Linear Time-invariant Systems
with Random Inputs
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X(2) Y(t)

Input X (¢

output Y (¢ / X (7)h(t — 7)dT convolution integral

Mean of Y (t)

E[Y(t)] = [/ X(t t—T)dT]
_ [ I (t—T)E[X(T)]dT] = (hnx)(2)

Remarks

e Existence of F[Y (t)] when X(t) is wide sense stationary
ElY(t)] = nx /OO h(t — 1)dr
EYO) < lnxl [ (bl
existence of E[Y (t)] requires |E[Y (¢)]| < M, thus we need

/OO |h(¢)|dyp < L bounded

or that the system be BIBO stable.
2
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Autocorrelation of Y ()

&, @)

ny(tl,tg) = E[X(tl)Y(tg)] = / h(tg — T)E[X(tl)X(T)]dT

— 00

_ / " Bty — T R x (. 7)dr

— 00

— /OO h(a)Rx x (t1,t2 — a)do

— 00

where we let @« = t5 — 7, dao = —d7. Notice that the convolution is with respect
to the second variable of the autocorrelation.

oo

Ryy(tl, tg) = E[Y(tl)Y(tQ)] = / h(tl — T)E[X(T)Y(tg)]dT

— 00

= /00 h(ti — T)Rxy (7,t2)dT

— 00

_ / T (B Ry (11 — By t2)dB

— 00

where we let § = t; — 7. Notice the convolution is with respect to the first
variable of the autocorrelation.
Replacing Rxy (.,.) in the last equation we get

Ryy (t1, t2) = / / h(a)h(B)Rxx (t1 — Btz — a)dBda
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Remarks

e Ryy(t1,t2) can be obtained directly
Ryy(ti,ty) = E[Y ()Y [ / / hts — ) X()X (a) | dads

= / / ty — a)h(ty — B)Rxx (o, B)dadf

e Let X(t) be strictly or w.s.s.
ny(tl,tQ) = / h(a);Rxx(tl,tQ —Ck)/dOé T:tQ —tl
> RXX?:'—Q)
= (h * RX)()(T)
Ryy(tl,tg) = / h(oz)\fﬂxy(tl — Oé,tz)/dOé
- RXYZ“FOC)
— | hB)Rxy (7 - 9)d8 = h(=7) + Ry (1)
so that
Ryvy (t) = h(t) * h(—t) x Rxx (t)

e The above results can be extended to the covariance by letting Y (t) =
Y (t) — ny (t) and using

Cyy (t1,t2) = Ry (t1,t2)
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LTI Discrete-time Systems with Random Inputs
LTI

k k
Mean
E[Y(n)] =) h(n —k)E[X (k)
k
X (n) wide sense stationary
E[Y(n)] =) h(k)E[X(n— k)] =nx > _ h(k) = H(1)nx
k k
H(z) =Y h(k)z™"|.=
k
Autocorrelation
Rxy(m,n) = E[X(m)Y(n)]=E|X(m)) h(k)X(n- k)]
k
= > h(k)Rxx(m,n—k)
k
Ryy(m,n) = E[Y(m)Y(n)]=)> h(k)Y h(l)Rxx(m—k,n—10)
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Special case: X (n) is w.s.s.

p=m-n = Y h(k)Rxx(n—k)=(h(n)* Rxx (1)) = Rxv(p)
k

Y h(O)Rxy(p—{) = h(—p) * Rxy (p) = Ryv(p)
i,

so that
Ryy(p) = h(—p) * Rxy (p) = h(—p) * h(p) * Rxx (p)
Differentiator
LTI X (1)
X (1) % >Y(t) =T
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Y (t) = dX(t)/dt defined in mean—square sense, find ny (t), Ryy (t1,t2). Is Y ()
w.s.s. if X (t) is w.s.s.?

