 ⊂ W 1,∞ defined as

C1
0 :=

{

v ∈ C(R) ∩ C1(R+) ∩ C1(R−) : v, vx ∈ L∞
}

. (1.10)

Hence v0 ∈ C1
0 may have at most one peak at x = 0, which is also a location of the peak of

ϕ. The method of characteristics can thus be implemented to provide an explicit solution to
(1.9) in H1 ∩ C1

0 , allowing one to obtain the following result.

Theorem 1.1 (Linear instability). For any given initial datum v0 ∈ H1 ∩C1
0 , there exists a

unique global solution v ∈ C(R, H1 ∩ C1
0 ) to the linearized problem (1.9) such that

‖v(t, ·)‖2H1(R±) = ‖v0‖2H1(R±) (linear H1 stability) (1.11)

and

‖vx(t, ·)‖L∞(R+) ≥ |v0(0) + v0x(0
+)|et − |v0(0)| (linear W 1,∞ instability) (1.12)

for all t > 0.

The nonlinear analysis is more delicate. The Cauchy problem for the Novikov equation
can be formulated as

{

ut + u2ux +Q[u] = 0, t > 0

u(0, x) = u0(x),
(1.13)

where

Q[u] :=
1

2
ϕx ∗

(

3

2
uu2

x + u3

)

+
1

4
ϕ ∗ u3

x. (1.14)

Similarly as in the linear analysis, we would like to first establish a well-posedness theory of
the evolution of the perturbation v in H1∩C1

0 . Compared with the Camassa–Holm case [23],
the Cauchy problem for v in H1 given by (3.16) was not studied before, hence we cannot use
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the previous well-posedness results. By a careful retooling of the method of characteristics,
the Cauchy problem for v can be transformed to a dynamical system (3.26) where the vector
field on the right-hand side consists of local terms of polynomial type and nonlocal terms
that can be shown to be locally Lipschitz. Hence standard ODE theory applies to imply
local well-posedness if solutions for v in H1 ∩ C1

0 established in Theorem 3.13.
The H1 orbital stability result (Theorem A) suggests that in order for the peakons to be

W 1,∞-unstable, it is necessary to track the dynamics of the gradient vx of the perturbation
and look to show that ‖vx‖L∞ exhibit substantial growth. However Theorem A only treats
strong solutions, and therefore a similar result in the weak solution framework is needed and
is established in Theorem 3.9.

The key ingredient in proving the H1 orbital stability is to construct a Lyapunov function
using the two conservation laws E and F similar to what is done in [12]. For strong solutions,
the conservation laws can be easily checked by utilizing the bi-Hamiltonian structure of
the equation. However for weak solutions this becomes more delicate. Our strategy is
based on regularizing the system and commuting the regularization with nonlinearity. The
conservation laws can then be realized by deriving crucial commutator estimates in order
to show that the remainder terms converge to zero as the regularization parameter tends to
zero as is done in Lemma 3.8.

It turns out that the dynamics of vx simplifies when restricted at the peak location, see
equation (3.28). The corresponding differential equation consists of a Ricatti-like term, the
terms that involve interaction with v, and a nonlocal term. The orbital stability ensures that
all the interaction terms are small. Another important consequence of the orbital stability
is that the nonlocal term is also small. This way a Ricatti-type inequality can be obtained,
which in turn leads to a finite time blow-up.

Theorem 1.2 (Nonlinear instability). For every δ > 0, there exist t0 > 0 and u0 ∈ H1 ∩C1
0

satisfying

‖u0 − ϕ‖H1 + ‖u0x − ϕx‖L∞ < δ, (1.15)

such that the unique solution u ∈ C([0, T ), H1 ∩W 1,∞) to the Cauchy problem (1.13) with
the initial datum u0 and the maximal existence time T > t0 satisfies u(t, · + a(t)) ∈ C1

0 for
t ∈ [0, T ) and

‖ux(t0, ·)− ϕx(· − a(t0))‖L∞ > 1, (1.16)

where a(t) is a point of peak of u(t, ·) for t ∈ [0, T ) such that a(0) = 0. Moreover, there
exist initial datum u0 satisfying (1.15) such that T < ∞ for the corresponding solution
u ∈ C([0, T ), H1 ∩W 1,∞).

Remark 1.3. The results of Theorems 1.1 and 1.2 are very similar to the results found in [23]
for the CH equation (1.3) except that the H1 norm of the peaked perturbation grows in the
linear evolution of the CH equation, whereas the H1 norm does not grow for the linearized
Novikov equation. The discrepancy between the two results confirm the previous intuition
[10] that the linearized evolution in H1 does not imply anything for the nonlinear evolution
of the quasilinear equations with peakons and wave breaking.

Remark 1.4. An interesting outcome of our instability theorem is that it provides a new way
to generate wave breaking in the weak solution setting. To the best of the authors’ knowledge,
so far the vast literature on the blow-up analysis for quasilinear integrable equations, like
the Camassa–Holm equation [1, 3, 7, 8, 14], the Degasperis-Procesi equation [5, 11, 13, 22],
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and the Novikov equation [5, 19], is performed in the framework of strong solutions. It is
plausible that the idea used here can be extended to other peakon models.

2. Linear analysis

Here we investigate the linear stability of peakons and prove Theorem 1.1. For simplicity,
we consider a single peakon (1.4) traveling with the unit speed c = 1 and denote it by
ϕ(x) ≡ ϕc=1(x) = e−|x|. Note that 1

2
ϕ(x) is the Green’s function of 1− ∂2

x on R, that is,

(1− ∂2
x)ϕ = 2δ0, (1− ∂2

x)
−1f =

1

2
ϕ ∗ f. (2.1)

Some further properties of ϕ are given by

ϕ2
x(x) = ϕ2(x), x ∈ R\{0} (2.2)

and

‖ϕ‖L2 = ‖ϕ‖L2 = ‖ϕ‖L∞ = ‖ϕx‖L∞ = 1. (2.3)

In what follows, we derive the linearized problem (1.9), solve it by means of characteristics,
and finally obtain relevant estimates for the proof of Theorem 1.1.

2.1. Derivation of the linearized problem. To study the linearization of (1.6) around
ϕ, we decompose u(t, x) as the sum of a modulated peakon and its perturbation v in the
form:

u(t, x) = ϕ(x− a(t)) + v(t, x− a(t)). (2.4)

The stationary equation for peakon ϕ is defined for every x 6= 0 in the form:

(ϕ2 − 1)ϕ′ +Q[ϕ] = 0, (2.5)

where Q is given by (1.14). When we plug in (2.4) and (2.5) into (1.6) and truncate at the
linear terms in v, we obtain the linearized equation for v in the form:

(1− ȧ)ϕx + vt − ȧvx + (ϕ2v)x +
3

2
ϕx ∗

(

ϕ2v +
1

2
ϕ2
xv + ϕϕxvx

)

+
3

4
ϕ ∗

(

ϕ2
xvx

)

= 0. (2.6)

The following proposition allows us to simplify the nonlocal terms in (2.6) and write it in
the local form (1.9).

Proposition 2.1. For v ∈ H1 we have

3

2
ϕx ∗

(

ϕ2v +
1

2
ϕ2
xv + ϕϕxvx

)

+
3

4
ϕ ∗

(

ϕ2
xvx

)

= 3ϕx [v(0)− ϕv] . (2.7)

Proof. By using (2.2) and integrating by parts, we obtain

3

4
ϕ ∗

(

ϕ2
xvx

)

=
3

4
ϕ ∗

(

ϕ2vx
)

=
3

4
ϕx ∗

(

ϕ2v
)

− 3

4
ϕ ∗

[

(ϕ2)xv
]

.
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From (2.1) we see that ϕxx = ϕ− 2δ0, and hence further using ϕ(0) = 1 and integrating by
parts, we obtain

3

2
ϕx ∗ (ϕϕxvx) =

3

4
ϕx ∗

[

(ϕ2)xvx
]

=
3

4
ϕxx ∗

[

(ϕ2)xv
]

− 3

4
ϕx ∗

[

(ϕ2)xxv
]

=
3

4
ϕ ∗

[

(ϕ2)xv
]

− 3

2
(ϕ2)xv − 3ϕx ∗

[

(ϕ2 − δ0ϕ)v
]

=
3

4
ϕ ∗

[

(ϕ2)xv
]

− 3ϕx ∗
(

ϕ2v
)

− 3ϕϕxv + 3ϕxv(0).

