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Abstract
The phosphorylation status of a protein is highly regulated and is determined by the opposing activities of protein kinases and 
protein phosphatases within the cell. While much is known about the protein kinases found in Saccharomyces cerevisiae, the 
protein phosphatases are much less characterized. Of the 127 protein kinases in yeast, over 90% are in the same evolutionary 
lineage. In contrast, protein phosphatases are fewer in number (only 43 have been identified in yeast) and comprise multiple, 
distinct evolutionary lineages. Here we review the protein phosphatase families of yeast with regard to structure, catalytic 
mechanism, regulation, and signal transduction participation.

Keywords Protein phosphatase · Convergent evolution · Saccharomyces cerevisiae · Catalytic mechanism · Signal 
transduction

Introduction

Reversible protein phosphorylation is the most common 
post-translational modification in all eukaryotes. Many phos-
phorylation events play key regulatory roles by dictating a 
protein’s activity, localization, or stability. Most studies of 
signal transduction have focused on the protein kinases that 
catalyze the transfer of the terminal phosphate of ATP to the 
hydroxyl group of serine, threonine, and tyrosine residues. 
While much has been learned about signal transduction by 
studying the protein kinases, the phosphorylation status of a 
protein is determined by the integration of two rates: phos-
phorylation and dephosphorylation. Protein phosphatases 
are the enzymes that hydrolyze the phosphoester bonds pre-
sent in phosphorylated proteins. What may be underappreci-
ated, by some, is the active role played by the protein phos-
phatases in signal transduction. Phosphatases do much more 
than return the system to the ground state, and in some cases, 
the dephosphorylation reaction is the site of regulation.

The protein phosphatases represent a case study in con-
vergent evolution. In S. cerevisiae, the development of 

enzymes capable of phosphoprotein dephosphorylation has 
been achieved by at least five distinct evolutionary lineages 
of proteins. This contrasts greatly with the protein kinases of 
yeast where the vast majority (117 of 127) are homologous 
and members of the same eukaryotic protein kinase super-
family (Hunter and Plowman 1997; Rubenstein and Schmidt 
2007). Another difference between kinases and phosphatases 
is the abundance; phosphatases in general are much more 
abundant in the cell than kinases and have longer half-lives 
(Smoly et al. 2017). In addition, phosphatases are regulated 
more by the binding of different subunits (Abd-Rabbo and 
Michnick 2017), while kinases are regulated more often by 
phosphorylation (Rubenstein and Schmidt 2007).

Eukaryotic phosphatases were originally categorized into 
families based on biochemical properties such as their abil-
ity to dephosphorylate the β subunit of phosphorylase kinase 
and on their sensitivity to two small protein inhibitors (Cohen 
1989). The advent of the DNA sequence data from numer-
ous genomes, along with structural and catalytic informa-
tion, makes clear that the classification based on biochemical 
properties did not always reflect evolutionary lineages. We 
now know that multiple families of protein phosphatases have 
independently evolved. The genome of Saccharomyces cerevi-
siae encodes at least 43 protein phosphatase enzymes in five 
distinct evolutionary lineages (Fig. 1). The three most well-
known families of protein phosphatases are the PPP, PPM, and 
PTP families. The PPP (phosphoprotein phosphatase) super-
family of protein phosphatases includes, but is not limited to, 
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protein-serine/threonine phosphatase type 1, type 2A, and 
calcineurin (type 2B). Yeast express 13 PPP phosphatases. 
The PPM (protein phosphatase metal-dependent) superfamily 
comprised of a single family of  Mg2+- (or  Mn2+-) depend-
ent protein phosphatases. Based on biochemical properties, 
the PPM family was originally classified as type 2C phos-
phatases. However, we now know that the PPM family is a 
distinct evolutionary family and unrelated to the PPP phos-
phatases, a fact that makes the type 2C name somewhat mis-
leading. Furthermore, the naming of the PPM family based 
on metal ion dependence is also unfortunate since other phos-
phatase families (e.g., PPP) are also dependent on metal ions 
in their active sites. However, it is clear that the 7 PPM family 
members in yeast represent a single evolutionary lineage. The 
third well-known family of protein phosphatases is the PTP 
(phosphotyrosine phosphatases) family that includes the six 
distinct phosphatase domains, two of which are the tyrosine 
phosphatases and the dual specificity phosphatases. These 17 
members of the PTP family share a common catalytic mecha-
nism distinct from the PPP and PPM phosphatases but may not 
all be in the same evolutionary lineage. Finally, two relatively 
new families of protein phosphatases are also represented in 
S. cerevisiae. These are the HAD (haloacid dehalogenase) and 
RTR1 families. The HAD family includes four members that 
catalyze dephosphorylation of proteins and includes additional 
enzymes that dephosphorylate a variety of small molecules 
and nucleic acids (Kuznetsova et al. 2015; Melcher and Entian 
1992; Vance and Wilson 2001). The RTR1 family, named for 
its founding member, the S. cerevisiae phosphatase Regulator 
of Transcription 1, is composed of Rtr1 and its paralog, Rtr2. 
These phosphatases are associated with RNA polymerase II in 
both yeast and mammals and act as C-terminal domain phos-
phatases (Egloff et al. 2012; Mosley et al. 2009).