nm>=Ewm=Eﬁyqzwiw:m§w
Rmﬁmg::Ewmw@ﬂzEkmﬁﬁflzﬁwgfﬁﬂzﬂkﬁ?m
Ryy(ti,t2) = E [d);t(fl)Y(tz)] = dE[X(;;)Y(t2)] — dRXZ;fth)

So that ,
0“Rxx(t1,12)

Ot10t

Ryy (t1,t2) =

Note If we use

Ryy(t1,ts) = E [Y(t1>dx(t2)] _ dRyx(t1, 1)

dto dto

although correct, we cannot use equation Ryy (t1,t2) = dRxy (t1,t2)/dt; to get
Ryy (t1,t2).

If X(t) is w.s.s. then

nx(t) constant so 1y (t) =0

Rxx(ti,t2) = Rxx(7) T =1ty — 1
dRXX(tQ —tl) _ dRXX(T) CZT

Ryt t2) = dts dr  dt
dRx (T
SO ny(’r) = ;_( )
dey(tQ — tl) dey(T) dT
Ryy(tit2) = dt T dr dh
dey(T) dZRx(T)
R e e T
7
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Moving averaging (MA) System

Is Y(n) ws.s. if X(n) is w.s.s.?
Mean
ElY(n)] = E[X(n)] = E[X(n —1)] = nx(n) —nx(n —1)

Autocorrelation

Rxy(m,n) = E[X(m)Y(n)] = E[X(m)X(n)— X(m)X(n—1)]
= Rxx(m,n) — Rxx(

Ryy(m,n) = E[Y(m)Y(n)] = E[(X(m)—X(m—1))(X(n) - X(n—1))]
= Rxx(m,n)— Rxx(m,n—1)— Rxx(m—1,n)+ Rxx(m—1,n—1)

m,n — 1)

If X(n) is w.s.s. then

ny (n) =0

Rxy(n—m)=Rxx(n—m)— Rxx(n—1—m)

Ezn—m, = ny(f):Rxx(f)—Rxxw—l)
Ryy(?l—??l):Rxx(n—m)—Rxx(n—l—m)—Rxx(n—m—l—l)—l—Rxx(n—m>
Ezn—m, = Ryy(g)IQRXXw)—Rxx(g—l)—RXXw—l—l)
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For the w.s.s. case, using that the impulse response of the MA system is h(n) =
d(n) —d(n — 1) we have

Rxy(m) = h(m)*xRxx(m)=Rxx(m)— Rxx(m—1)

Ryy(m) = h(—m)*x Rxy(m)=1[0(m)—90m+1)]* Rxy(m)=Rxy(m)— Rxy(m+1)
= [Rxx(m)— Rxx(m—1)] = [Rxx(m+1) — Rxx(m)]
= 2Rxx(m)— Rxx(m—1)— Rxx(m+1)

Autoregressive (AR) System

LTI
1l — «

Wi(n) 1=az = Y (n)
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W(n) is w.s.s.

If we let z~! be equivalent to a delay then we have that the transfer function
of the system is

1—
H(z)—l_aj (1—a) Zozz"

h(n) = (1 — a)a"u(n)

The input/output difference equation is equivalent to

k=0
Then
EY(n)] = ) WE)EW(n—k)]=nw) h(k)=nwH(1)
k=0 k=0
\fiwy(m, m + mo)/ = Z h(]{) \wa(m, m -+ mg — k),
RW;r(mo) g waz;lo—k)
Ryy(m,m+mo) = Y > h(k)h(€)Rww(mo — k + £)

-~

Ryy (mo)

Suppose W (n) is white noise

Rww (m )25( )
RWY Zh T h(m)

Ryy(m) = h(— ) * Rwy (m) = h(—m) * h(m)

Notice that Ry y (m) is non-symmetric (zero for negative m) while Ryy (m) is
symmetric.

|0
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Difference equation for Ryy(.) Consider the AR system
Y(n)=aY(n—-1)+ (1 — a)W(n) (1)

such that if W(n) is w.s.s. the output Y (n) is also w.s.s. Multiply equation (1)
by Y (n +m) to get