Substituting the two representations into the left-hand side of (2.7) completes the proof of
the proposition. �

From Proposition 2.1 we rewrite the nonlocal term in (2.6) in the local form:

(1− ȧ)ϕx + vt − ȧvx + (ϕ2v)x + 3ϕx [v(t, 0)− ϕv] = 0, (2.8)

where if v ∈ C(R), then the last term is continuous everywhere including x = 0 thanks to
ϕ(0) = 1. Since ϕx is continuous everywhere except at the origin, the other terms of the
linearized equation (2.8) are continuous at x = 0 if

ȧ(t) = 1 + 2v(t, 0) +O(v(t, 0)2) (2.9)

where the remainder term in (2.9) is truncated at the linear approximation. Plugging (2.9)
into (2.8) and keeping only the linear terms in v, we finally obtain the Cauchy problem (1.9)
for the linearized equation at a single peakon.

2.2. Solution to the linearized problem. Following the idea of [23], we will solve the
linearized problem (1.9) using the method of characteristics. For this, we first define the
characteristic curves q(t, s) as







dq

dt
= ϕ2(q)− 1,

q(0, s) = s.
(2.10)

For any fixed s ∈ R, the initial-value problem (2.10) has a unique solution since ϕ is Lipschitz.
Moreover, it follows that

qs(t, s) = exp

(
∫ t

0

2ϕϕx(q(τ, s)) dτ

)

> 0 (2.11)

hence q(t, ·) is a diffeomorphism on R for any t ∈ R.
Since ϕ(0) = 1, we have q(t, 0) = 0 for any t ∈ R, meaning that the location of the peak

of ϕ is invariant under the flow of system (2.10). Solving (2.10) explicitly, we obtain that

q(t, s) =































1

2
log

[

1 +
(

e2s − 1
)

e−2t
]

, s > 0,

0, x = 0,

−1

2
log

[

1 +
(

e−2s − 1
)

e2t
]

, s < 0.

(2.12)

From (2.12) it follows that q(t, s) → 0 as s → 0±. Define

V (t, s) := v(t, q(t, s)). (2.13)
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From (2.12) we know that when solving (1.9) along the characteristics q, we can consider
characteristics with s > 0 separately from characteristics with s < 0. This corresponds to
partitioning of R into R

+ and R
− in the physical space and suggests us to consider solutions

v(t, ·) ∈ H1 ∩ C1
0 for any t ∈ R, where C1

0 ⊂ W 1,∞ is given by (1.10). It follows from (1.9)
and (2.10) that V (t, s) satisfy







dV

dt
= ϕx(q) [ϕ(q)V − V (t, 0)] ,

V (0, s) = v0(s),
(2.14)

where we have used that V (t, 0) = v(t, q(t, 0)) = v(t, 0). It follows from (2.14) as s → 0+

that if V (t, ·) ∈ C(R) for t ∈ R, then V (t, 0) = V (0, 0) = v(0, 0) = v0(0). Therefore, for
s > 0 we are solving







dV

dt
= −e2q(t,s)V + e−q(t,s)v0(0),

V (0, s) = v0(s).
(2.15)

Direct computation yields the unique solution to the initial-value problem (2.15) in the form:

V (t, s) =
v0(s) + v0(0)(e

t − 1)e−s

√

1 + (e2t − 1)e−2s
, s > 0. (2.16)

Clearly we see that lim
s→0+

V (t, s) = v0(0). Similarly, for s < 0 we obtain the unique solution

in the form:

V (t, s) =
v0(s)− v0(0)(1− e−t)es

√

1− (1− e−2t)e2s
, s < 0, (2.17)

satisfying lim
s→0−

V (t, s) = v0(0).

One can also compute explicitly the evolution of vx along the characteristics. Define

W (t, s) := vx(t, q(t, s)). (2.18)

Chain rule implies that

W (s, t) =
Vs(t, s)

qs(t, s)
. (2.19)

From (2.12), (2.16), and (2.19) we obtain that

W (t, s) =
√

1 + (e2t − 1)e−2s
[

v′0(s)− v0(0)(e
t − 1)e−s

]

+
(e2t − 1)e−2s [v0(s) + v0(0)(e

t − 1)e−s]
√

1 + (e2t − 1)e−2s
, s > 0.

(2.20)

It follows from (2.20) as s → 0+ that

lim
s→0+

W (t, s) = v0(0)(e
t − 1) + v′0(0

+)et. (2.21)

Hence, the gradient limx→0+ v(t, x) = lims→0+ W (t, s) grows exponentially in time. Similarly,
from (2.12), (2.17), and (2.19) we obtain that

W (t, s) =
√

1 + (e−2t − 1)e2s
[

v′0(s)− v0(0)(1− e−t)es
]

+
(1− e−2t)e2s [v0(s)− v0(0)(1− e−t)es]

√

1− (1− e−2t)e2s
, s < 0,

(2.22)
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from which we obtain

lim
s→0−

W (t, s) = v0(0)(1− e−t) + v′0(0
−)e−t. (2.23)

Hence, the gradient limx→0− v(t, x) = lims→0− W (t, s) decays exponentially in time.
The following lemma justifies the solution constructed in (2.12), (2.16), (2.17), (2.20), and

(2.22) and provides useful estimates.

Lemma 2.2. For any v0 ∈ H1∩C1
0 , the Cauchy problem (1.9) admits a unique global solution

v ∈ C(R;H1 ∩ C1
0) satisfying the estimates:

‖v(t, ·)‖L∞(R+) ≤ |v0(0)|+ ‖v0‖L∞(R+), (2.24)

‖vx(t, ·)‖L∞(R+) ≥ |v0(0) + v′0(0
+)|et − |v0(0)|, (2.25)

for any t > 0.

Proof. If v0 ∈ H1 ∩ C1
0 , then the solution in (2.16) and (2.17) satisfies V (t, ·) ∈ H1 ∩ C1

0 for
any t ∈ R so that V (t, ·) is locally Lipschitz continuous everywhere on R. By the existence
and uniqueness theory for differential equations, V (t, s) is the unique solution of the initial-
value problem (2.14) in this class of functions. Moveover, thanks to the property (2.11) and
the property q(t, s) ∼ s as |s| → ∞, we have v(t, ·) ∈ H1 ∩ C1

0 for any t ∈ R.
Since q is a diffeomorphism on R

+ → R
+ and R

− → R
−, we have

‖v‖L∞(R±) = ‖V ‖L∞(R±), ‖vx‖L∞(R±) = ‖W‖L∞(R±).

From (2.16) we infer that

|V (t, s)| ≤ |v0(s)|+ |v0(0)|, s > 0,

which yields (2.24). It follows from (2.21) that

‖W (t, ·)‖L∞(R+) ≥ lim
s→0+

|W (t, s)| ≥
∣

∣v0(0) + v′0(0
+)
∣

∣ et − |v0(0)|,

which yields (2.25). �

Remark 2.3. Even if v0 ∈ H1∩C1, the solution of the linearized problem (1.9) only exists in
v(t, ·) ∈ H1∩C1

0 because the jump of the derivative vx across x = 0 appears instantaneously
in time:

[vx(t, x)]
+
− := lim

x→0+
vx(t, x)− lim

x→0−
vx(t, x) = 2v0(0)(cosh t− 1) + 2v′0(0) sinh t,

where v′0(0) = limx→0+ v0x(x) = limx→0− v0x(x).

2.3. H1 conservation of v. Estimate (2.25) in Lemma 2.2 indicates the linear W 1,∞ in-
stability of the Novikov peakons. For the Camassa–Holm peakons it is showed [23] that the
perturbation are also H1 linearly unstable. However for Novikov peakons, we will prove that
the H1 norm of the linearized perturbation v satisfying (1.9) is conserved for all time.