In this review, we cover the 43 protein phosphatases of 
Saccharomyces cerevisiae with a particular focus on their 
classification, catalytic mechanism, and participation in sig-
nal transduction pathways.

Protein phosphatase families

PPP family

Members of the PPP family account for the great majority 
of serine/threonine phosphatase activity in eukaryotic cells 

Fig. 1  Protein phosphatase families of S. cerevisiae. Dendrograms 
of the five families of protein phosphatases found in S. cerevisiae 
were constructed using the entire proteins for PPM, HAD and RTR 
families and the catalytic domains for the PPP and PTP families. 
PPP phosphoprotein phosphatase, PPM phosphoprotein phosphatase 
metal-dependent, PTP phosphotyrosine phosphatase, DSP dual speci-
ficity phosphatase, HAD haloacid dehalogenase. Phosphatases essen-
tial for viability are shown in boxes

▸
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(Castermans et al. 2012). The S. cerevisiae genome encodes 
13 phosphatases in the PPP family and dozens of regulatory 
subunits. Members of the PPP family have been classified 
into multiple sub-families (Fig. 1) based primarily on their 
interactions with distinct regulatory subunits (Brautigan and 
Shenolikar 2018). Members of the PPP family have regions 
of amino acid primary sequence that are highly conserved 
(Fig. 2a). Outside of the catalytic domain, the N- and C-ter-
minal domains of these proteins vary in size and show little 
similarity (Fig. 2b). Crystal structures of several members 
of this family have been solved and show a central β sand-
wich that coordinates two metal ions (Goldberg et al. 1995; 
Hurley et al. 2007; Ye et al. 2013).

Catalytic mechanism

The catalytic mechanism of the PPP phosphatases utilizes 
a metal-activated water to directly hydrolyze the phos-
phoester bond (Egloff et al. 1995; Goldberg et al. 1995). 
The identity of the coordinated metal ion varies between 
different PPP phosphatases, and in most cases, has not 
been determined with certainty. Calcineurin binds one 
atom of  Fe2+ and one of  Zn2+ at its active site (King and 
Huang 1984), while PP1 is thought to bind  Mn2+ and pos-
sibly  Fe2+ (Goldberg et al. 1995). The structure of a PPP 
phosphatase and the mechanism of catalysis are depicted 
in Fig. 2c, d.

Fig. 2  PPP phosphatases of S. cerevisiae. a Multiple sequence align-
ment of the conserved catalytic domains of the PPP phosphatases. 
Each catalytic domain is approximately 200 residues in length. 
Breaks (denoted with a hyphen) have been introduced in the align-
ment to highlight the most highly conserved sequences. Residues pre-
dicted to make contact with the two metal ions (*) and the phosphoryl 
group on the substrate (∆) are identified based on their conservation 
with rabbit PP1 (Goldberg et  al. 1995). b Schematic representation 
of the PP1 phosphatases showing the total size of the protein, the 

position of the catalytic domain and the percentage identity when 
aligned with the catalytic domain of Glc7. c Structure of a PPP cat-
alytic domain is portrayed showing the metal ions at the active site 
(red spheres) and their coordinating residues (blue sticks). Structural 
model is based on human PP1 using PDB file 1S70 (Terrak et  al. 
2004). d Proposed catalytic mechanism for the PPP family showing 
the coordination or the metal ions and activated water molecule that 
acts as the nucleophile-attacking phosphoserine
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Regulation

A hallmark of the PPP phosphatases is the formation of 
multimeric complexes composed of a single catalytic subu-
nit and one or more regulatory subunits that are believed 
to control catalytic activity (King and Huang 1984). The 
specificity of the PPP phosphatases is generated, to a large 
degree, through the association with regulatory subunits. 
Thus, while yeast may only express 13 catalytic subunits in 
the PPP family, there are likely to be hundreds of distinct 
holoenzymes that differ in the identity and number of regu-
latory subunits.

PP1 phosphatases The type 1 protein phosphatase, PP1, 
is an extreme case when it comes to the formation of mul-
tiple distinct holoenzymes. In mammalian cells, over 180 
PP1 regulatory subunits have been identified (Heroes et al. 
2012). In yeast, no fewer than 17 regulatory subunits for 
Glc7, the sole yeast PP1 enzyme, have been identified (Can-
non 2010) with the probability that many more await discov-
ery. Bioinformatics approaches to identify PP1 interacting 
proteins (PIPs) have proven to be challenging since these 
proteins have limited sequence similarity. In general, PIPs 
tend to be proteins with large regions that are inherently dis-
ordered. This property allows them to wrap around the PP1 
catalytic subunit forming multiple low affinity contacts that, 
when added together, provide both specificity and strength 
of interaction (Heroes et al. 2012).

