Continuous Covering Location Problems

Introduction

Continuous Covering

Full Covering Problems

Preliminaries

Unconstrained

Constrained

Maximal Covering Problem

Fixed radius

Varying radius

Empty Covering

Other Location Models

Extensive Facility Covering

Outline

1 Introduction

2 Full Covering Problems

Preliminaries

Unconstrained

Constrained

3 Maximal Covering Problem

Fixed radius

Varying radius

4 Empty Covering

5 Other Location Models

6 Extensive Facility Covering

A location problem: Where are we going to put the thing(s)?
What places are available?
On what basis do we choose?

Taxonomy of Facility Location Problems

- Nature of the network
- Nature of facilities
- Nature of demand
- Objective and setting
Locational space

- Which places are available?
- Planer
- Network
- Discrete

Continuous problem characteristics

- Planer (or along one or n-dimensions)
- Cannot give an exhaustive list of potential site locations
- Site generating

Site generating

- Where do candidate sites come from?
- Typically, described by some polygon
- Described by Geographic Information System (GIS)
- Forbidden regions/Barriers
- Examples?

Goal

- Single or multi-objective
- Pareto efficient solutions or optimal?
- How do you define optimal?
- Math model solutions are a starting point. Details that are not captured in the model can also be important.
Distance measures

- Euclidean Distance
 \[d^\text{Euc}(X, P) = \sqrt{(a-x)^2 + (b-y)^2} \]
- Rectangular
 \[d^\text{Rect}(X, P) = |(a-x)| + |(b-y)| \]
- Rectangular max
 \[d^\text{Max}(X, P) = \max\{(a-x)| + |(b-y)|\} \]
- p-norm
 \[d^p(X, P) = \sqrt[p]{(a-x)^p + (b-y)^p} \]
- Hexagonal (for mapping)
 Minkowski distances (satisfy the triangle inequality)

Distance complications

- Barriers
- Terrain - anything that affects speed
- Current/wind - anything that adds a constant vector to velocity

Objectives

Objectives in a location problem will include a summary of the effects of distance.

- Pull - Objectives are improved when distance is decreased
- Push - Objectives improved when distance increases

Full Covering Problems

- Locate a facility to cover a region
- Examples
 Full covering model Given the points \(P_m(m \in M) \) in the plane we must find the circular ball with minimum radius covering them all; its centre is then the optimal site.
Convex: C is said to be convex if, for all x and y in C and all t in the interval [0,1], the point \((1 - t)x + ty\) is in C.

Convex hull: the boundary of the minimal convex set containing a given non-empty finite set of points in the plane. Unless the points are collinear.

Full Covering - Convex Hull

Elzinga-Hearn method

- Initialize: Pick any two demand points
- Handle two points
 - Let C be the circle defined the first two demand points
 - If C covers all demand points, C is the MCC: Stop
 - If C does not cover all demand points, then add any demand point outside C and proceed with these three demand points.

Unconstrained Full Covering

- Find the minimal covering circle (MCC) that covers the points.
- At least two demand points \(P_m\) lie on the MCC.
- If there are only two demand points \(P_j\) and \(P_k\) on the MCC, they form a diameter of the MCC.
- If three or more demand points are on the MCC (which is then fully determined), three of these points form an acute triangle.
- Any circle satisfying one of the previous two properties and which covers all demands points is the MCC

Elzinga-Hearn method cont.

- Handle three points
 - Determine if the triangle formed by the three points is an acute triangle. If not, drop the point at the obtuse angle and proceed with the remaining points.
 - Let C be the circle defined by the demand points
 - If C covers all demand points, C is the MCC: Stop
 - Otherwise, add any demand point \(P\) which is outside C
 - Drop one of the former three demand points chosen by figure.
 - Repeat
Continuous Covering Location Problems

Introduction

Continuous Covering

Full Covering Problems

Preliminaries

Unconstrained

Constrained

Maximal Covering Problem

Empty Covering

Other Location Models

Extensive Facility Covering

MCC Discussion

• Note that for each step, the circle gets larger, so it will complete.
• Certain steps are those that you do not know how to do. Search for code or a library that can solve those steps and include them in your program. Remember to cite your sources.
• Another method uses Voronoi diagrams, which involves identifying the regions where each given point is the ‘extreme’ point. This requires knowledge of computation geometry methods (or use of software libraries).
• Etzinga-Hearn is relatively fast in practice.

Constrained Continuous Covering

Constrained Minimum Covering Circle In the presence of a feasible region \(S \), the constrained euclidean distance min-max single facility location problem (i.e. find the smallest covering circle with center in \(S \) (CMCC)), maybe solved using the properties:

- Either the CMCC is equal to the MCC, if the solution to the MCC lies in \(S \).
- Or the optimal site (center of circle) must be either
 - A point of \(S \) closest to some destination \(P_i \), and \(P_i \) lies on the CMCC
 - the point of intersection of the bisector of two destinations \(P_i \) and \(P_j \) with the boundary of \(S \), closest to \(P_i \) and \(P_j \), and then both \(P_i \) and \(P_j \) lie on the CMCC.

Finding the CMCC

1. Solve the MCC. If the center of \(C \) is in \(S \), stop: \(C \) is the CMCC.
2. Try out all the points \(P_i \) in turn. For each one, calculate \(X \) in \(S \) that is closest to \(P_i \). Construct a circle \(C \) with center \(X \) and radius \(d_{Euc}(X, P_i) \). If any circle \(C \) is a covering circle, stop: \(C \) is the CMCC.
3. Try out all pairs \(P_i, P_j \). For each one construct the bisector of \(P_i, P_j \). Let \(X \) be the point of intersection with the boundary of \(S \) (if it exists). Take the circle \(C \) centered at \(X \) with radius \(d_{Euc}(X, P_i) \). If \(C \) is a covering circle, save \(C \) as a candidate CMCC.
4. If this method did not stop in Steps 1 or 2, the smallest candidate \(C \) found in step 3 is the CMCC.