Lemma 2.4. The unique global solution v ∈ C(R;H1 ∩ C1
0 ) in Lemma 2.2 satisfies

‖v(t, ·)‖2H1(R±) = ‖v0‖2H1(R±) (2.26)

for every t ∈ R.
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Proof. Multiplying the linearized equation (1.9) by v and integrating on R
+ using integration

by parts we have

1

2

d

dt
‖v‖2L2(R+) − 2

∫ ∞

0

ϕϕxv
2 dx+ v(t, 0)

∫ ∞

0

ϕxv dx = 0. (2.27)

Differentiating (1.9) with respect to x yields

vxt + (ϕ2vx)x − vxx + ϕxxv(0)− (ϕϕxv)x = 0 (2.28)

Multiplying (2.28 by vx and integrating over R+, we obtain

1

2

d

dt
‖vx‖2L2(R+) +

∫ ∞

0

(

(ϕ2)xv
2
x + ϕ2vxvxx

)

dx−
∫ ∞

0

vxvxx dx+ v(t, 0)

∫ ∞

0

ϕvx dx

−
∫ ∞

0

(

2ϕ2vvx + ϕϕxv
2
x

)

dx = 0.

(2.29)

where we have used that ϕxx = ϕ and ϕ2
x = ϕ2 on R

+. Using the fact that ϕ(0) = 1,
ϕx(0

+) = −1, we integrate by parts and simplify (2.29) to the form:

1

2

d

dt
‖vx‖2L2(R+) + 2

∫ ∞

0

ϕϕxv
2 dx− v(t, 0)

∫ ∞

0

ϕxv dx = 0. (2.30)

Adding (2.27) and (2.30) yields

d

dt
‖v‖2H1(R+) = 0, ⇒ ‖v(t, ·)‖2H1(R+) = ‖v0‖2H1(R+), for all t > 0.

Similarly we can prove the same result on R
−, and hence we conclude the proof. �

Remark 2.5. Lemma 2.4 can be proven by integrating the explicit solutions (2.16) and (2.20)
on R

+ along the characteristics (2.12) with the chain rule:

‖v(t, ·)‖2H1(R+) =

∫ ∞

0

[

V (t, s)2 +W (t, s)2
]

qs(t, s)ds = ‖v0‖2H1(R+),

and similarly with the explicit solutions (2.17) and (2.22) on R
−.

Proof of Theorem 1.1. Lemma 2.2 gives the existence of the unique solution v ∈ C(R, H1∩C1
0 )

to the linearized problem (1.9) for any initial datum v0 ∈ H1 ∩ C1
0 satisfying the estimate

(1.12). Lemma 2.4 gives the H1 conservation (2.26). �

3. Nonlinear analysis

Here we investigate the nonlinear dynamics of perturbations near a single peakon and
prove Theorem 1.2. In what follows, we review weak solutions for the Cauchy problem
(1.13), obtain an improved version of the H1-orbital stability of a single peakon compared to
Theorem A, derive the nonlinear system for peaked perturbations to a single peakon, solve
this system with the method of characteristics, and obtain relevant estimates for the proof
of Theorem 1.2.
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3.1. Weak solution theory. Let’s first recall two known results for global weak solutions
to the Cauchy problem of the Novikov equation (1.13). The first result holds for initial
datum u0 ∈ H1 and assumes the sign condition on m0 := u0 − u0,xx.

Theorem 3.1 ([28]). For any u0 ∈ H1 with m0 ∈ M+(R), where M+ is the space of non-
negative finite Radon measures on R, the Cauchy problem (1.13) admits a unique global weak
solution u ∈ W 1,∞(R+ ×R) ∩C(R+;H1(R)) such that m(t, ·) ∈ M+(R) for all t > 0, where
m := u− uxx. Moreover, E(u) and F (u) are conservation laws.

Remark 3.2. The statement we give in Theorem 3.1 is stronger than the original statement
of [28, Theorem 3.1]. Firstly, the solution constructed in [28] has weaker regularity u ∈
L∞(R+;H1(R)). However one can improve it to the strong topology u ∈ C(R+;H1(R)) by
further using the conservation of E(u). Secondly, [28] only asserts the conservation of E(u).
In fact a direct computation, see the proof of Lemma 3.8, allows one to further prove the
conservation of F (u).

The next result holds for the initial datum u0 in the natural energy space H1 ∩ W 1,4

without the sign condition on m0.

Theorem 3.3 ([4]). Given u0 ∈ H1∩W 1,4. Then the Cauchy problem (1.13) admits a unique
global weak solution u(t, · ) ∈ H1∩W 1,4 for all t ≥ 0. Moreover, E(u) is a conservation law.

Remark 3.4. For the instability analysis, we need to work with the initial datum u0 in the
restrictive function space H1 ∩ W 1,∞ without the sign condition on m0, for which neither
Theorem 3.1 nor Theorem 3.3 is applicable. One of the reasons is that weak solutions in
H1 ∩W 1,∞ enjoy (spatial) Lipschitz regularity which suits well for the standard theory for
solvability of differential equations along the characteristics. The other reason is due to the
fact that while E(u) conserves for the weak solutions in H1∩W 1,4, F (u) is only conserved for
almost every t > 0 [4]. Although no previous local well-posedness theory has been developed
for the Cauchy problem (1.13) in H1 ∩W 1,∞, we will obtain the local well-posedness from
the method of characteristics under the assumption that our solution in H1 ∩W 1,∞ consists
of a single peakon perturbed by a single-peaked piecewise C1 function, see Theorem 3.13.

Next we state the regularity of the nonlocal terms in (1.13). A similar argument as in [23,
Lemma 5] combined with the estimates in [4, Section 2] leads to

Lemma 3.5. If u ∈ H1 ∩W 1,∞, then Q[u] ∈ C(R). If u ∈ H1 ∩ C1
0 , then Q[u] ∈ C1

0 .

Following [23], the function class we use here is C1
0 which is suited for capturing the single

peak in the peaked solution u. Similarly to [23, Lemma 6], the location of the peak moves
with its local characteristic speed.

Lemma 3.6. Assume that there exists the unique weak solution u ∈ C([0, T ), H1 ∩ W 1,∞)
to the Cauchy problem (1.13) for some T > 0 with a jump of ux across x = a(t) such that
u(t, · + a(t)) ∈ C1

0 , t ∈ [0, T ). Then, we have a ∈ C1(0, T ) and a′(t) = u2(t, a(t)), for
t ∈ [0, T ).

Assuming local well-posedness of the Cauchy problem (1.13) for u0 ∈ H1∩W 1,∞, we shall
extend the result of Theorem A to prove the orbital stability of the single peakon ϕ in H1,
see Theorem 3.9.
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3.2. H1-orbital stability of peakons for single-peaked perturbations. Let us first
recall the following characterization of W 1,p functions in terms of the integrability of their
spatial shifts.

Theorem 3.7 ([30] Theorem 2.1.6). Let 1 ≤ p < ∞. Then u ∈ W 1,p(Rd) if and only if
u ∈ Lp(Rd) and the quantity

∫

Rd

∣

∣

∣

∣

u(x+ h)− u(x)

h

∣

∣

∣

∣

p

dx

remains bounded for all h ∈ R
d.

We show now that the two functionals E(u) and F (u) are still conserved for the same
weak solutions as those assumed in Lemma 3.6.

Lemma 3.8. Assume that there exists the unique weak solution u ∈ C([0, T ), H1 ∩ W 1,∞)
to the Cauchy problem (1.13) for some T > 0. Then, the values of E(u) and F (u) are
conserved.

Proof. Rewrite the convolution form (1.6) of the Novikov equation as follows:

ut + u2ux + ∂xP1(u, ux) + P2(ux) = 0, (3.1)

where

P1(u, ux) :=
1

2
ϕ ∗

(

3

2
uu2

x + u3

)

, P2(ux) :=
1

4
ϕ ∗ (u3

x).

Differentiating (3.1) in x and using that (1− ∂2
x)ϕ = 2δ we obtain

uxt + (u2ux)x −
(

3

2
uu2

x + u3

)

+ P1(u, ux) + ∂xP2(ux) = 0. (3.2)

For analysis of conservation laws, we will regularize the evolution equations (3.1) and (3.2).
Let ε > 0 and define

u(x) := ηε ∗ u(x),
where ηε(x) :=

1
ε
η
(

x
ε

)

and η ≥ 0 is a smooth even function compactly supported in a ball of
radius 1, and with integral equal to 1.

