Linear Time-invariant Systems with Random Inputs

$$
\begin{aligned}
& \text { Input } X(t) \\
& \text { output } Y(t)=\int_{-\infty}^{\infty} X(\tau) h(t-\tau) d \tau \text { convolution integral }
\end{aligned}
$$

Mean of $Y(t)$

$$
\begin{aligned}
E[Y(t)] & =E\left[\int_{-\infty}^{\infty} X(\tau) h(t-\tau) d \tau\right] \\
& =\left[\int_{-\infty}^{\infty} h(t-\tau) E[X(\tau)] d \tau\right]=\left(h * \eta_{X}\right)(t)
\end{aligned}
$$

Remarks

- Existence of $E[Y(t)]$ when $X(t)$ is wide sense stationary

$$
\begin{aligned}
E[Y(t)] & =\eta_{X} \int_{-\infty}^{\infty} h(t-\tau) d \tau \\
\mid E[Y(t)] & \leq\left|\eta_{X}\right| \int_{-\infty}^{\infty}|h(\psi)| d \psi
\end{aligned}
$$

existence of $E[Y(t)]$ requires $|E[Y(t)]|<M$, thus we need

$$
\int_{-\infty}^{\infty}|h(\psi)| d \psi<L \text { bounded }
$$

or that the system be BIBO stable.

Autocorrelation of $Y(t)$

$$
\begin{aligned}
R_{X Y}\left(t_{1}, t_{2}\right) & =E\left[X\left(t_{1}\right) Y\left(t_{2}\right)\right]=\int_{-\infty}^{\infty} h\left(t_{2}-\tau\right) E\left[X\left(t_{1}\right) X(\tau)\right] d \tau \\
& =\int_{-\infty}^{\infty} h\left(t_{2}-\tau\right) R_{X X}\left(t_{1}, \tau\right) d \tau \\
& =\int_{-\infty}^{\infty} h(\alpha) R_{X X}\left(t_{1}, t_{2}-\alpha\right) d \alpha
\end{aligned}
$$

where we let $\alpha=t_{2}-\tau, d \alpha=-d \tau$. Notice that the convolution is with respect to the second variable of the autocorrelation.

$$
\begin{aligned}
R_{Y Y}\left(t_{1}, t_{2}\right) & =E\left[Y\left(t_{1}\right) Y\left(t_{2}\right)\right]=\int_{-\infty}^{\infty} h\left(t_{1}-\tau\right) E\left[X(\tau) Y\left(t_{2}\right)\right] d \tau \\
& =\int_{-\infty}^{\infty} h\left(t_{1}-\tau\right) R_{X Y}\left(\tau, t_{2}\right) d \tau \\
& =\int_{-\infty}^{\infty} h(\beta) R_{X Y}\left(t_{1}-\beta, t_{2}\right) d \beta
\end{aligned}
$$

where we let $\beta=t_{1}-\tau$. Notice the convolution is with respect to the first variable of the autocorrelation.

Replacing $R_{X Y}(.,$.$) in the last equation we get$

$$
R_{Y Y}\left(t_{1}, t_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\alpha) h(\beta) R_{X X}\left(t_{1}-\beta, t_{2}-\alpha\right) d \beta d \alpha
$$

Remarks

- $R_{Y Y}\left(t_{1}, t_{2}\right)$ can be obtained directly

$$
\begin{aligned}
R_{Y Y}\left(t_{1}, t_{2}\right) & =E\left[Y\left(t_{1}\right) Y\left(t_{2}\right)\right]=E\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h\left(t_{1}-\beta\right) h\left(t_{2}-\alpha\right) X(\beta) X(\alpha)\right] d \alpha d \beta \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h\left(t_{2}-\alpha\right) h\left(t_{1}-\beta\right) R_{X X}(\alpha, \beta) d \alpha d \beta
\end{aligned}
$$

- Let $X(t)$ be strictly or w.s.s.