EY(n)Y(n+m)]=aE[Y(n—1)Y(n+m)]+ (1 —a)E[W(n)Y (n+m)]
Ryy(m)=aRyy(m—1)+ (1 —a)Rwy(n,m+n)

if W(n),Y (n) are jointly wide sense stationary, i.e., Ryy(n,m+n) = Ryy(m)
then a difference equation to obtain the autocorrelation is

Ryy(m) = &Ryy(m — 1) -+ (1 — Q)Rwy(m)
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Continuous-time Stationary Processes
Autocorrelation: measures relation of X (¢) and X (¢t + 7) for a lag 7

Rx (1) = E[X(t)X(t +7)]

Properties

e Rx(7) is even function of lag 7

Rx(t)=EXt)X(t+7)]=FEX({t+717)X(t) = Rx(—71)

e |[Rx(7)] < Rx(0), indeed

0< E[(X(t+7)— X)) =E[X*(t+7)]+ E[X?*(t)] —2E[X(t +7)X(t)]
= 2Rx(0) — 2Rx(7') = Rx(()) > RX 7‘)

o If there is a T' > 0 such that Rx(0) = Rx(T') then Rx(7) is periodic.

e Rx(7) is a positive definite function.

Power Spectral Density — Continuous-time Random Processes
If Rx(7) is the autocorrelation of a w.s.s. process X (¢) then Sx(€2) (or Sx(f),
() = 27 f) is the power spectral density of X (¢) and given by

Sx(Q) = / Rx(r)e /¥ dr
1 > 10T
Rx(r) = - Sx (Q)e?**7df
= [ s
12

Thursday, November 17, 11

12



X(t) Y (t)
Nx Ny
Rx(7) Ry (1)
W.S.S. W.S.S

Cross power spectral density If Rxy (1) = E[X (f)Y (t+7)] is the cross-correlation

of jointly stationary processes X (t) and Y (¢) then
Sxy () = F[Rxvy(7)]
is the cross power spectral density.

Power Spectral Density — Discrete-time Random Processes
If Rx(m) is the autocorrelation function of X (n) then its power spectral density

1S

Sx(e'¥) = Z Rx(m)e %™
k

and -
RX(m) — % ‘/7T SX(ejw)ejwmdw

|3
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Properties of Sx (1)
If X(t) is a real-valued process

e Sx(€2) is a real function

oo

Sx(ﬂ) = / Rx(T)e_jQTdT

— 00

— / b Rx (1) cos(Qr)dr — j / b Rx (1) sin(Q7)dr

\ . g
~~

0

e Sx(€2) is an even function of 2
Sx(Q) = Sx(—Q) because cos(27) = cos(—7)
(If X(t) is not real-valued, then Sx(€2) is not necessarily even.)

e Sx(2) > 0, i.e., it has the positive characteristics of a power density
function.

Remarks

e The Fourier transform cannot be applied directly to X (¢) because its FT
would not exist.

e Similar properties for Sx (e’*).

If X(t), a w.s.s. random process, is the input of a LTI system with impulse
response h(t), the output Y (¢) is also w.s.s. random process with autocorrelation

Ry (1) = h(—7) x h(7) * Rx(7) and power spectral density
Sy (@) = H(Q)"H(Q)Sx () = |[H(Q)]*Sx(2)

| 4

Thursday, November 17, 11

14



Remark

e For a discrete-time system

Sy (e/¥) = [H (') Sx ()
e For cross-correlation

ny(T) = h(T)*RX(T)
Sxy (@) = H(Q)S5x(Q)

e Physical significance of Sx (£2)
Sx (§2) is the distribution of the power over frequency

E[Y?(t)] = Ryy(0)= % / h Sy ()e?%dQ

— 00

1 oC 5
- = / Sx(@)H@)Pd0

Let H(s) be the transfer function of an ideal bandpass filter with frequency
response