Applying the mollifier ηε to (3.1) and using the cummutative and associative properties
of the convolution, we obtain

ut + u2ux + ∂xP1(u, ux) + P2(ux) = R1, (3.3)

where
R1 := u2ux − u2ux + ∂xP1(u, ux)− ∂xP1(u, ux) + P2(ux)− P2(ux).

Similarly, from (3.2) we have

uxt + (u2ux)x −
(

3

2
u ux

2 + u3

)

+ P1(u, ux) + ∂xP2(ux) = R2, (3.4)

where

R2 := (u2ux)x − (u2ux)x −
(

3

2
u ux

2 + u3

)

+
3

2
uu2

x + u3

+ P1(u, ux)− P1(u, ux) + ∂xP2(ux)− ∂xP2(ux).

We are now able to verify conservation of E(u) and F (u).
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Conservation of E(u): Following [4, Section 2], multiplying (3.3) by u and (3.4) by ux

we obtain a regularized local conservation law:

∂t

(

u2 + ux
2

2

)

+ ∂x

(

u2ux
2

2
+ uP1(u, ux) + u∂xP2(ux)

)

= uR1 + uxR2. (3.5)

Integration over R then gives

1

2

d

dt
E(u) =

∫

R

{

1

3
u
(

u3 − u3
)

x
+

1

3
ux

(

u3 − u3
)

xx
+

3

2
ux

(

u ux
2 − uu2

x

)

+ ux

(

u3 − u3
)

+
1

2
u
(

ux
3 − u3

x

)

}

dx

(3.6)

Note that u ∈ H1 ∩W 1,∞, and hence u, ux ∈ Lp for any 2 ≤ p ≤ ∞. The properties of
smooth approximation imply that

‖u− u‖Lp(R) → 0, ‖ux − ux‖Lp(R) → 0, as ε → 0. (3.7)

This way we know that the first, fourth, and fifth terms in the right-hand side of (3.6) all
converge to zero as ε → 0.

For the third term, note that we can write

u ux
2 − uu2

x = u
(

ux
2 − u2

x

)

+
(

u u2
x − uu2

x

)

= u
(

ux
2 − u2

x

)

+ u
(

u2
x − u2

x

)

+
(

u u2
x − uu2

x

)

.

The first two terms of the above can be treated using (3.7). For the last term, we can recall
[9, Lemma 3], which states that if f is uniformly continuous and bounded, and µ ∈ M(R),

then fµ− fµ → 0 in L1. Since u is Lipschitz and u2
x ∈ L1, we have that u u2

x − uu2
x → 0 in

L1. Therefore, the third term in the right-hand side of (3.6) converges to zero as ε → 0.
Finally we look to show that

∫

R

ux

(

u3 − u3
)

xx
dx =

∫

R

uxxx

(

u3 − u3
)

dx → 0 as ε → 0.

Since the above obviously holds for smooth functions, one can use the Banach–Steinhaus

theorem to observe that it is enough to show that
∥

∥

∥
uxxx(u

3 − u3)
∥

∥

∥

L1
is uniformly bounded.

To this end, note that

|uxxx(x)| =
1

ε4

∣

∣

∣

∣

∫ ε

−ε

u(x− y)η′′′
(y

ε

)

dy

∣

∣

∣

∣

=
1

ε4

∣

∣

∣

∣

∫ ε

−ε

(u(x− y)− u(x)) η′′′
(y

ε

)

dy

∣

∣

∣

∣

≤ 1

ε4

∫ ε

−ε

|u(x− y)− u(x)|
|y|

∣

∣

∣
η′′′

(y

ε

)
∣

∣

∣
|y| dy .

1

ε2
‖ux‖L∞ .

(3.8)

It is also straightforward to check that

u3 − u3 = r3(u) + (u− u)3 + 3ur2(u)− 3u(u− u)2,

where

rn(u) :=

∫ ε

−ε

(u(x− y)− u(x))n ηε(y) dy
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This way

|rn(u)(x)| ≤
∫ ε

−ε

( |u(x− y)− u(x)|
|y|

)n

ηε(y)|y|n dy

≤ εn
∫ ε

−ε

( |u(x− y)− u(x)|
|y|

)n

ηε(y) dy.

Moreover it follows from Hölder’s inequality that

|u− u|n =

∣

∣

∣

∣

∫ ε

−ε

(u(x− y)− u(x)) ηε(y) dy

∣

∣

∣

∣

n

≤
(
∫ ε

−ε

ηε(y) dy

)n−1(∫ ε

−ε

|u(x− y)− u(x)|n ηε(y) dy
)

= |rn(u)(x)| .
An application of Fubini Theorem together with Theorem 3.7 implies that

‖rn(u)‖L1 ≤ εn
∫

R

∫ ε

−ε

( |u(x− y)− u(x)|
|y|

)n

ηε(y) dydx

≤ εn
∫ ε

−ε

[
∫

R

( |u(x− y)− u(x)|
|y|

)n

dx

]

ηε(y) dy

≤ εn‖u‖nW 1,n.

(3.9)

From (3.8) and (3.9) it follows that
∥

∥

∥
uxxx(u

3 − u3)
∥

∥

∥

L1
. ‖ux‖L∞

(

ε‖u‖3W 1,3 + ‖u‖2H1

)

.

Putting together the above estimates we obtain that

d

dt
E(u) → 0, as ε → 0,

which proves the conservation of E(u).

Conservation of F (u): Similarly as before, to get the conservation law for F (u) we
multiply (3.1) by 4u3 + 2u ux

2, multiply (3.2) by −4
3
ux

3 + 2u2ux and integrate over R we
have

d

dt
F (u) =

∫

R

[

(4u3 + 2u ux
2)R1 +

(

2u2ux −
4

3
ux

3

)

R2

]

dx.

The rest of the proof follows in a similar way. �

Since the proof of Theorem A in [12] only makes use of the continuity of the solution and
the conservation of E and F , we can recast the same idea in our current regularity setting
to obtain the following result.

Theorem 3.9. For every 0 < ε ≪ 1, let u0 ∈ H1 ∩ C1
0 satisfy

‖u0 − ϕ‖H1 < ε4.

Assume existence of the unique weak solution u ∈ C([0, T ), H1∩W 1,∞) to the Cauchy problem
(1.13) with the initial datum u0 and the maximal existence time T > 0 such that u(t, ·+a(t)) ∈
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C1
0 , t ∈ [0, T ) for some a ∈ C1([0, T ) with a(0) = 0. The corresponding solution u satisfies

sup
t∈[0,T )

‖u(t, · )− ϕ( · − a(t))‖H1 < 2
(

4 + ‖u0x‖1/2L∞

)

ε.

Remark 3.10. Because u(t, · + a(t)) ∈ C1
0 is H1 close to ϕ in Theorem 3.9, it follows from

continuous embedding of H1 to C0 and monotonicity of ϕ with limx→0± ϕx(x) = ∓1 that the
location of the peak at a(t) in Theorem 3.9 coincides with the location of the maximum of
u at ξ(t) in Theorem A.