$$
\begin{aligned}
R_{X Y}\left(t_{1}, t_{2}\right) & =\int_{-\infty}^{\infty} h(\alpha) \underbrace{R_{X X}\left(t_{1}, t_{2}-\alpha\right)}_{R_{X X}(\tau-\alpha)} d \alpha \quad \tau=t_{2}-t_{1} \\
& =\left(h * R_{X X}\right)(\tau) \\
R_{Y Y}\left(t_{1}, t_{2}\right) & =\int_{-\infty}^{\infty} h(\alpha) \underbrace{R_{X Y}\left(t_{1}-\alpha, t_{2}\right)}_{R_{X Y}(\tau+\alpha)} d \alpha \\
& =\int_{-\infty}^{\infty} h(-\beta) R_{X Y}(\tau-\beta) d \beta=h(-\tau) * R_{X Y}(\tau)
\end{aligned}
$$

so that

$$
R_{Y Y}(t)=h(t) * h(-t) * R_{X X}(t)
$$

- The above results can be extended to the covariance by letting $\tilde{Y}(t)=$ $Y(t)-\eta_{Y}(t)$ and using

$$
C_{Y Y}\left(t_{1}, t_{2}\right)=R_{\tilde{Y} \tilde{Y}}\left(t_{1}, t_{2}\right)
$$

LTI Discrete-time Systems with Random Inputs

$$
Y(n)=\sum_{k} h(n-k) x(k)=\sum_{k} h(k) x(n-k)
$$

Mean

$$
\begin{aligned}
& E[Y(n)]=\sum_{k} h(n-k) E[X(k)] \\
& X(n) \text { wide sense stationary } \\
& E[Y(n)]=\sum_{k} h(k) E[X(n-k)]=\eta_{X} \sum_{k} h(k)=H(1) \eta_{X} \\
& H(z)=\left.\sum_{k} h(k) z^{-k}\right|_{z=1}
\end{aligned}
$$

Autocorrelation

$$
\begin{aligned}
R_{X Y}(m, n) & =E[X(m) Y(n)]=E\left[X(m) \sum_{k} h(k) X(n-k)\right] \\
& =\sum_{k} h(k) R_{X X}(m, n-k) \\
R_{Y Y}(m, n) & =E[Y(m) Y(n)]=\sum_{k} h(k) \sum_{\ell} h(\ell) R_{X X}(m-k, n-\ell) \\
& =E\left[\sum_{k} h(k) X(m-k) Y(n)\right]=\sum_{k} h(k) R_{X Y}(m-k, n)
\end{aligned}
$$

Special case: $X(n)$ is w.s.s.

$$
\begin{aligned}
& \mu=m-n \Rightarrow \quad \sum_{k} h(k) R_{X X}(\mu-k)=\left(h(\mu) * R_{X X}(\mu)\right)=R_{X Y}(\mu) \\
& \sum_{-\ell} h(\ell) R_{X Y}(\rho-\ell)=h(-\rho) * R_{X Y}(\rho)=R_{Y Y}(\rho)
\end{aligned}
$$

so that

$$
R_{Y Y}(\rho)=h(-\rho) * R_{X Y}(\rho)=h(-\rho) * h(\rho) * R_{X X}(\rho)
$$

Differentiator

$Y(t)=d X(t) / d t$ defined in mean-square sense, find $\eta_{Y}(t), R_{Y Y}\left(t_{1}, t_{2}\right)$. Is $Y(t)$ w.s.s. if $X(t)$ is w.s.s.?

$$
\begin{aligned}
\eta_{Y}(t) & =E[Y(t)]=E\left[\frac{d X(t)}{d t}\right]=\frac{d E[X(t)]}{d t}=\frac{d \eta_{X}(t)}{d t} \\
R_{X Y}\left(t_{1}, t_{2}\right) & =E\left[X\left(t_{1}\right) Y\left(t_{2}\right)\right]=E\left[X\left(t_{1}\right) \frac{d X\left(t_{2}\right)}{d t_{2}}\right]=\frac{d E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]}{d t_{2}}=\frac{d R_{X X}\left(t_{1}, t_{2}\right)}{d t_{2}} \\
R_{Y Y}\left(t_{1}, t_{2}\right) & =E\left[\frac{d X\left(t_{1}\right)}{d t_{1}} Y\left(t_{2}\right)\right]=\frac{d E\left[X\left(t_{1}\right) Y\left(t_{2}\right)\right]}{d t_{1}}=\frac{d R_{X Y}\left(t_{1}, t_{2}\right)}{d t_{1}}
\end{aligned}
$$