Short sequence motifs present on the PIPs interact with 
distinct docking sites on the surface of PP1. The best char-
acterized of these short sequence motifs is the RVxF motif 
(Hendrickx et al. 2009). Most PIPs contain this motif, and it 
is required for their stable association with the PP1 enzyme. 
The conserved valine and phenylalanine side chains from the 
RVxF sequence fit into a hydrophobic channel on the surface 
of the PP1 enzyme opposite from the active site. The hydro-
phobic channel is created by two C-terminal β sheets that are 
conserved in all PPP phosphatases (Heroes et al. 2012). In 
yeast, the PIPs whose interactions with PP1 are known to 
require a RVxF motif are shown in Fig. 3a. Sequence analy-
ses of the RVxF motifs used by the yeast PIPs reveal that 
the consensus is actually [KR]xVRF (Fig. 3b). Mutations in 
this motif eliminate or greatly reduce interaction with PP1 
(Bharucha et al. 2008a, b; Chang et al. 2002; Dombek et al. 
1999; Knaus et al. 2005; Kozubowski et al. 2003; Wu and 
Tatchell 2001).

While the RVxF motif is required for PP1 binding, addi-
tional determinants are likely important. Mammalian PIPs 
use additional short sequence motifs to stabilize the inter-
action with PP1 (Heroes et al. 2012). However, these addi-
tional PP1 interaction motifs are not recognizable in yeast 
PIPs. For instance, the myosin phosphatase N-terminal ele-
ment (MyPhoNE) with the consensus sequence RxxQ[VIL]

[KR]x[YW] is found seven times in the yeast proteome but 
not in any of the known yeast PIPs. Despite the challenges 
in identifying PP1 interaction motifs through computational 
means, the likelihood remains that additional interactions 
over the surface of the PP1 enzyme are important for specific 
associations, since point mutations on the surface of yeast 
PP1 at sites distinct from the hydrophobic groove cause plei-
otropic phenotypes and interfere with association of distinct 
PIPs (Baker et al. 1997; Connor et al. 2000).

The regulation of yeast PP1 activity, localization, and 
substrate specificity is conferred by association with distinct 
PIPs. In mammalian cells, the PIPs form contacts near the 
active site of PP1 in a manner that can either restrict access 
to specific substrates (Ragusa et al. 2010) or block the active 
site entirely (Hurley et al. 2007). Similar mechanisms are 
likely to be utilized in yeast. For instance, the PP1-like phos-
phatase, Ppz1, has two inhibitory subunits, Vhs3 and Hal3 
(Ruiz et al. 2004). Hal3 binds to the C-terminal catalytic 
domain and negatively regulates the phosphatase (de Nadal 
et al. 1998). Despite having a KLHVLF motif, Hal3 inter-
acts with Ppz1 at two alternative points. These interactions 
are necessary for negative regulation of Ppz1 (Munoz et al. 
2004). What is clear for the yeast enzyme is that distinct 
PIPs control the localization of the PP1 enzyme (Knaus et al. 
2005; Kozubowski et al. 2003; Pedelini et al. 2007; Peggie 
et al. 2002; Pinsky et al. 2006; Tachikawa et al. 2001). Fur-
ther studies will be needed to determine whether the control 
of the localization of the Glc7 protein is sufficient to dictate 
substrate selection or whether additional mechanisms for 
substrate selection are at work.

PP2A phosphatases Yeast encodes 5 phosphatases that 
can be considered to be PP2A or PP2A-like phosphatases 
(Fig. 1). The canonical PP2A phosphatase is a heterotrimer 
composed of an A-subunit, a B-subunit, and a single cata-
lytic C-subunit (Fig. 4a). Yeast encodes two PP2A catalytic 
subunits (Pph21 and Pph22), a single A-subunit (Tpd3) and 
two alternative B subunits (Cdc55 and Rts1) (Jiang 2006). 
In addition, PP2A-like phosphatases also form other hetero-
trimeric complexes. They can bind Tap42, a distinct regula-
tory subunit unrelated to the A and B subunits. Binding of 
Tap42 is required for proper function and substrate targeting 
of Sit4 and Pph21, suggesting that Tap42 possibly binds and 
regulates all PP2A phosphatases (Cherkasova and Hinne-
busch 2003; Wang et al. 2003).

Additionally, the PP2A phosphatases undergo forms of 
post-translational modifications that affect the regulation of 
these proteins. The C terminus of the catalytic subunit ends 
with a conserved YFL motif undergoes reversible methyla-
tion that affects the phosphatase’s ability to associate with 
the A and B subunits (Fig. 4a) (Wei et al. 2001). Interest-
ingly, this YFL motif is present at the C terminus of only five 
proteins in the yeast proteome. These five proteins are all 
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PP2A and PP2A-like phosphatases (Fig. 4b). The carboxy-
methylation of the C-terminal leucine in Pph21 and Pph22 
is required for activity and association with the B subunits 
(Castermans et al. 2012). This methylation is performed by 
the methyltransferase Ppm1 (Wei et al. 2001).