— Qo Q

— A
bandwidth of filter

|5
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Sy(Q) = Sx(Q)H(Q)]?
Sx(Qy) [+ Q| <A/2
0 otherwise

Q

We thus have
E[Y?(t)] = Ry (0) = 2ASx (Q)

where the units of A are rad/sec and those of Ry (0) are power, so that Sx(.)
has as units power/(rad/sec) or power density over frequency. Notice also that

E[Y?(t)] = 2AS5x(Qg) > 0

indicating that as a density function Sx () > 0.

Thursday, November 17, 11
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Other properties of Sx (2)

o Let Y(t) = aX1(t) + bXa(t) where X;(t), i = 1,2 are orthogonal w.s.s.

Ry(t) = EYQ)Y({t+7)]=FE[(aX1(t)+bX(t))(aX1(t+7)+bX2(t+ 7))]
= CLQRX1 (7’) + bQRX2 (7’)
Sy (Q) = aQle (Q) + b25X2 (Q)

o Let Y(t) = d)égt), which can be thought of X (¢) being the input of a LTI

system with H () = j2 then

Sy (Q) = 7Q*Sx () = *5x(Q)
This is equivalent to using the derivative property of the Fourier transform

Rx(T) <> Sx(Q)

TRAD o Gysx(e) = —2sx(@
Ry(T) :—%‘:2(7) < Q2SX(Q) :Sy(Q)

e Consider the modulation process: X(t) input w.s.s. process, modulates a
complex exponential e/*%? so that the output is

Y (t) = X(t)elSho!
which is a complex process

Ry(t) = E[Y)Y*(t+7)]=E[X{)X(t+7)ellt-t=7)]

= Rx (T)e_jQOT

so that
Sy (2) = Sx(Q+ Q)

i.e., shifted in frequency to y. Sy (2) is not even because Y (¢) is complex.

|7
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X(t) : Y (1)

ejQOt

e If the modulation is done with a sinusoid,

Y(t) = X(t)cos(Qot) (Qp constant
Ry(1) = 0.5Rx(1)e T 4 0.5Rx (1)et%T
= 0.5Rx(7)cos(207)
Sy(Q) = 05SX(Q + QO) + 0.55x (Q — QO)

e Let X(¢) be zero-mean w.s.s. white noise so that
EX ()] =0
Rx(r) = oxd(7)
Sx () = 0%

i.e., just like white light, the spectrum of white noise has all possible
frequencies.
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Calculation of Rx(7) from Sx(Q)
Remember that Rx(7) = Rx(—7), i.e., even function of 7

Sx(2) = Sx(s)]s=ja

o0 0 oo
Sx(s) = / Rx(T)B_STdT:/ Rx(T)e_STdT—I—/ Rx(t)e *"dr
—00 —00 0
s—(s)zg[ﬁ;mu(—ﬂ] S+(Q)==£TRx(T)u(T)]
Rx (T)u(r) causal component of Ry (7)
Rx (T)u(—7) anti-causal component of Rx (7)
we have

S7(s) = /0 Rx(t)e”*Tdr = /OOO Rx (t)e®tdt = ST (—s)

— 0o

so that we have the following Fourier pairs

Sx(Q)=ST(s)+ST(—s) <+ Rx(1)=Rx(m)u(r)+ Rx(T)u(—7)

Example: first-order differential equation

YO (@) +aY (t) = X(t) a>0,—00<t< oo

X(t) is zero mean, unit variance stationary process. Calculate Sy (£2) and

Ry (7).

Since 1, = 0, then Cx (1) = Rx (1) = §(7) and Sx (2) = 1. The spectral density
of the output is

1 2

a+ 5§

B 1

Sy(Q) = [H(HQ)?Sx(Q) = T 22

because the spectrum of Y (¢) has lost some of the higher frequency components,
Y (¢) is called colored or brown noise.