So that

$$
R_{Y Y}\left(t_{1}, t_{2}\right)=\frac{\partial^{2} R_{X X}\left(t_{1}, t_{2}\right)}{\partial t_{1} \partial t_{2}}
$$

Note If we use

$$
R_{Y Y}\left(t_{1}, t_{2}\right)=E\left[Y\left(t_{1}\right) \frac{d X\left(t_{2}\right)}{d t_{2}}\right]=\frac{d R_{Y X}\left(t_{1}, t_{2}\right)}{d t_{2}}
$$

although correct, we cannot use equation $R_{Y Y}\left(t_{1}, t_{2}\right)=d R_{X Y}\left(t_{1}, t_{2}\right) / d t_{1}$ to get $R_{Y Y}\left(t_{1}, t_{2}\right)$.

If $X(t)$ is w.s.s. then

$$
\begin{aligned}
& \eta_{X}(t) \text { constant so } \eta_{Y}(t)=0 \\
& R_{X X}\left(t_{1}, t_{2}\right)=R_{X X}(\tau) \quad \tau=t_{2}-t_{1} \\
& R_{X Y}\left(t_{1}, t_{2}\right)=\frac{d R_{X X}\left(t_{2}-t_{1}\right)}{d t_{2}}=\frac{d R_{X X}(\tau)}{d \tau} \frac{d \tau}{d t_{2}} \\
& \text { so } \quad R_{X Y}(\tau)=\frac{d R_{X}(\tau)}{d \tau} \\
& R_{Y Y}\left(t_{1}, t_{2}\right)=\frac{d R_{X Y}\left(t_{2}-t_{1}\right)}{d t_{1}}=\frac{d R_{X Y}(\tau)}{d \tau} \frac{d \tau}{d t_{1}} \\
& \text { so } \quad R_{Y Y}(\tau)=-\frac{d R_{X Y}(\tau)}{d \tau}=-\frac{d^{2} R_{X}(\tau)}{d \tau^{2}}
\end{aligned}
$$

Moving averaging (MA) System

$$
Y(n)=X(n)-X(n-1)
$$

Is $Y(n)$ w.s.s. if $X(n)$ is w.s.s.?
Mean

$$
E[Y(n)]=E[X(n)]-E[X(n-1)]=\eta_{X}(n)-\eta_{X}(n-1)
$$

Autocorrelation

$$
\begin{aligned}
R_{X Y}(m, n) & =E[X(m) Y(n)]=E[X(m) X(n)-X(m) X(n-1)] \\
& =R_{X X}(m, n)-R_{X X}(m, n-1) \\
R_{Y Y}(m, n) & =E[Y(m) Y(n)]=E[(X(m)-X(m-1))(X(n)-X(n-1))] \\
& =R_{X X}(m, n)-R_{X X}(m, n-1)-R_{X X}(m-1, n)+R_{X X}(m-1, n-1)
\end{aligned}
$$

If $X(n)$ is w.s.s. then

$$
\begin{aligned}
& \eta_{Y}(n)=0 \\
& R_{X Y}(n-m)=R_{X X}(n-m)-R_{X X}(n-1-m) \\
& \ell=n-m, \quad \Rightarrow \quad R_{X Y}(\ell)=R_{X X}(\ell)-R_{X X}(\ell-1) \\
& R_{Y Y}(n-m)=R_{X X}(n-m)-R_{X X}(n-1-m)-R_{X X}(n-m+1)+R_{X X}(n-m) \\
& \ell=n-m, \quad \Rightarrow \quad R_{Y Y}(\ell)=2 R_{X X}(\ell)-R_{X X}(\ell-1)-R_{X X}(\ell+1)
\end{aligned}
$$

For the w.s.s. case, using that the impulse response of the MA system is $h(n)=$ $\delta(n)-\delta(n-1)$ we have

$$
\begin{aligned}
R_{X Y}(m) & =h(m) * R_{X X}(m)=R_{X X}(m)-R_{X X}(m-1) \\
R_{Y Y}(m) & =h(-m) * R_{X Y}(m)=[\delta(m)-\delta(m+1)] * R_{X Y}(m)=R_{X Y}(m)-R_{X Y}(m+1) \\
& =\left[R_{X X}(m)-R_{X X}(m-1)\right]-\left[R_{X X}(m+1)-R_{X X}(m)\right] \\
& =2 R_{X X}(m)-R_{X X}(m-1)-R_{X X}(m+1)
\end{aligned}
$$