PP2A phosphatases have also been found to bind to addi-
tional proteins that influence their regulation. Members of 
the PP2A family require the peptidyl-prolyl cis/trans-isomer-
ase activity of Rrd1 and Rrd2 proteins (formerly known as 

Ypa1 and Ypa2) for proper folding and activity (Chao et al. 
2006; Jordens et al. 2006). The action of Rrd1 and Rrd2 
promotes binding with other proteins and subunits and is a 
critical activator of PP2A and PP2A-like phosphatases (Van 
Hoof et al. 2005). Sit4 interacts with a number of proteins 
called SIT4 Associating Proteins (SAPs) that differ in func-
tions. These interactions are required for proper function; 
however, their detail mechanisms are not yet known (Luke 
et al. 1996).

Fig. 3  Regulatory subunits compete for binding to a common site on 
PP1 phosphatase Glc7. a Many of the PP1 regulatory subunits asso-
ciate with Glc7 through interactions between a hydrophobic groove 
present on the back surface of PP1 (shown in cyan) and a PP1 bind-
ing motif known as the RVxF motif. The hydrophobic residues in this 
motif (Val and Phe) are shown as red spheres. The regulatory subu-
nits direct the phosphatase to different subcellular localizations, bio-
logical processes and substrates as shown. The sequence of the RVxF 

motif for each subunit is shown below. Those present in a shaded box 
have experimental evidence showing their importance for Glc7 asso-
ciation (Bharucha et al. 2008a, b; Chang et al. 2002; Dombek et al. 
1999; Knaus et  al. 2005; Kozubowski et  al. 2003; Nakamura et  al. 
2017; Wu and Tatchell 2001). Unshaded sequences indicate potential 
PP1 interaction motifs that have yet to be verified. b Logo representa-
tion of the confirmed PP1 interaction motifs in S. cerevisiae indicat-
ing that the yeast consensus is [KR]xVRF
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PP2B/calcineurin phosphatases The PP2B phosphatases, 
also known as the calcineurin phosphatases, are heterodi-
mers. These phosphatases have a catalytic A-subunit (Cna1 
or Cna2) and a regulatory subunit (Cnb1) (Roy et al. 2007). 
Full function of calcineurin requires both  Ca2+ binding as 
well as the recruitment of calmodulin (Connolly et al. 2018). 
Calcium binding to the 4 EF hand domains in the regulatory 
subunit induces conformational changes that are important 
for activation of the phosphatase (Connolly et al. 2018). The 
calcineurin active site contains two metal ions: one molecule 
of  Zn2+ and one of  Fe2+ (Wang et al. 1996). Metal binding 
induces a conformational change and is required for activ-
ity of the phosphatase (Ren et al. 2009). Calcineurin binds 
to a number of substrates using short peptide sequences as 
recognition motifs. For instance, calcineurin binding to the 
transcription factor Crz1 requires the PxIxIT motif (Gold-

man et  al. 2014; Roy et  al. 2007) while binding to Rcn1 
requires the LxVP motif (Grigoriu et al. 2013). Addition-
ally, the immunosuppressive drugs FK506 in a complex 
with Fpr1 and cyclosporin in a complex with Cpr1 act as an 
inhibitors of calcineurin (Heitman et al. 1991).

Signal transduction

Members of the PPP family are involved in a vast number 
of cellular processes. Glc7, the most well-studied and only 
essential PPP phosphatase in yeast, is involved in a myriad 
of cellular processes. An extraordinary amount of Glc7 
regulation is mediated by its interacting proteins. Regula-
tory subunits may compete for interaction with a pool of 
available Glc7, as increasing the expression of particular 
subunits diminishes Glc7 activity in other pathways. Indeed, 
the expression levels of some (but not all) of the Glc7-reg-
ulatory subunits vary with certain cellular conditions (Yiu 
et al. 2008). For instance, expression of the Gip1 regulatory 
subunit increases in meiosis (Ramaswamy et al. 1998; Tu 
et al. 1996), when it is required for proper septin organiza-
tion and localization of Glc7 to the prospore membranes 
(Tachikawa et al. 2001).

Numerous environmental stresses generate a calcium 
signal that activates calcineurin signaling (Cyert 2003). 
Calcineurin acts directly on the transcription factor Crz1. 
Dephosphorylation of Crz1 promotes translocation to the 
nucleus (Stathopoulos-Gerontides et al. 1999). The strength 
of interaction between calcineurin and Crz1 dictates the 
magnitude of the transcriptional response (Roy et al. 2007). 
Overall, as many as 160 genes may be transcriptionally regu-
lated by calcineurin signaling (Yoshimoto et al. 2002).

PPM family

The PPM family of S. cerevisiae contains a single subfam-
ily, the PP2C phosphatases. Members of this family lack 
sequence or structural similarity to the PPP phosphatases 
(Figs. 2, 5) but share a similar catalytic mechanism with 
two metal ions at the active site (Das et al. 1996). How-
ever, the overall folds of the PPP and PPM proteins are 
completely unrelated (Figs. 2c, 5b), as are the residues that 
coordinate the metal ions (Figs. 2d, 5c). In contrast with the 
PPP phosphatases, PP2C phosphatases tend to function as 
monomers and do not utilize accessory subunits for regula-
tion (Cohen 1989). While Ptc2 and Ptc3 are closely related 
(60% sequence identity), other members of the family show 
a much lower degree of sequence identity (15–30%).