Discussion on CMCC

• How to identify the point of intersection of a line and a polygon.
• Computation geometry
• Spatially enabled databases
• ST_Intersection(geometry, geometry) function in SFSQL
• You do not have to solve the CMCC, but you should know how to draw figures to explain the method.
• There can also be a constraint that some regions are restricted.
Motivation

- What if the number of facilities and their covering distance is fixed?
- Not able to cover all demand points.
- Therefore, the goal is to cover as many demand points as possible.

Maximal Covering Problem: Find the (center X of a) circular disk of radius r covering the largest possible weight.

$$\begin{align*}
\max & \sum_i C_i w_i \\
\text{s.t. } & C_i = \begin{cases}
0 & \text{if } d_{Euc}(X, P_i) > r \\
1 & \text{if } d_{Euc}(X, P_i) \leq r
\end{cases}
\end{align*}$$

Finding boundary points

- For every pair P_i, P_j where $d_{Euc} \leq r$, find the points that form an equilateral triangle.

Find maximal covering

- Draw circles around each demand point of radius r
- For each region defined by the circles, identify the weight covered.
- Regions with the highest coverage are the solution regions.
- Optimal regions are either full disks or disk boundaries.
- Therefore, check only demand points or disk boundary points.
- How do you find disk boundary points?

Varying radius

- Minimal quantile location problem: given a desired coverage, what is the minimum radius that still allows to obtain the coverage, and where should the centre be placed.
- Optimal region decreases as the radius decreases.
- At some point, the last region reduces to a point, beyond which two radius disks are touching, or three disks have only one point in common.
- So, only points that are a midpoint between two demands, or at the same distance from three demand points.
Solving minimal quantile location problem

- Take all pairs or triplets of demand points, and construct the smallest enclosing disk C and calculate the weight of covered demand points. Keep only the disks that have sufficient coverage to be the candidate set.
- The retained disk with the smallest radius is the optimal minimal quantile solution.
- Note that this method finds the minimal quantile location problem for all potential radii.

Solving the Empty covering problem

- Create the (Closest Point) Voronoi diagram.
- The solution must lie either on a corner point of the feasible region, at the intersection of a Voronoi node and the feasible region boundary, or at the intersection of two Voronoi edges.

Empty covering problems

- Where to locate an undesirable facility
- Examples?
 - Site, within a feasible region, that is farthest possible from any sensitive places.

Minimal Covering Problem

- Minimal Covering: For a given radius r, what is the smallest possible coverage achievable?
- Maximal radius: For a given maximal level of coverage, what is the largest radius possible?
- Solution: Same as maximal covering problem, except pick regions that are Uncovered.
Minimal covering

- Similar to Maximal radius problem
- The candidate circles are those with one of the following criteria
 - 1 demand point, and the center is a corner of the feasible region \(S \)
 - 2 demand points, and center is on the boundary of \(S \)
 - 3 (or more) demand points forming an acute triangle

Push-Pull Covering Models

- Models that combine qualities of both push and pull models.
- Multiple objectives
- Fix a bound (limit) on one objective, and optimize the other
- Find all non-dominated solutions (Pareto optimal) for the bicriterial problem.

Positioning Models

- In marketing, brand positioning
- Each brand is characterized by \(n \) quantitative attributes.
- These attributes are an \(n \)-dimensional coordinate system.
- Customer groups are also represented on same system, with weights.
- Assume customers purchase brand “closest” to them.
- Where to add a new brand is a maximal covering problem.

Multiple Facility Covering Location Models

- When there are multiple facilities, the question is which interactions between demand points and facilities need to be accounted for in the model.
- Allocations between facilities and demand points may be fixed or allocated as part of the model.
- Multi-facility models have facilities assigned to demands. Location-allocation models both site facilities and assign them to demands.
- Facilities are already assigned to demands, but there is interaction between facilities.
- **Pull models** Minimize the maximum weighted distance/cost among facility-demand pairs and inter-facility pairs.
- **Push models** Maximize the minimum weighted distance/cost between facility/fixed-point pairs and inter-facility pairs.

p-center Covering

- Cover all demand points using p circles (ball) of minimal equal radius.
- Problem in 2 dimensions is \(NP \)-hard.
- These problems are solved in polynomial time in relation to \(\mathcal{O} \) -the number of demand points, but exponential in \(p \).
- Similar to the MCC, candidate points are at the center of the smallest covering circle of some set of demand points. Identify these points like for MCC, and choose \(p \) of these. Find the set \(p \) with the minimum-maximum radius circle.
- Usually solved using heuristics.
- Note that for the \(p \)-center, only one facility is actually at \(r \), there may be multiple solutions as the other \(p - 1 \) locations are not constrained.

Other variants

- **\(p \)-Maximal Covering** Cover maximal possible weight of demand points using \(p \) disks of given radius.
- **\(p \)-Dispersion** Locate \(p \) points as far apart from each other within the feasible region.
- Continuous \(p \)-covering Cover all points of an area by \(p \) circles of the smallest radius.

Extensive Facility Covering Location Models

- Facilities can be lines, line segments, circles, or grids
- Line to approximate two-dimensional points AKA linear regression
- When distances are not-Euclidean (i.e. no such thing as orthogonal) other techniques are needed to get closest distances.
- Book covers, this course will not.