Autoregressive (AR) System

$$
Y(n)=\alpha Y(n-1)+(1-\alpha) W(n)
$$

$W(n)$ is w.s.s.
If we let z^{-1} be equivalent to a delay then we have that the transfer function of the system is

$$
\begin{aligned}
& H(z)=\frac{1-\alpha}{1-\alpha z^{-1}}=(1-\alpha) \sum_{n=0}^{\infty} \alpha^{n} z^{-n} \\
& h(n)=(1-\alpha) \alpha^{n} u(n)
\end{aligned}
$$

The input/output difference equation is equivalent to

$$
Y(n)=\sum_{k=0}^{\infty} h(k) W(n-k)
$$

Then

$$
\begin{aligned}
E[Y(n)] & =\sum_{k=0}^{\infty} h(k) E[W(n-k)]=\eta_{W} \sum_{k=0}^{\infty} h(k)=\eta_{W} H(1) \\
\underbrace{R_{W Y}\left(m, m+m_{0}\right)}_{R_{W Y}\left(m_{0}\right)} & =\sum_{k} h(k) \underbrace{R_{W W}\left(m, m+m_{0}-k\right)}_{R_{W W}\left(m_{0}-k\right)} \\
\underbrace{R_{Y Y}\left(m, m+m_{0}\right)}_{R_{Y Y}\left(m_{0}\right)} & =\sum_{k} \sum_{\ell} h(k) h(\ell) R_{W W}\left(m_{0}-k+\ell\right)
\end{aligned}
$$

Suppose $W(n)$ is white noise

$$
\begin{aligned}
& R_{W W}(m)=\delta(m) \\
& R_{W Y}(m)=\sum_{k} h(k) \delta(m-k)=h(m) \\
& R_{Y Y}(m)=h(-m) * R_{W Y}(m)=h(-m) * h(m)
\end{aligned}
$$

Notice that $R_{W Y}(m)$ is non-symmetric (zero for negative m) while $R_{Y Y}(m)$ is symmetric.

Difference equation for $R_{Y Y}($.$) Consider the AR system$

$$
\begin{equation*}
Y(n)=\alpha Y(n-1)+(1-\alpha) W(n) \tag{1}
\end{equation*}
$$

such that if $W(n)$ is w.s.s. the output $Y(n)$ is also w.s.s. Multiply equation (1) by $Y(n+m)$ to get

$$
\begin{aligned}
& E[Y(n) Y(n+m)]=\alpha E[Y(n-1) Y(n+m)]+(1-\alpha) E[W(n) Y(n+m)] \\
& R_{Y Y}(m)=\alpha R_{Y Y}(m-1)+(1-\alpha) R_{W Y}(n, m+n)
\end{aligned}
$$

if $W(n), Y(n)$ are jointly wide sense stationary, i.e., $R_{W Y}(n, m+n)=R_{W Y}(m)$ then a difference equation to obtain the autocorrelation is

$$
R_{Y Y}(m)=\alpha R_{Y Y}(m-1)+(1-\alpha) R_{W Y}(m)
$$

Continuous-time Stationary Processes

Autocorrelation: measures relation of $X(t)$ and $X(t+\tau)$ for a lag τ

$$
R_{X}(\tau)=E[X(t) X(t+\tau)]
$$

Properties

- $R_{X}(\tau)$ is even function of lag τ

$$
R_{X}(\tau)=E[X(t) X(t+\tau)]=E[X(t+\tau) X(t)]=R_{X}(-\tau)
$$

- $\left|R_{X}(\tau)\right| \leq R_{X}(0)$, indeed

$$
\begin{aligned}
& 0 \leq E\left[(X(t+\tau)-X(t))^{2}\right]=E\left[X^{2}(t+\tau)\right]+E\left[X^{2}(t)\right]-2 E[X(t+\tau) X(t)] \\
& =2 R_{X}(0)-2 R_{X}(\tau) \Rightarrow R_{X}(0) \geq R_{X}(\tau)
\end{aligned}
$$

- If there is a $T>0$ such that $R_{X}(0)=R_{X}(T)$ then $R_{X}(\tau)$ is periodic.
- $R_{X}(\tau)$ is a positive definite function.