Catalytic mechanism

Both PPP and PPM phosphatases use metal ions to acti-
vate a water molecule that acts to directly hydrolyze the 

Fig. 4  C-terminal modification of the yeast protein phosphatase 2A. a 
Structural model of the yeast PP2A showing the location of the C-ter-
minal carboxymethyl leucine (orange spheres) sandwiched between 
the A and B subunits of the PP2A heterotrimer. The manganese ions 
at the active site of the catalytic C subunit are shown (red spheres). b 
Alignment of the C termini of the PP2A and PP2A-like phosphatases
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phosphoester bond (Das et al. 1996). The PPM phosphatases 
use four aspartate residues to coordinate two  Mn2+ ions that 
then activate a water molecule (Cohen 1989). This water 
molecule utilizes hydrogen bonds to coordinate the three 
phosphate oxygens of the phosphate group. Catalysis then 
occurs in a two-step manner. First, the metal ion-activated 
water acts as a nucleophile to attack the phosphorous. Then, 
a second water molecule protonates the leaving group and 
completes the reaction. In this, it is important to note that the 
metal ion coordinating residues are invariant (Fig. 5a), sup-
porting this model of catalysis (Das et al. 1996). Figure 5b, 
c illustrates the structure of a PPM phosphatase as well as 
the phosphatase reaction.

Regulation

Unlike the PPP phosphatases, the PPM family phos-
phatases are not stably associated with regulatory subunits 
that specify localization and substrate targeting. Instead, 
PP2C phosphatases can be inactivated through competi-
tive inhibition at the  Mg2+/Mn2+ binding site by ions such 

as  Ca2+,  Zn2+, and  Ni2+ (Das et al. 1996). Additionally, 
there is evidence that PP2C phosphatases may use tran-
sient interactions with adaptor proteins to help target the 
phosphatases to the appropriate substrates. This was seen 
with Ptc1 and the SH3 domain-containing adapter protein, 
Nbp2. Nbp2 stabilizes the interaction between Ptc1 and 
its substrate, Pbs2, a kinase in the HOG pathway (Ota and 
Mapes 2007).

Interestingly, alternative splicing may play a role in the 
regulation of PPM phosphatases. In particular, the Ptc7 
mRNA can be alternatively spliced generating different 
proteins that display distinct localization patterns (Juneau 
et al. 2009). The Ptc7 protein derived from spliced mRNA 
has variable expression dependent on carbon source and 
can localize to the mitochondria, while the unspliced form 
contains several transmembrane domains and localizes to 
the nuclear envelope. The unspliced Ptc7 helps the yeast 
cell cope with Latrunculin A toxicity. Both isoforms carry 
the characteristic and conserved PP2C motifs and house 
phosphatase activity (Juneau et al. 2009).

Fig. 5  PPM phosphatase family. a Multiple sequence of the most 
highly conserved segments of the yeast PPM phosphatases. Gaps are 
indicated with hyphens. Homology to human PP2Ca protein (ref) was 
used to predict residues that coordinate the metal ions at the active 
site (asterisk) and interact with the phosphate group of the substrate 
(hash). b Structure of a PPM phosphatase in cartoon representation 

showing the pair of metal ions (red spheres). Residues that coordinate 
the metal ions are shown in blue. The phosphatase shown is human 
PP2C using PDB file 1A6Q (Das et  al. 1996). c Proposed catalytic 
mechanism for PP2C showing the activated water molecule that acts 
as the nucleophile
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Signal transduction

The phosphatases of the PPM family are involved in a num-
ber of cellular functions. These phosphatases are function-
ally redundant, particularly in regard to cold response, high 
temperature stress, as well as with  Li2+,  Na2+, and caffeine 
sensitivity (Sharmin et al. 2015). Ptc1 is required for the 
transition between the G2 phase and M phase of the cell 
cycle by activating the cell wall integrity (CWI) pathway 
through dephosphorylation of Mkk1, a MAPK kinase (Tatjer 
et al. 2016). Ptc1 is required for cortical ER inheritance to 
help facilitate ER tubule spreading across the bud cortex (Li 
et al. 2013). Ptc6 is involved in the CWI pathway by nega-
tively regulating the MAP kinase, Slt2 (Sharmin et al. 2015). 
Ptc7 dephosphorylates the hydrolase Coq7 (Cat5) activating 
coenzyme Q6 biosynthesis (Martin-Montalvo et al. 2013). 
While this is just a snapshot of the processes PP2C phos-
phatases are involved in, it is clear that PP2C phosphatases 
have overlapping functions and are involved in a variety of 
cellular processes.