3.3. Derivation of the evolution problem for perturbations to a single peakon. We
shall construct a unique weak solution u ∈ C([0, T ), H1∩W 1,∞) to the Cauchy problem (1.13)
for some T > 0 with a single jump of ux across x = a(t). We use the same decomposition (2.4)
and look for the modulation a ∈ C1(0, T ) and the perturbation v ∈ C([0, T ), H1 ∩W 1,∞) to
the peakon ϕ. If v(t, ·) ∈ C1

0 for all t ∈ [0, T ), then the solution u satisfies u(t, ·+a(t)) ∈ C1
0 ,

t ∈ [0, T ) so that Lemma 3.6 implies that a ∈ C1(0, T ) satisfies the following modulation
equation:

ȧ(t) = u2(t, a(t)) = (ϕ(0) + v(t, 0))2 = (1 + v(t, 0))2. (3.10)

Note that the linear part of this modulation equation has already been used in the linearized
equation (2.9). Thus, the problem of constructing the local solution u ∈ C([0, T ), H1∩W 1,∞)
is now replaced by the problem of constructing the local solution v ∈ C([0, T ), H1 ∩W 1,∞)
such that v(t, ·) ∈ C1

0 for all t ∈ [0, T ).
Substituting (2.4) and (3.10) into (1.13) yields the following equation:

vt − (1 + v(t, 0))2(ϕx + vx) + ϕ2ϕx + (ϕ2v + ϕv2)x + v2vx +Q[ϕ + v] = 0. (3.11)

Canceling the stationary equation (2.5) for ϕ and grouping the linear, quadratic, and cubic
terms together, we obtain the evolution equation for v in the form:

vt +N1(v) +N2(v) +N3(v) = 0, (3.12)

where

N1(v) =
[

ϕ2 − 1
]

vx + 2ϕx [ϕv − v(t, 0)] +
3

2
ϕx ∗

(

ϕ2v +
1

2
ϕ2
xv + ϕϕxvx

)

+
3

4
ϕ ∗

(

ϕ2
xvx

)

,

N2(v) = 2 [ϕv − v(t, 0)] vx + ϕx

[

v2 − v2(t, 0)
]

+
1

2
ϕx ∗

(

3

2
ϕv2x + 3ϕxvvx + 3ϕv2

)

+
3

4
ϕ ∗

(

ϕxv
2
x

)

N3(v) =
[

v2 − v2(t, 0)
]

vx +Q[v].

By Proposition 2.1, the linear part is reduced to the local form:

N1(v) =
[

ϕ2 − 1
]

vx − ϕx [ϕv − v(t, 0)] . (3.13)

In order to simplify the quadratic part, we use the following proposition

Proposition 3.11. Let f ∈ L1(R). Then

ϕx ∗ (ϕf) + ϕ ∗ (ϕxf) = −2ϕ

∫ x

0

ϕ(y)f(y) dy. (3.14)
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Proof. Since ϕx = −sgn(x)ϕ, direct computation shows that

ϕx ∗ (ϕf) + ϕ ∗ (ϕxf) = e−x

∫ x

−∞

(ϕy − ϕ) f(y) dy + ex
∫ ∞

x

(ϕy + ϕ) f(y) dy

= e−x

∫ x

0

(ϕy − ϕ) f(y) dy + ex
∫ 0

x

(ϕy + ϕ) f(y) dy

= −2ϕ

∫ x

0

ϕ(y)f(y) dy,

which is (3.14). �

Using Proposition 3.11, we prove the following proposition:

Proposition 3.12. For v ∈ H1 we have

1

2
ϕx ∗

(

3

2
ϕv2x + 3ϕxvvx + 3ϕv2

)

+
3

4
ϕ ∗

(

ϕxv
2
x

)

= −3

2
ϕx

[

v2 − v2(t, 0)
]

− 3

2
ϕ

∫ x

0

ϕ(v2 + v2y) dy.

Proof. Integrating by parts and using (2.1), we obtain

3

2
ϕx ∗ (ϕxvvx) =

3

4
ϕ ∗

(

ϕxv
2
)

− 3

2
ϕxv

2 − 3

4
ϕx ∗

(

ϕv2
)

+
3

2
ϕxv

2(t, 0).

Combining with other convolution terms, we obtain

3

4
ϕx ∗

(

ϕ(v2 + v2x)
)

+
3

4
ϕ ∗

(

ϕx(v
2 + v2x)

)

= −3

2
ϕ

∫ x

0

ϕ(v2 + v2y) dy,

where the result of Proposition 3.11 has been used. �

By Proposition 3.12, the quadratic part is reduced to the simple form:

N2(v) = 2 [ϕv − v(t, 0)] vx −
1

2
ϕx

[

v2 − v2(t, 0)
]

− 3

2
ϕ

∫ x

0

ϕ(v2 + v2y) dy. (3.15)

Putting (3.13) and (3.15) into (3.12), we obtain the Cauchy problem for the perturbation v
to the peakon ϕ in the following form:























vt +
[

(ϕ+ v)2 − (1 + v(t, 0))2
]

vx − ϕx (ϕv − v(t, 0))− 1

2
ϕx

(

v2 − v2(t, 0)
)

− 3

2
ϕ

∫ x

0

ϕ(v2 + v2y) dy +Q[v] = 0,

v(0, x) = v0(x).

(3.16)

As discussed above, the small initial datum v0 belongs to the space H1 ∩ C1
0 and we are

looking for the unique local weak solution v ∈ C([0, T ), H1∩W 1,∞) to the evolution problem
(3.16) for some T > 0 such that v(t, ·) ∈ C1

0 for all t ∈ [0, T ). The following result states
local well-posedness of the Cauchy problem (3.16).

Theorem 3.13. For every initial datum v0 ∈ H1 ∩ C1
0 , there exist the maximal existence

time T > 0 and the unique solution v ∈ C([0, T ), H1 ∩ C1
0) to the Cauchy problem (3.16)

that depends continuously on the initial datum v0 ∈ H1 ∩ C1
0 .

Theorem 3.13 is proven next by using the method of characteristics.
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3.4. Solution to the evolution problem. The evolution problem (3.16) suggests us to
work with the characteristics q(t, s) which satisfy the following evolution problem:







dq

dt
= [ϕ(q) + v(t, q)]2 − [1 + v(t, 0)]2 ,

q(0, s) = s.
(3.17)

Compared to the linearized evolution problem (2.10), we cannot solve the nonlinear evolution
problem (3.17) explicitly. However, we can analyze if the slope function

f(t, q) := [ϕ(q) + v(t, q)]2 − [1 + v(t, 0)]2 (3.18)

defines a well-posed initial-value problem in the correct solution space for v, as is done in
the following lemma.

Lemma 3.14. Assume that v ∈ C([0, T ), H1∩C1
0) with some maximal existence time T > 0.

There exists the unique solution q ∈ C1([0, T ), C1
0) to system (3.17) such that the map-

ping R ∋ s 7→ q(t, ·) ∈ C1
0 is invertible for every t ∈ [0, T ) and satisfies q(t, 0) = 0 and

lim|s|→∞ qs(t, s) = 1.

Proof. Since ϕ ∈ C1
0 ⊂ W 1,∞ and v(t, ·) ∈ C1

0 ⊂ W 1,∞ for t ∈ [0, T ), then f is Lipschitz in q
and continuous in t for every t ∈ [0, T ). By existence, uniqueness, and continuous dependence
theory for differential equations, the initial-value problem (3.17) admits the unique solution
q(t, s) satisfying q(·, s) ∈ C1(0, T ) for any s ∈ R and q(t, ·) ∈ C1

0 for any t ∈ [0, T ). Moreover,
f(t, 0) = 0, hence q(t, 0) = 0 holds for all t ∈ [0, T ).

Differentiating the initial-value problem (3.17) with respect to s piecewise for s > 0 and
s < 0 yields







dqs
dt

= 2 [ϕ(q) + v(t, q)] [ϕx(q) + vx(t, q)] qs,

qs(0, s) = 1,
s ∈ R\{0}, (3.19)

with the unique solution for every s ∈ R\{0}:

qs(t, s) = exp

(

2

∫ t

0

[ϕ(q) + v(τ, q)] [ϕx(q) + vx(τ, q)] dτ

)

> 0, (3.20)

hence q(t, ·) is invertible on R for t ∈ [0, T ). Moreover we have lim|s|→∞ qs(t, s) = 1 for
t ∈ [0, T ) because vx(t, ·) ∈ L∞ and v(t, q) → 0 as |q| → ∞ for t ∈ [0, T ) thanks to the
Sobolev embedding of H1(R) to the space of continuous and decaying functions. �

Setting V (t, s) := v(t, q(t, s)) as in (2.13), then it follows from (3.16) that evolution of V
along the characteristics q is given by



















dV

dt
= ϕx(q) [ϕ(q)V − V (t, 0)] +

1

2
ϕx(q)

[

V 2 − V 2(t, 0)
]

+
3

2
ϕ(q)

∫ q

0

ϕ(v2 + v2y) dy −Q[v](q)

V (0, s) = v0(s).