19
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To find Ry (1) we let s = jQ (Q = s/j and Q2 = —s?) so that

G(s) = L — 1 _ A B
Y%, = a?2—352 (s+a)a—s) s+a a-—s

where the pole in the left-hand s-plane corresponds to a causal component and
the second term with pole in the right-hand s-plane corresponds to an anticausal
component.

1
A=8y(s)(s+a)|s=—a = 2%
1/(2c) 1 _
+ - _ T
Sy (s) = o = Ry (m)u(r) = 5 u(T)
By symmetry, R(—7) = R(7) so that
1
Ry(T) = ge_ahl

To find the cross power density Sxy (£2) we have

Sxy () = Flh(r)* Rx(7)] = H({)Sx () = H(Q)
1
a+ 7€

and
ny(T) = e_O‘Tu(T)

which is not symmetric, and causal.

20
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Example: Second-order system The input/output equation is given by
Y& (@) + 3y (1) +2Y(t) = 5X (1)
X (t) is stationary, white noise with zero mean, unit variance. Find Ry (7)
5 5

s2+3s+2s%—3s+2
2 4+354+2=(s+1)(s+2)

Sy(s) = H(s)H(=s) =

S(s)—A+B+C+D
Y s+ 1 s+2 s—1 s—2
25
A=5y(s)(s +1)]s=1= -
—25
B =Sy(s)(s+2)|s=—2 = ETE

thus we have

25

c (e”ITl —0.5e72I7]

Ry(’r)

Example: Analog averager Let the output of an analog averager be

1 t
= — X(T)dr
7| xe

where the input X (¢) has an autocorrelation function Rx (1) = 0% (7). Deter-
mine Ry (7) and Sy (Q).

Impulse response: by change of variable u =t — 7 we get

_ _/Xt_

so that the impulse response is h(t) = (1/7T)(u(t) —u(t —T))
21
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Ry () = h(—7)=* zl(T)*VRx(T)

7

h(T)x0% 6(T)=0% h(T)
= o3 h(T)*h(—T)

_ {(()“%/T)(l—“‘/T) mig = ZX[r(r +T) — 2r(r) + r(7 — T)

To compute the power spectral density Sy (€2), take the second derivative of
Ry (1) which gives

d?> Ry (1) 03(

0(T+T)+6(r—T) —26(7)]

a2 T?
so that
. 2 20'3(
(78)7Sy () = —5-(cos(§2r) — 1)
203 1—cos(Qr)  , [sin(QT/2)]°
Sy = o X |Tar)2

which is a real, positive even function.

22
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Discrete-time Stationary Processes

X(n), w.s.s. process

E[X(n)] = mX
6jw Z RX —jwk:
k=—o0
1 T :
Rx (k) = o Sx((e?%)dw w rad

Discrete-time White Noise

X (n), w.s.s. process
E[X(n)] =0

o2 k=0
Rx (k) = U§<5<k) - { ()X otherwise

63” Z 0X5 —nm<w<mT
k=—o0

Notice the difference with the continuous-time white noise where Rx (7)
e

0% 6(7) cannot be define at 7 = 0 because of §(7). The power density Sx (

is defined for all possible discrete frequencies w.

)

23
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Example: Discrete-time moving average
Y(n)=Xn)+aX(n-—1)

X (n) is white noise with zero mean and variance 2. Find E[Y (n)], Ry (k) and
Sy(@jw>.

ElY(n)] = E[X(n)]+aEX(n—-1)]=0
Ry(k) = EYn)Y(n+k)]=FE/(Xn)+aX(n—1)(X(n+k)+aX(n+k—1))]
= (1—|—042)Rx(]€)—|—OéRx(]€—|-1)—|—Osz(]€—1)
(1+a?)o? k=0
= ao? k=1,-1
0 otherwise

The power density is then

Sy (') = (1 + a?)o? + 2a0” cos(w)

24
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