PTP family

The PTP family of protein phosphatases is a diverse fam-
ily with very limited sequence identity between members. 
Outside of the catalytic core, the members of the PTP family 
show very little sequence similarity and may even represent 
multiple evolutionary lineages (Fig. 6a). PTP phosphatases 
have an expanded substrate specificity to include proteins 
with phosphorylated serine, threonine, and tyrosine resi-
dues. While yeast lacks tyrosine-specific protein kinases, it 
encodes several dual specificity kinases that are capable of 
phosphorylating tyrosine residues. Indeed, although small in 
number, the phosphorylation of tyrosine residues in yeast is 
critical to important signal transduction pathways, including 
cell cycle checkpoint regulation (Sia et al. 1996; Zhan et al. 
1997) and stress response signaling (Hahn and Thiele 2002; 
Mattison et al. 1999). Additionally, members of the PTP 
family are highly important in facilitating numerous intra-
cellular signaling pathways (Barford et al. 1998). The wide 
variety of substrates and roles within the cell may explain 
the diversity of phosphatase domains within the PTP protein 
phosphatase family.

Catalytic mechanism

The PTP family members share a common catalytic mech-
anism with a conserved sequence motif represented by 
C-x5-R (Fig. 6b). This motif includes the invariant cysteine 
residue that serves as the nucleophile in the dephosphoryl-
ation reaction (Fig. 6c) and the arginine residue that acts 
to stabilize the covalent phosphoryl-enzyme intermedi-
ate (Zhang et al. 1994). The presence of phosphopeptide 

substrates induces a conformational change, aligning the 
catalytic residues with the substrate and allowing for cataly-
sis to occur (Barford et al. 1998).

Regulation

Members of the PTP family differ in the regulatory domains 
attached to either side of the catalytic subunit. Regulation of 
catalysis, substrate specificity, and localization is influenced 
by the presence of these domains (Barford et al. 1998). PTP 
phosphatases may be regulated by other means, such as 
through sequestration or by binding with an inhibitor pro-
tein, as seen with the essential phosphatase, Cdc14. Prior 
to returning to G1 in the cell cycle, Cdc14 interacts with 
its inhibitor, Net1, which sequesters Cdc14 in the nucleolus 
(Shou et al. 1999; Visintin et al. 1999). Release of Cdc14 
is required for cell cycle progression. Additionally, Cdc14 
must dimerize for proper function, since disruption of the 
binding interface interferes with Cdc14 function (Kobayashi 
and Matsuura 2017). Cdc14 is also regulated by various 
signaling cascades, including the FEAR and the MEN sign-
aling cascades, which influence proper localization of Cdc14 
(Stegmeier and Amon 2004).

Signal transduction

The PTP family is composed of a diverse group of protein 
phosphatases that share a conserved catalytic motif. Due to 
the limited sequence identity and wide substrate specific-
ity, the phosphatases within the PTP family are involved 
in a wide variety of functions and roles within the cell. In 
fact, there are as many as 455 potential substrates for Cdc14 
(Kao et al. 2014). Cdc14 is involved in a number of func-
tions, including chromosome segregation (Matos-Perdomo 
and Machin 2018; Ramos et al. 2017), autophagy induction 
(Kondo et al. 2018), recombinational DNA repair (Villoria 
et al. 2017), cytokinesis (Kuilman et al. 2015; Miller et al. 
2015), and spindle stability and duplication (Fox et al. 2017; 
Villoria et al. 2017). Cdc14 is activated in times of starva-
tion and has been connected to TORC1 inactivation (Vil-
loria et al. 2017). The Mih1 phosphatase (Mitotic Inducer 
Homolog 1) is a dual specificity protein phosphatase that 
contains a Rhodanese-like domain (Fig. 6a). Mih1 is the 
yeast ortholog of mammalian and S. pombe Cdc25. These 
important phosphatases activate cyclin-dependent protein 
kinases that control cell cycle progression such as Cdc28 in 
S. cerevisiae (Sia et al. 1996) and cdc2/cyclinB in humans 
(Strausfeld et al. 1991).

Ssu72, the other essential PTP phosphatase, is highly 
involved with transcription and interacts with RPB2, a sub-
unit of RNA polymerase II (Pappas and Hampsey 2000). 
Ssu72 dephosphorylate residues of the carboxy-terminal 
domain (CTD) of RNA polymerase II (Ganem et al. 2006; 
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Krishnamurthy et  al. 2004) with a preference for Ser7 
(Zhang et al. 2012) and indirectly influence the dephospho-
rylation of Ser2 during initiation (Rosado-Lugo and Hamp-
sey 2014). Interestingly, Ssu72 has roles both in the initia-
tion–elongation transition phase (Dichtl et al. 2002; Pappas 
and Hampsey 2000; Rosado-Lugo and Hampsey 2014) as 
well as the termination phase of transcription (Ansari and 
Hampsey 2005; Dichtl et al. 2002; Ganem et al. 2003; He 
et al. 2003; Krishnamurthy et al. 2004; Reyes-Reyes and 
Hampsey 2007; Zhang et al. 2012). Ssu72 is required for 
the formation of gene loops during transcription (Ansari 
and Hampsey 2005; Rosado-Lugo and Hampsey 2014; 
Tan-Wong et al. 2012). Additionally, Ssu72 interacts with 
the cleavage and polyadenylation machinery (Ansari and 

Hampsey 2005; Dichtl et al. 2002; He et al. 2003; Stein-
metz and Brow 2003). With this in mind, it is clear that 
Ssu72 plays an important role in the regulation of the RNA 
polymerase II and transcription.