(3.21)

Denote V 0(t) := V (t, 0) = v(t, 0), where the last equality follows from q(t, 0) = 0. It follows
from the initial-value problem (3.21) as s → 0 from either side that V 0 satisfies the limiting
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initial-value problem






dV 0

dt
= −Q[v](0),

V 0(0) = v0(0).
(3.22)

In order to control solvability of the solution in (3.20), we need to control vx, and hence
Vs along the characteristics. Therefore we need to differentiate (3.16) in order to derive
the evolution equation for vx. The appearance of ϕ′ in (3.16) presents severe trouble when
differentiating. The way to overcome that is to “cut out” the origin and consider solving
the evolution equation for w := vx separately on R

+ and R
−. This agrees with Lemma 3.14,

which suggests that for the solution v ∈ C([0, T ), H1 ∩ C1
0 ) the spatial domain R can be

partitioned into R
+ and R

− on two sides from the peaked wave ϕ invariantly in time t.
Computing derivative of (3.16) separately on R

+ and R
− and using the fact that ϕ′′ = ϕ

on R\{0}, we derive the evolution equation for x 6= 0:







































wt +
[

(ϕ+ v)2 − (1 + v(t, 0))2
]

wx − ϕ (ϕv − v(t, 0))− 1

2
ϕ
(

v2 − v2(t, 0)
)

+ ϕϕxw − ϕ2v + ϕxvw + 2ϕw2 +
1

2
vw2 − v3

− 3

2
ϕ2(v2 + w2)− 3

2
ϕx

∫ x

0

ϕ(v2 + w2) dy + P[v] = 0,

w(0, x) = v0x(x),

(3.23)

where

P[v](x) :=
1

2
ϕ ∗

(

3

2
vv2x + v3

)

+
1

4
ϕx ∗ v3x. (3.24)

Setting W (t, s) := vx(t, q(t, s)) as in (2.18), then it follows that W satisfies (2.19). If the
mapping R ∋ s 7→ q ∈ C1

0 is invertible as in Lemma 3.14, we have ‖V ‖L∞ = ‖v‖L∞ and
‖W‖L∞ = ‖vx‖L∞ . Writing the evolution problem (3.23) at the characteristics yields for
s 6= 0:



































dW

dt
= ϕ(q) [ϕ(q)V − V (t, 0)] +

1

2
ϕx(q)

[

V 2 − V 2(t, 0)
]

−ϕ(q)ϕx(q)W + ϕ(q)2V − ϕx(q)VW − 2ϕ(q)W 2 − 1

2
VW 2 + V 3

+
3

2
ϕ(q)2(V 2 +W 2) +

3

2
ϕx(q)

∫ q

0

ϕ(v2 + w2) dy −P[v](q),

W (0, s) = v0x(s).

(3.25)

Compared to the linearized evolution problem (2.14), we cannot solve the nonlinear evolution
problems (3.21) and (3.25) explicitly. Nevertheless, we can analyze the vector field for the
evolution system

d

dt





q
V
W



 =





f (q)(q, V )
f (V )(q, V,W )
f (W )(q, V,W )



 =: F (q, V,W ), (3.26)
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where components of F (q, V,W ) are given by

f (q)(q, V, ) := [ϕ(q) + V ]2 −
[

1 + V 0
]2
,

f (V )(q, V,W ) := ϕx(q)
[

ϕ(q)V − V 0
]

+
1

2
ϕx(q)

[

V 2 − (V 0)2
]

+
3

2
ϕ(q)

∫ q

0

ϕ(v2 + w2) dy −Q[v](q),

f (W )(q, V,W ) := ϕ(q)
[

ϕ(q)V − V 0
]

+
1

2
ϕx(q)

[

V 2 − (V 0)2
]

−ϕ(q)ϕx(q)W + ϕ(q)2V − ϕx(q)VW − 2ϕ(q)W 2 − 1

2
VW 2 + V 3

+
3

2
ϕ(q)2(V 2 +W 2) +

3

2
ϕx(q)

∫ q

0

ϕ(v2 + w2) dy − P[v](q).

The dynamical system (3.26) is equipped with the initial datum:




q
V
W





∣

∣

∣

∣

t=0

=





s
v0(s)
v0x(s)



 , s ∈ R. (3.27)

Because of the nonlocal terms in f (V ) and f (W ), the vector field F (q, V,W ) computed for
solutions to the dynamical system (3.26) with the initial datum (3.27) with one value of
s ∈ R requires global information about solutions (q, V,W ) computed for all other values of
s on R.

The nonlocal terms are treated with the chain rule v(q(s)) = V (s) and vx(q(s)) = W (s)
provided that the mapping R ∋ s 7→ q ∈ C1

0 is invertible. In addition, we use V 0 = V (0).
The following lemma show that the vector field F (q, V,W ) is locally Lipschitz with respect
to (q, V,W ) and preserves properties of the mapping R ∋ s 7→ q ∈ C1

0 and properties of the
solution (v, w).

Lemma 3.15. For every q ∈ C1
0 satisfying q(0) = 0, infs∈R qs(s) > 0, and lim|s|→∞ qs(s) = 1

and every v ∈ H1∩C1
0 , the vector field F (q, V,W ) is locally Lipschitz in (q, V,W ) separately

for q ∈ R
+ and q ∈ R

−. Moreover, we have

(i) f (q)(0, V 0) = 0, f (V )(0, V 0,W ) = −Q[v](0),
(ii) f (V )(q(·), V (·),W (·)) ∈ L2, f (W )(q(·), V (·),W (·)) ∈ L2,
(iii) ∂sf

(q)(q(s), V (s)) = G(s)qs(s) with G ∈ L∞ satisfying lim|s|→∞G(s) = 0.

Proof. Thanks to the assumption qs(s) > 0 for every s ∈ R, the mapping R ∋ s 7→ q ∈ C1
0

is invertible, hence V (s) = v(q(s)) belongs to C1
0 and W (s) = vx(q(s)) is bounded and

continuous for s ∈ R
+ and s ∈ R

−. Thanks to the assumption lim|s|→∞ qs(s) = 1 and the
chain rule, it follows from v ∈ H1 that V ∈ L2 and W ∈ L2. Thanks to the assumption
q(0) = 0, the vector field F (q, V,W ) in system (3.26) can be considered separately for q ∈ R

+

and q ∈ R
−.

All local terms in F (q, V,W ) are locally Lipschitz in (q, V,W ) separately for q ∈ R
+ and

q ∈ R
−. The nonlocal terms in f (V )(q, V,W ) are also locally Lipschitz in (q, V,W ) for every

q ∈ R, V ∈ L2, and W ∈ L2, thanks to integrability of v2 + w2, invertibility of the mapping
R ∋ s 7→ q ∈ C1

0 , and the chain rule, e.g.

ϕ(q)

∫ q

0

ϕ(v2 + w2) dy = ϕ(q)

∫ q

0

ϕ(q(s′))(V 2 +W 2)(s′)qs(s
′)ds′
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and

Q[v](q) =
1

2

∫

R

ϕx

(

q − q(s′)
)

(

3

2
VW 2 + V 3

)

(s′)qs(s
′) ds′

+
1

4

∫

R

ϕ
(

q − q(s′)
)

W 3(s′)qs(s
′) ds′,

Similarly, it follows that the nonlocal terms in f (W )(q, V,W ) are locally Lipschitz in (q, V,W )
for every q ∈ R, V ∈ L2, and W ∈ L2.

It remains to verify items (i), (ii), and (iii). It follows from the factorization formula:

f (q)(q, V ) = (ϕ(q) + 1 + V + V 0)(ϕ(q)− 1 + V − V 0),

that f (q)(q, V ) is locally Lipschitz at q = 0 and V = V 0 with f (q)(0, V 0) = 0. Similarly,
f (V )(q, V,W ) is locally Lipschitz at q = 0, V = V 0, and every W ∈ R with f (V )(0, V 0,W ) =
−Q[v](0). This verifies item (i). Note that f (W )(q, V,W ) is not locally Lipschitz at q =
0, V = V 0, and W 6= 0 because of the local terms −ϕ(q)ϕx(q)W and −ϕx(q)VW in
f (W )(q, V,W ).

