	Pulse Modulation
	• What if the Carrier Signal were a Pulse Train Instead of a Sinusoid?
•	• Three Approaches
	 Pulse Amplitude Modulation (PAM)
	 Pulse Width Modulation (PWM)
	 Pulse Position Modulation (PPM)
	• Each of these Approaches Uses a Discrete Signal to Carry an Analog Signal
	Martin B.H. We
ılse	e Modulation - 1 University of Pitts

Bandwidth of a Pulse Train

- $V(f) = V\tau[\sin(\pi f\tau)/(\pi f\tau)]$
- τ is the Duration of the Pulse
- *V* is the Amplitude of the Pulse
- The Nth Harmonic of a Pulse Train
 - $\circ V_n = (V\tau/T)[\sin(nx)/(nx)] = (V\tau/T)\operatorname{sinc}(\tau/T)$
 - *T* is the Interval Between Pulses (*i.e.*, the Period)

 $\circ x = \pi \tau T$

Bandwidth of a Pulse Train

• Find the "Zeros"

• We Need the Location of sin(nx) = 0

• This Occurs When $n\pi\tau/T = \pi$

• That is, When $n/T=1/\tau$ (By Substitution)

• Let $f_0 = 1/T$, So Zeros Occurs at $nf_0 = 1/\tau$

• The First Zero Occurs at n=1, or at the Frequency $f=1/\tau$

• Note The Following

• Most of the Signal Energy (92%) is Contained in the Frequency Between 0 and $f = 1/\tau$

• Thus, we can Ignore the Higher Frequency Components

Pulse Modulation - 3

Martin B.H. Weiss University of Pittsburgh

Tele 2060

Example

- V = 5V
- $T = 25 \mu \text{sec}$
- $\tau = 5 \mu sec$
- Spectrum
 - Calculate 1st zero: $f_0 = 1/\tau = 1/5 \mu \text{sec} = 200 \text{KHz}$
 - Calculate 2^{nd} zero: $f_1 = 2/\tau = 400$ KHz

Tele 2060

Pulse Amplitude Modulation (PAM)

- Modulate a Pulse Stream with a Signal
 - Used in Dimension PBX's
 - Type of a AM system
- Categories
 - o Natural PAM
 - **D** Top of Pulse Conforms to the Signal Shape
 - Makes Mathematics Easy
 - o Flat Top PAM
 - More Practical
 - Approaches Natural PAM for Narrow Pulses

Pulse Modulation - 5

Tele 2060

Bandwidth of PAM

- v(t) = m(t)p(t)
 - o m(t) is the Modulating Waveform
 - $\circ p(t)$ is the Pulse Train
- Fourier Equivalent of a Pulse Train
 - $o p(t) = V\tau/T + (2V\tau/T)[\operatorname{sinc}(x)\cos\omega t + \operatorname{sinc}(2x)\cos(2\omega t) + \ldots]$
 - Where $x = \pi \tau / T$

• Thus,

- $v(t) = m(t)V\tau/T + m(t)(2V\tau/T)[\operatorname{sinc}(x)\cos\omega t + \operatorname{sinc}(2x)\cos(2\omega t) + \ldots]$
- **o** This is in the Same General Form of the AM Signal:
 - $v(t) = m(t)V\tau/T + [(2V\tau/T)\operatorname{sinc}(x)]m(t)\cos\omega t + [(2V\tau/T)\operatorname{sinc}(2x)]m(t)\cos(2\omega t) + \dots$
 - $= X_s(f) = c_0 M(f) + c_1 [M(f f_s) + M(f + f_s)] + c_2 [M(f 2f_s) + M(f + 2f_s)] + \dots$
 - Where $c_n = 2V f_s \tau [\sin(n\pi f_s \tau)/n\pi f_s \tau)] = f_s \tau \operatorname{sinc}(nf_s \tau)$