Power Spectral Density - Continuous-time Random Processes

If $R_{X}(\tau)$ is the autocorrelation of a w.s.s. process $X(t)$ then $S_{X}(\Omega)$ (or $S_{X}(f)$,
$\Omega=2 \pi f)$ is the power spectral density of $X(t)$ and given by

$$
\begin{aligned}
S_{X}(\Omega) & =\int_{-\infty}^{\infty} R_{X}(\tau) e^{-j \Omega \tau} d \tau \\
R_{X}(\tau) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X}(\Omega) e^{j \Omega \tau} d \Omega \\
& =\int_{-\infty}^{\infty} S_{X}(f) e^{j 2 \pi \tau} d f
\end{aligned}
$$

	LTI	
	$h(t)$	\rightarrow
$X(t)$		$Y(t)$
η_{X}		η_{Y}
$R_{X}(\tau)$		$R_{Y}(\tau)$
w.s.s.		w.s.s.

Cross power spectral density If $R_{X Y}(\tau)=E[X(t) Y(t+\tau)]$ is the cross-correlation of jointly stationary processes $X(t)$ and $Y(t)$ then

$$
S_{X Y}(\Omega)=\mathcal{F}\left[R_{X Y}(\tau)\right]
$$

is the cross power spectral density.

Power Spectral Density - Discrete-time Random Processes

If $R_{X}(m)$ is the autocorrelation function of $X(n)$ then its power spectral density is

$$
S_{X}\left(e^{j \omega}\right)=\sum_{k} R_{X}(m) e^{-j \omega m}
$$

and

$$
R_{X}(m)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{X}\left(e^{j \omega}\right) e^{j \omega m} d \omega
$$

Properties of $S_{X}(\Omega)$
If $X(t)$ is a real-valued process

- $S_{X}(\Omega)$ is a real function

$$
\begin{aligned}
S_{X}(\Omega) & =\int_{-\infty}^{\infty} R_{X}(\tau) e^{-j \Omega \tau} d \tau \\
& =\int_{-\infty}^{\infty} R_{X}(\tau) \cos (\Omega \tau) d \tau-j \underbrace{\int_{-\infty}^{\infty} R_{X}(\tau) \sin (\Omega \tau) d \tau}_{0}
\end{aligned}
$$

- $S_{X}(\Omega)$ is an even function of Ω

$$
S_{X}(\Omega)=S_{X}(-\Omega) \text { because } \quad \cos (\Omega \tau)=\cos (-\Omega \tau)
$$

(If $X(t)$ is not real-valued, then $S_{X}(\Omega)$ is not necessarily even.)

- $S_{X}(\Omega) \geq 0$, i.e., it has the positive characteristics of a power density function.

Remarks

- The Fourier transform cannot be applied directly to $X(t)$ because its FT would not exist.
- Similar properties for $S_{X}\left(e^{j \omega}\right)$.

If $X(t)$, a w.s.s. random process, is the input of a LTI system with impulse response $h(t)$, the output $Y(t)$ is also w.s.s. random process with autocorrelation

$$
\begin{aligned}
& R_{Y}(\tau)=h(-\tau) * h(\tau) * R_{X}(\tau) \text { and power spectral density } \\
& S_{Y}(\Omega)=H(\Omega)^{*} H(\Omega) S_{X}(\Omega)=|H(\Omega)|^{2} S_{X}(\Omega)
\end{aligned}
$$

Remark

- For a discrete-time system

$$
S_{Y}\left(e^{j \omega}\right)=\left|H\left(e^{j \omega}\right)\right|^{2} S_{X}\left(e^{j \omega}\right)
$$

- For cross-correlation

$$
\begin{aligned}
& R_{X Y}(\tau)=h(\tau) * R_{X}(\tau) \\
& S_{X Y}(\Omega)=H(\Omega) S_{X}(\Omega)
\end{aligned}
$$

- Physical significance of $S_{X}(\Omega)$
$S_{X}(\Omega)$ is the distribution of the power over frequency

$$
\begin{aligned}
E\left[Y^{2}(t)\right] & =R_{Y Y}(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{Y}(\Omega) e^{j 0} d \Omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X}(\Omega)|H(\Omega)|^{2} d \Omega
\end{aligned}
$$