For item (ii), all local terms in f (V )(q(·), V (·),W (·)) and f (W )(q(·), V (·),W (·)) are in L2

because ϕ, ϕx, V,W ∈ L2 ∩ L∞. Similarly, nonlocal terms are in L2 because of invertibility
of the mapping R ∋ s 7→ q ∈ C1

0 and the chain rule. For instance, we have for f (V ),

‖ϕ(q(·))
∫ q(·)

0

ϕ(v2 + w2) dy‖L2 ≤ 1

[infs∈R |qs(s)|]1/2
‖ϕ‖L2‖ϕ‖L∞‖v‖2H1

and

‖Q[v](q(·))‖L2 ≤ 1

[infs∈R |qs(s)|]1/2
(

3

4
‖ϕx‖L2‖v‖L∞‖v‖2H1 +

1

4
‖ϕ‖L2‖w‖L∞‖w‖2L2

)

,

and similar estimates for f (W ).
Finally, for item (iii), we have explicitly

∂sf
(q)(q(s), V (s)) = 2(ϕ(q(s)) + V (s))(ϕx(q(s)) +W (s))qs(s) =: G(s)qs(s),

so that G ∈ L∞ and lim|s|→∞G(s) = 0. �

Theorem 3.13 is proven by using Lemma 3.15.

Proof of Theorem 3.13. We consider the initial datum v0 ∈ H1 ∩ C1
0 for which v0x ∈ L2 is

continuous separately for x ∈ R
+ and x ∈ R

−. The dynamical system (3.26) is considered
with the initial datum (3.27) which satisfies the assumptions of Lemma 3.15.

By Lemma 3.15, the vector field preserves the assumptions in the sense that if we define






q̂(t, s) = s+
∫ t

0
f (q)(q(t′, s), V (t′, s))dt′,

V̂ (t, s) = v0(s) +
∫ t

0
f (V )(q(t′, s), V (t′, s),W (t′, s))dt′,

Ŵ (t, s) = v0x(s) +
∫ t

0
f (W )(q(t′, s), V (t′, s),W (t′, s))dt′,

and

q̂s(t, s) = 1 +

∫ t

0

G(s)qs(t
′, s)dt′,

then for every t on a compact interval [−τ, τ ] with small τ > 0, we have q̂ ∈ C1
0 satis-

fying q̂(0) = 0, infs∈R q̂s(s) > 0, and lim|s|→∞ q̂s(s) = 1 and v̂ ∈ H1 ∩ C1
0 . By the ex-

istence and uniqueness theory for differential equations, there exists the unique solution
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q ∈ C1([0, T ), C1
0), V ∈ C1([0, T ), H1 ∩ C1

0 ), and W ∈ C1([0, T ), C0(R+) ∩ C0(R−)) to
system (3.26) for some maximal existence time T > 0. The solution depends continu-
ously on the initial data and preserves invertibility of the mapping R ∋ s 7→ q ∈ C1

0 with
q(t, 0) = 0, infs∈R qs(t, s) > 0, and lim|s|→∞ qs(t, s) = 1. Therefore, the transformation formu-
las V (t, s) = v(t, q(t, s)) and W (t, s) = w(t, q(t, s)) are invertible and the solutions (q, V,W )
yields the unique solution v ∈ C1([0, T ), H1 ∩ C1

0) to the evolution problem (3.16).
Continuous dependence of the solution v ∈ C1([0, T ), H1 ∩ C1

0 ) on the initial datum v0 ∈
H1∩C1

0 is obtained from the continuous dependence theory for differential equations thanks
to the Lipschitz continuity of the vector field F (q, V,W ) in Lemma 3.15. �

3.5. Proof of instability. The characteristics q = 0 at s = 0 is the breaking point for
the initial-value problem (3.25) since W may have a jump discontinuity across s = 0. This
point corresponds to the peak’s location for a perturbed single peakon, according to the
decomposition (2.4). As follows from the proof of Theorem 3.13, the dynamical system
(3.26) admits the unique solution in the form W ∈ C1([0, T ], C0(R+) ∩C0(R−)). Therefore,
we can define the one-sided limits W 0

± ∈ C1(0, T ) by

W 0
±(t) := lim

s→0±
W (t, s) = lim

s→0±
vx(t, q(t, s)),

which satisfies the initial value problems










dW 0
±

dt
= ±

(

1 + V 0
)

W 0
± + V 0 − 1

2

(

1 + V 0
) (

W 0
±

)2
+

3

2

(

V 0
)2

+
(

V 0
)3 −P[v](0),

W 0
±(0) = v0x(0

±).
(3.28)

This initial-value problem is combined with (3.22) which determines evolution of V 0. The
following lemma gives estimates for the two nonlocal terms in (3.22) and (3.28).

Lemma 3.16. Let the assumptions of Theorem 3.9 hold and define v(t, ·) := u(t, ·+a(t))−ϕ
with v ∈ C([0, T ), H1 ∩ C1

0 ). There exists ε0 > 0 and C0 > 0 such that for every ε ∈ (0, ε0)
we have for every x ∈ R and every t ∈ [0, T ),

∣

∣P[v](t, x) +Q[v](t, x)
∣

∣ < C0ε
2(1 + ‖u0x‖3/2L∞ + ε‖u0x‖2L∞). (3.29)

Proof. By Theorem 3.9, it follows for ε small enough that

‖v‖H1 < 2
(

4 + ‖u0x‖1/2L∞

)

ε. (3.30)

Since ‖ϕ‖L∞ = ‖ϕx‖L∞ = 1, similar to [4, (2.7)–(2.8)] we obtain

‖vx‖4L4 = 3

∫

R

(v4 + 2v2v2x) dx− 3F (v)

≤ 3‖v‖L∞

∫

R

(v2 + 2v2x) dx− 3F (v)

≤ 3
(

2‖v‖4H1 − F (v)
)

,

indicating that F (v) ≤ 2‖v‖4H1, where F (v) is defined in (1.8). Interpolation implies that

‖vx‖3L3 ≤
√
3‖v‖H1

√

2‖v‖4H1 − F (v),
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and hence

|P[v] +Q[v]| =

∣

∣

∣

∣

1

2
(ϕ+ ϕx) ∗

(

3

2
vv2x + v3

)

+
1

4
(ϕ+ ϕx) ∗ v3x

∣

∣

∣

∣

≤
∥

∥

∥

∥

3

2
vv2x + v3

∥

∥

∥

∥

L1

+
1

2
‖v3x‖L1

≤ 3

2
‖v‖L∞‖v‖2H1 +

1

2
‖vx‖3L3

≤ 3

2
‖v‖3H1 +

√
3

2
‖v‖H1

√

2‖v‖4H1 − F (v). (3.31)

Plugging u = ϕ+ v into F (u) and using ‖ϕ‖L2 = ‖ϕx‖L2 = 1, we obtain

|F (v)| ≤ |F (u)− F (ϕ)|

+ 2

∣

∣

∣

∣

∫

R

(

2v2vxϕx + v2ϕ2
x + 2vv2xϕ+ 4vvxϕϕx + 2vϕϕ2

x + v2xϕ
2 + 2vxϕ

2ϕx

)

dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

R

(

4v3ϕ+ 6v2ϕ2 + 4vϕ3
)

dx

∣

∣

∣

∣

+
1

3

∣

∣

∣

∣

∫

R

(

4v3xϕx + 6v2xϕ
2
x + 4vxϕ

3
x

)

dx

∣

∣

∣

∣

≤ |F (u)− F (ϕ)|+ 4

3

∣

∣

∣

∣

∫

R

v3xϕx dx

∣

∣

∣

∣

+

(

12 +
4

3

)

‖v‖H1 + 20‖v‖2H1 + 10‖v‖3H1.

Note that we have
∣

∣

∣

∣

4

3

∫

R

v3xϕx dy

∣

∣

∣

∣

≤ 4

3
‖vx‖3L3 ≤ 4√

3
‖v‖H1

√

2‖v‖4H1 − F (v).