HAD family

The HAD family of protein phosphatases was discov-
ered when the identity of a phosphatase that acted on the 
RNA polymerase II carboxy-terminal domain (CTD) was 
discovered (Chambers and Dahmus 1994; Chambers and 
Kane 1996). The HAD family is not related to other protein 
phosphatase families by sequence, but is instead related to 
the haloacid dehalogenase superfamily (Burroughs et al. 

Fig. 6  Protein tyrosine phosphatase family. a Schematic representa-
tion of the yeast PTP family showing the protein size and the loca-
tion of recognizable PFAM domains. b Proposed catalytic mechanism 
of the PTP family showing the conserved cysteine residue acting as 

the nucleophile and the conserve arginine acting to stabilize the phos-
phoryl intermediate. c Multiple sequence alignment of the catalytic 
core of the PTP family members and the conserved C-x5-R motif. 
Hydrophobic residues are represented in the consensus as ø
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2006). The members of this family are characterized by the 
DxDx(T/V) signature motif (Fig. 7a) located in the catalytic 
center (Kamenski et al. 2004). Yeast encodes at least four 
protein phosphatases in the HAD family and additional HAD 
enzymes that dephosphorylate small molecules (Melcher 
and Entian 1992) and nucleic acids (Deshpande and Wilson 
2004). However, the signature motif is relatively common 
in the yeast proteome, and the absence of sequence similar-
ity outside of this motif makes it difficult to determine how 
many other yeast proteins are members of the HAD family 
of enzymes.

Catalytic mechanism

Members of the HAD family bind a magnesium ion at the 
active site, and phosphatase activity is dependent on the 
presence of this magnesium ion (Kuznetsova et al. 2015). 
Additionally, these phosphatases use the first aspartate 
from the DxDx(T/V) motif (Fig. 7a) as the initial nucleo-
phile (Fig. 7b). The covalent phosphoryl-enzyme intermedi-
ate is then hydrolyzed by water to release a free phosphate 
and regenerate the active site (Ghosh et al. 2008). Struc-
tural analyses of Fcp1 from Schizosaccharomyces pombe, a 
member of the HAD family, suggest that this mechanism is 
conserved in fission yeast (Ghosh et al. 2008).

Regulation

To date, minimal research has been conducted into under-
standing how members of the HAD family are regulated 

in S. cerevisiae. With that in mind, there is evidence that 
Psr1 and Psr2, members of the HAD protein phosphatase 
family, utilize adaptor proteins to assist with proper locali-
zation and substrate targeting (Kaida et al. 2002). Fcp1, an 
essential phosphatase in the HAD family, is an RNA poly-
merase II C-terminal domain (CTD) modifier that works to 
recycle RNA polymerase II. Following dissociation of the 
transcription machinery, Fcp1 interacts with free RNAPII, 
demonstrating some substrate specificity (Kong et al. 2005). 
However, the diversity of the members of this family, com-
bined with low specificity substrates, may provide evidence 
of convergent evolution (Kuznetsova et al. 2015).

Signal transduction

HAD phosphatases have been implicated in a number of cel-
lular processes. As previously noted, the Fcp1 phosphatase 
plays a key role in transcription by dephosphorylating the 
CTD of RNA polymerase II (Kong et al. 2005). Additionally, 
Psr1 and Psr2 function in mediating responses to sodium 
stress by inducing transcription of Ena1, the major sodium 
extrusion pump (Siniossoglou et al. 2000).

RTR family

Great interest in transcriptional regulation has led to the 
identification of the multiple kinases and phosphatases act-
ing on the C-terminal domain (CTD) of RNA polymerase 
II (Egloff and Murphy 2008). Ssu72 and Fcp1, members 
of the PTP and HAD families of protein phosphatases, are 

Fig. 7  HAD and RTR phosphatases. a Conserved catalytic core of 
the HAD protein phosphatases in yeast showing the DxDxT motif. 
Hydrophobic residues are represented in the consensus as ø. The cat-
alytic aspartate is the first aspartate in the DxDxT motif. b Proposed 
catalytic mechanism for the HAD protein phosphatases showing the 
residues that coordinate the magnesium ion and the catalytic aspar-

tate residue that acts as the nucleophile. c Conserved sequences in the 
RTR phosphatases from yeast (Rtr1 and Rtr2) as well as human (Hs) 
and Drosophila (Dm) showing the conserved cysteine and histidine 
residues that coordinate a zinc ion. A proposed catalytic mechanism 
for this family envisions a conserved tyrosine residue (arrow) acting 
as the nucleophile (Irani et al. 2016)
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known CTD phosphatases. A third CTD phosphatase, Rtr1, 
was identified as an RNA polymerase binding protein (Gib-
ney et al. 2008), capable of dephosphorylating the serine-5 
phosphorylation on the CTD in vitro (Mosley et al. 2009). 
Cells lacking the RTR1 gene displayed increased serine-5 
phosphorylation in vivo (Hunter et al. 2016). Homologs of 
Rtr1 are found throughout eukaryotes, including mammalian 
species (Fig. 7c).