Martin B.H. Weiss

Martin B.H. Weiss

University of Pittsburgh

Example

- V=5V
- $T=5\mu sec$, or $f_s=200,000/sec$
- $\tau = 1 \mu sec$
- First Zero, $f_0 = 1/\tau = 1/10^{-6} = 1$ MHz
- $f_s \tau = .2, f_s \tau = .628$
- $c_0 = (10)(.2)[\operatorname{sinc}(0)]=2$
- $c_1 = (10)(.2)[\sin(.628)/.628]=2(.935)=1.87$
- $c_2 = 2[\operatorname{sinc}(.4)] = 2(.757) = 1.514$

Martin B.H. Weiss University of Pittsburgh

Pulse Modulation - 7

Tele 2060

Form of the Harmonic Terms

- $V_n m(t) \cos(n\omega_s t)$, Where
 - $\omega_s = 2\pi/T_s$, or the Angular Sampling Frequency
 - and $V_n = (V\tau/T)[\sin(nx)/(nx)], x = \pi\tau/T$
- Observation:
 - o m(t) is Completely Contained in DC Component
 - **o** Thus, Low Pass Filtering can be Used for Demodulation

Comments on PAM

- Natural vs. Flat-Topped Sampling
 - Flat Tops Introduce Distortion
 - \circ If τ is Small, the Distortion is Minimal
- Nyquist's Sampling Theorem can be Demonstrated with PAM
 - **o Consider the Frequency Domain**
 - Let *T* Decrease
 - What Happens to the Spectrum of the Modulating Signal?
- PAM can be Used in Time Division Multiplexing
 - **o Take PAM Samples of Several Signals**
 - **o Interleave PAM Samples on a Transmission Channel**
 - o Separate Them at the Destination

Pulse Modulation - 9

Tele 2060

Pulse-time modulation

- Analagous to Angle Modulation
- Types
 - **o Pulse Width Modulation**
 - **o** Pulse Position Modulation

Martin B.H. Weiss

Martin B.H. Weiss

University of Pittsburgh

Pulse Width Modulation (PWM)

- Width of the Pulse is Proportional to the Signal
- Measured With Respect To
 - o Leading Edge
 - Trailing Edge
 - Center of the Pulse

Martin B.H. Weiss University of Pittsburgh

Pulse Modulation - 11

Tele 2060

Spectrum of PWM

- Cannot be Computed Exactly
- Recall That
 - A Pulse Train has the Following Equivalent,
 - $[p(t)=V\tau/T + (2V\tau/T)[\operatorname{sinc}(x)\cos\omega t + \operatorname{sinc}(2x)\cos(2\omega t) + \ldots]$
 - Where $x = \pi \tau / T$
 - The Harmonic Terms are of the Form: $V_n \cos(n\omega_s t)$, where
 - $\omega_{s} = 2\pi/T_{s}$, or the Angular Sampling Frequency
 - $V_n = (V\tau/T)[\sin(nx)/(nx)]$
- In PWM
 - $\circ \ \tau$ Varies with Amplitude
 - \circ Therefore, the Spectrum Depends on the Value of τ at Any Instance

Pulse Position Modulation (PPM)

- Use Narrow, Uniform Pulses
- Position of Pulse is Proportional to the Amplitude of the Modulating Signal
- Spectrum of PPM
 - $\circ p(t) = V\tau/T + (2V\tau/T)[\operatorname{sinc}(x)\cos\omega t + \operatorname{sinc}(2x)\cos(2\omega t) + \ldots]$
 - \circ Here, $T=T_0+m(t)\Delta T$

• The Spectrum Resembles PWM, in Principle

Martin B.H. Weiss University of Pittsburgh

Pulse Modulation - 13

Tele 2060

Pulse Code Modulation (PCM)

- Essentially a Variant of PAM
- Convert Samples into 8 Bit Digital Bytes, *i.e.*, Convert Smooth Analog PAM Samples to Discrete Levels
 - This Allows the Use of Digital Transmission Systems
 - o This Creates Additional Quantization Noise