Thus, for ‖v‖H1 ≪ 1 sufficiently small it follows that

|F (v)| ≤ |F (u)− F (ϕ)|+ 4√
3
‖v‖H1

√

2‖v‖4H1 − F (v) + 15‖v‖H1. (3.32)

Thanks to the conservation F (u) = F (u0), a direct calculation yields that

|F (u)− F (ϕ)| = |F (u0)− F (ϕ)|

≤
∣

∣

∣

∣

∫

R

(

u4
0 − ϕ4

)

dx

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∫

R

(

u2
0u

2
0x − ϕ2ϕ2

x

)

dx

∣

∣

∣

∣

+
1

3

∣

∣

∣

∣

∫

R

(

u4
0x − ϕ4

x

)

dx

∣

∣

∣

∣

.

Following [12, Lemma 2.4], we estimate the above as follows:

∣

∣

∣

∣

∫

R

(

u4
0 − ϕ4

)

dx

∣

∣

∣

∣

≤ ‖v0‖L∞‖u0 + ϕ‖L∞(‖u0‖2L2 + ‖ϕ‖2L2)

≤ ‖v0‖H1

(

‖v0‖H1 + 2
)(

‖v0‖2H1 + 2‖v0‖H1 + 2
)

,
∣

∣

∣

∣

∫

R

(

u2
0u

2
0x − ϕ2ϕ2

x

)

dx

∣

∣

∣

∣

≤ ‖v0‖L∞‖u0 + ϕ‖L∞‖u0x‖2L2 + ‖ϕ‖2L∞‖v0x‖L2‖u0x + ϕx‖L2

≤ ‖v0‖H1

(

‖v0‖H1 + 2
)(

‖v0‖H1 + 1
)2

+ ‖v0‖H1

(

‖v0‖H1 + 2
)

,
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and
∣

∣

∣

∣

∫

R

(

u4
0x − ϕ4

x

)

dx

∣

∣

∣

∣

≤
(
∫

R

(u2
0x + ϕ2

x)
2(u0x + ϕx)

2 dx

)1/2

‖v0x‖L2

≤ 3

(
∫

R

(u6
0x + ϕ6

x) dx

)1/2

‖v0‖H1 ≤ 3‖v0‖H1

√

‖u0x‖4L∞‖u0x‖2L2 +
1

3

≤
(

3‖u0x‖2L∞(‖v0‖H1 + 1) +
√
3
)

‖v0‖H1 .

where we have used that ‖ϕx‖6L6 =
1
3
. Putting the above together yields

|F (u)− F (ϕ)| ≤
(

2‖u0x‖2L∞ + 15
)

‖v0‖H1 .

Plugging this and (3.34) into (3.32) we have

|F (v)| ≤ 4√
3
‖v‖H1

√

2‖v‖4H1 − F (v) +K,

where K := (30 + 2‖u0x‖2L∞) ‖v0‖H1 . Solving the above we get

|F (v)| ≤ 6‖v‖2H1 + 4‖v‖3H1 +
√
6K‖v‖H1 +K.

For ε sufficiently small, we can find some large C > 0 such that

|F (v)| ≤ Cε2(1 + ‖u0x‖L∞ + ε2‖u0x‖2L∞).

Plugging this into (3.31) and by further shrinking ε if needed, we obtain (3.29). �

Theorem 1.2 is proven by using Theorem 3.9, Theorem 3.13, and Lemma 3.15.

Proof. of Theorem 1.2. By Theorem 3.13, we consider the unique solution v ∈ C([0, T ), H1∩
C1

0) to the Cauchy problem (3.16). It follows from the bound (1.15) and the decomposition
(2.4) with a(0) = 0 that the initial datum v0 ∈ H1 ∩ C1

0 satisfies the bound

‖v0‖H1 + ‖v0x‖L∞ < δ. (3.33)

Let ε > 0 be a small parameter to be determined below. By Theorem 3.9, we have

if ‖v0‖H1 < ε4, then ‖v(t, · )‖H1 < 2
(

4 + ‖u0x‖1/2L∞

)

ε, (3.34)

From (3.33) we know that for δ sufficiently small,

‖u0x‖1/2L∞ < (1 + δ)1/2 <
√
2. (3.35)

Therefore Sobolev embedding implies that

|V 0(t)| ≤ ‖v(t, · )‖L∞ ≤ ‖v(t, · )‖H1 < (8 + 2
√
2)ε < 12ε. (3.36)

Instability. The instability argument relies on the behavior of vx(t, x) near the peak at
x = 0 from the right side, where the linear instability result of Theorem 1.1 suggests at least
exponential growth. Therefore, picking W 0

+ in (3.28), and using an integrating factor we
obtain

d

dt

[

e−t(V 0 +W 0
+)
]

= e−t

[

3

2

(

V 0
)2

+ V 0W 0
+ − 1

2

(

1 + V 0
) (

W 0
+

)2
+
(

V 0
)3 −P[v](0)−Q[v](0)

]

≤ e−t

[

5

2

(

V 0
)2 − 1

4

(

1 + 2V 0
) (

W 0
+

)2
+
(

V 0
)3 −P[v](0)−Q[v](0)

]

.
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Therefore for ε sufficiently small, it follows from (3.36) that

d

dt

[

e−t(V 0 +W 0
+)
]

≤ e−t
[

3
(

V 0
)2 − P[v](0)−Q[v](0)

]

. (3.37)

Lemma 3.16 yields the control of P[v](0) and Q[v](0) in (3.29). By integrating (3.37) and
using (3.29), (3.35) and (3.36), we obtain

V 0(t) +W 0
+(t) ≤ et

[

V 0(0) +W 0
+(0) + Cε2

]

, (3.38)

for some C > 0. Let us pick the initial datum v0 ∈ H1 ∩ C1
0 satisfying v0(0) = 0 and

lim
x→0+

v0x(x) = −‖v0x‖L∞ = −2Cε2. (3.39)

This is possible provided that for any given δ > 0 in the initial bound (1.15) (and hence
(3.33)), the small parameter ε > 0 is chosen to satisfy the bound:

ε4 + 2Cε2 < δ.

Since V 0(0) = 0 and W 0
+(0) = −2Cε2, we obtain from (3.38) that

V 0(t) +W 0
+(t) ≤ −Cε2et,

which implies that

|V 0(t) +W+
0 (t)| > 2 for t > t0 := log

(

2

Cε2

)

> 0.

Thanks to the bound (3.36) on V 0(t), this implies that |W+
0 (t)| > 1 for t > t0.

If t0 < T , then we have the instability (1.16). If t0 > T , then T is finite and we have
‖vx(t, ·)‖L∞ → ∞ as t → T due to the fact that ‖v(t, ·)‖H1 is bounded from the H1 conserva-
tion of solutions. In this case, the existence of another t′0 ∈ (0, T ) such that ‖vx(t′0, ·)‖L∞ > 1
follows from the continuity arguments.

Blow-up. Now we want to show that by choosing suitable initial datum satisfying (1.15),
the corresponding solution can indeed blow up in finite time.

Recall from (3.28) that we have

dW 0
+

dt
= −1

2
(1 + V 0)(W 0

+ − 1)2 +
1

2
+

3

2
V 0 +

3

2
(V 0)2 + (V 0)3 − P[v](0).

Note from (3.29) and (3.34)–(3.36) that for ε sufficiently small, W 0
+ satisfies the following

Ricatti inequality
dW 0

+

dt
≤ −1

2
(1− 12ε)(W 0

+ − 1)2 +
1

2
+ 20ε.

Therefore it follows from the routine analysis of the differential inequality (see, for example
[5, Lemma 3.3]) that if we choose initial datum satisfying

W 0
+(0) < 1−

√

1 + 40ε

1− 12ε
, (3.40)

then W 0
+(t) tends to −∞ in finite time. To be more precise, let us pick the initial datum

v0 ∈ H1 ∩ C1
0 satisfying

‖v0‖H1 < ε4, lim
x→0+

v0x(x) = −30ε,

with
ε4 + 30ε < δ.
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Then (3.40) is satisfied, and hence vx(t, 0) → −∞ as t → T ∗ for some T ∗ < ∞. Hence the
maximal existence time T satisfies T ≤ T ∗ < ∞. �
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