Catalytic mechanism

Previous studies in Kluyveromyces lactis suggested that 
Rtr1 did not house an active site or any catalytic activity 
in the purified protein (Xiang et al. 2012). However, recent 
structural studies in S. cerevisiae have indicated otherwise. 
The zinc finger domain and a pair of helices may form a 
substrate binding pocket. Mutagenesis of residues within 
this site dramatically reduced catalytic activity, suggesting 
that this is the location of the phosphoryl transfer reaction 
(Irani et al. 2016). The exact mechanism of catalysis has yet 
to be fully elucidated; however, Tyr105 is required for cata-
lytic function. As this residue is located at the base of the 
newly discovered phosphate binding pocket, it may be the 
nucleophile in catalysis (Irani et al. 2016). Difficulty ensur-
ing stability and proper folding of Rtr1 in vitro (Irani et al. 
2016) may explain previous reports of Rtr1 lacking catalytic 
activity (Xiang et al. 2012).

The Rtr1 family is a distinct phosphatase lineage with 
few similarities to other protein phosphatase families. For 
example, Rtr1 is dissimilar to the HAD family, as it does not 
require the presence of a magnesium ion, nor does it have a 
di-metal active site which is characteristic of the PPP fam-
ily. Neither does the Rtr1 family have a conserved cysteine 
residue available to act as a nucleophile. The presence of 
catalytic activity in recombinant Rtr1 rules out the possi-
bility that this protein acts as a scaffold in yeast to recruit 
a phosphatase to the CTD (Irani et al. 2016). Thus, Rtr1 
represents a novel and atypical protein phosphatase family.

Regulation

Due to the recent discovery of the Rtr1 protein phos-
phatase family, there remains much research to be done to 
fully understand how members of this phosphatase family 
are regulated. In terms of regulating binding to RNA poly-
merase II, the phosphorylation status of the CTD mediates 
the interaction with Rtr1. Rtr1 preferentially binds to the 
CTD when serine-2, serine-5, and serine-7 are phosphoryl-
ated during elongation. Additionally, Rtr1 substrate speci-
ficity and phosphorylation status is dependent on CTDK-1 
(Smith-Kinnaman et al. 2014). In terms of mRNA sta-
bility, Rtr1 has the ability to destabilize its own mRNA, 

providing a level of regulation post-transcriptionally. This 
process is dependent on the proteins Dhh1 and Rex2/Rex3 
(Hodko et al. 2016).

Signal transduction

The interactome of Rtr1 has not yet been extensively studied; 
however, Rtr1 plays a role in transcription from the initiation 
stage to elongation and termination by dephosphorylating 
Ser5 of the CTD (Gibney et al. 2008, Hsu et al. 2014; Hunter 
et al. 2016; Irani et al. 2016; Mosley et al. 2009; Smith-
Kinnaman et al. 2014) and possibly Tyr1 as well (Hsu et al. 
2014). Additionally, Rtr1 is involved in the regulation of 
various co-transcriptional processes and affects methylation 
of lysine 36 of histone H4, thereby establishing a role in 
chromosome maintenance and integrity (Hunter et al. 2016).

Conclusion

Protein kinases and protein phosphatases act in opposition 
to dictate the phosphorylation status of proteins in eukary-
otic cells. Though tied together in function, protein kinases 
and phosphatases show distinct differences in the number 
of enzymes and the evolutionary lineages that gave rise to 
them. Kinases are numerous in yeast and represent fewer 
lineages. Of the 127 protein kinases in yeast, 117 are mem-
bers of the same serine/threonine protein kinase superfamily 
(Rubenstein and Schmidt 2007). The remaining ten atypical 
protein kinases are related to bacterial kinases or inositol 
kinases. Thus, almost all of the protein kinases (> 92%) 
share the same catalytic domain structure and mechanism. 
In contrast, phosphatases are fewer with only 43 in yeast and 
they comprise multiple independent evolutionary lineages, 
each with distinct structures and mechanisms. Some families 
utilize metal ions to activate a water molecule to serve as 
the nucleophile (PPP, PPM). Others use nucleophilic amino 
acid side chains such as cysteine (PTP) or aspartate (HAD) 
to first generate a phosphoryl-enzyme intermediate prior 
to hydrolysis. The PTP family shares a common catalytic 
mechanism but may itself constitute multiple evolutionary 
lineages. While few in number, protein phosphatases are 
abundant proteins that generate enzymatic diversity through 
interactions with regulatory subunits. The complex interplay 
of the protein kinases and phosphatases provides the rich 
diversity for numerous signal transduction pathways that 
control cellular responses to a vast array of external and 
internal stimuli.
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