Tele 2060

Quantization Noise in PCM

- For a Sinusoid Covering the EntireRange,
 V_s² = (1/2)V_p²=(1/2)(qM/2)² = (qM)²/8
 M is Number of Steps in the Conversion
 - q is the Step Voltage
- Thus, $S/N = E_s^2/E_{nq}^2 = [(Mq)^2/8][12/q^2] = (3/2)M^2$
- Number of Levels
 - $\circ M=2^n$
 - *n* is the Number of Bits per Sample
- Thus $S/N = (3/2)(2^{2n})$
- In Decibels, $(SNR)_{dB} = 10 \log(S/N) = 1.761 + 6.02n$

Martin B.H. Weiss University of Pittsburgh

Pulse Modulation - 17

Tele 2060

Practical PCM

- In the Linear PCM that we Analyzed, Quantization Noise is Constant for all Signal Levels
- Low Voltage Signals Suffer a Lower SNR as a Result
- Solution
 - Decrease the Step Size for Small Voltages and Increase Them for Large Voltages
 - This is Called *Companding*

Companding in PCM

- North America
 - \circ Use $\mu\text{-Law}$ Companding
 - $_{\circ} F_{\mu}(x) = \operatorname{sgn}(x) \left(\frac{\ln(1+\mu|x|)}{\ln(1+\mu)} \right)$
 - $\circ F_{\mu}(x)$ is the Compressor Characteristic Function
 - \circ Use μ =255
 - **This Applies for** $-1 \le x \le 1$

• The CCITT Has Defined an Alternate Form

- A Law Companding
- $_{\odot} F_A(x) = \operatorname{sgn}(x) \left(\frac{1 + \ln A |x|}{1 + \ln A} \right)$
- A-Law Companding Gives Flatter SNR for Larger Voltages at the Expense of Poorer SNR for Lower Voltages

Pulse Modulation - 19

Tele 2060

Improvements in Digital Encoding

- PCM Encoding is Inefficient
 - o Does Not Take Advantage of Redundancy
 - o Alternatives Exist
- Adaptive Differential PCM (ADPCM)
 - Uses 4 Bits per Sample
 - Encodes the *Difference* Between Successive Samples
 - Adapts to the Variation in Samples

Martin B.H. Weiss

Tele 2060

Delta Modulation

- Each "1" and "0" Represents a Fixed Voltage Level (ΔV)
- The Receiver Reconstructs the Signal by Adding ΔV to the Previous Voltage Level for a Received "1", and Subtracting ΔV for a Received "0"
- Thus, the Maximum Rate of Voltage Change (*i.e.*, Slew Rate) that a Delta Modulation System can Support is ΔV_{τ} , where τ is the Sample Period
- Slew Rates Greater than this Result in Slope Overload, which is a **Form of Signal Distortion**

Continuously Variable Slope Delta Modulation (CVSD)

- Adaptive Form of Delta Modulation
- Is Less Susceptible to Slope Overload
- The ΔV Represented by a "1" or a "0" Varies Based on the Number of Successive 1s or 0s Received
 - \circ Many Successive 1s or 0s Increases the ΔV
 - Change Resets ΔV to Its Nominal Value

Pulse Modulation - 23

Tele 2060

Pulse Modulation Devices

- PAM Transmitter
 - o Sample and Hold Circuit
 - Sample the Input Signal and Hold it for the Duration of the Pulse
- PAM Receiver
 - o Low Pass Filter
 - Recall that the Entire Modulating Signal was Contained in the Baseband Signal

Martin B.H. Weiss

Pulse Modulation Devices

- PWM Transmitter
 - PAM Modulator
 - Ramp Generator
 - Summing Amplifier
 - o Schmitt Trigger

• PWM Receiver

- Line Receiver/Signal Conditioner
- Reference Pulse
- Ramp Generator (Charge Capacitor)
- Summing Amplifier
- Keep Tops: Clipper
- o Low Pass Filter

Pulse Modulation - 25

Tele 2060

Pulse Modulation Devices

- PCM Transmitter
 - Called a *Coder/Decoder* (CODEC)
 - **o Generate PAM Samples**
 - Digitize PAM Samples
 - o Implement Companding in A/D Converter

• PCM Reciever

o Also a Codec

• Perform a D/A Conversion

Martin B.H. Weiss