Let $H(s)$ be the transfer function of an ideal bandpass filter with frequency response

15

$$
\begin{aligned}
S_{Y}(\Omega) & =S_{X}(\Omega)|H(\Omega)|^{2} \\
& \approx \begin{cases}S_{X}\left(\Omega_{0}\right) & \left|\Omega \pm \Omega_{0}\right| \leq \Delta / 2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

We thus have

$$
E\left[Y^{2}(t)\right]=R_{Y}(0)=2 \Delta S_{X}\left(\Omega_{0}\right)
$$

where the units of Δ are $\mathrm{rad} / \mathrm{sec}$ and those of $R_{Y}(0)$ are power, so that $S_{X}($. has as units power/(rad/sec) or power density over frequency. Notice also that

$$
E\left[Y^{2}(t)\right]=2 \Delta S_{X}\left(\Omega_{0}\right) \geq 0
$$

indicating that as a density function $S_{X}\left(\Omega_{0}\right) \geq 0$.

Other properties of $S_{X}(\Omega)$

- Let $Y(t)=a X_{1}(t)+b X_{2}(t)$ where $X_{i}(t), i=1,2$ are orthogonal w.s.s.
$R_{Y}(\tau)=E[Y(t) Y(t+\tau)]=E\left[\left(a X_{1}(t)+b X_{2}(t)\right)\left(a X_{1}(t+\tau)+b X_{2}(t+\tau)\right)\right]$
$=a^{2} R_{X_{1}}(\tau)+b^{2} R_{X_{2}}(\tau)$
$S_{Y}(\Omega)=a^{2} S_{X_{1}}(\Omega)+b^{2} S_{X_{2}}(\Omega)$
- Let $Y(t)=\frac{d X(t)}{d t}$, which can be thought of $X(t)$ being the input of a LTI system with $H(\Omega)=j \Omega$ then

$$
S_{Y}(\Omega)=|j \Omega|^{2} S_{X}(\Omega)=\Omega^{2} S_{X}(\Omega)
$$

This is equivalent to using the derivative property of the Fourier transform

$$
\begin{array}{rll}
R_{X}(\tau) & \leftrightarrow & S_{X}(\Omega) \\
\frac{d^{2} R_{X}(\tau)}{d t^{2}} & \leftrightarrow & (j \Omega)^{2} S_{X}(\Omega)=-\Omega^{2} S_{X}(\Omega) \\
R_{Y}(\tau)=-\frac{d^{2} R_{X}(\tau)}{d t^{2}} & \leftrightarrow & \Omega^{2} S_{X}(\Omega)=S_{Y}(\Omega)
\end{array}
$$

- Consider the modulation process: $X(t)$ input w.s.s. process, modulates a complex exponential $e^{j \Omega_{0} t}$ so that the output is

$$
Y(t)=X(t) e^{j \Omega_{0} t}
$$

which is a complex process

$$
\begin{aligned}
R_{Y}(\tau) & =E\left[Y(t) Y^{*}(t+\tau)\right]=E\left[X(t) X(t+\tau) e^{j \Omega_{0}(t-t-\tau)}\right] \\
& =R_{X}(\tau) e^{-j \Omega_{0} \tau}
\end{aligned}
$$

so that

$$
S_{Y}(\Omega)=S_{X}\left(\Omega+\Omega_{0}\right)
$$

i.e., shifted in frequency to Ω_{0}. $S_{Y}(\Omega)$ is not even because $Y(t)$ is complex.

- If the modulation is done with a sinusoid,

$$
\begin{aligned}
Y(t) & =X(t) \cos \left(\Omega_{0} t\right) \quad \Omega_{0} \text { constant } \\
R_{Y}(\tau) & =0.5 R_{X}(\tau) e^{-j \Omega_{0} \tau}+0.5 R_{X}(\tau) e^{j \Omega_{0} \tau} \\
& =0.5 R_{X}(\tau) \cos \left(\Omega_{0} \tau\right) \\
S_{Y}(\Omega)=0.5 S_{X}\left(\Omega+\Omega_{0}\right)+0.5 S_{X}\left(\Omega-\Omega_{0}\right) &
\end{aligned}
$$

- Let $X(t)$ be zero-mean w.s.s. white noise so that

$$
\begin{aligned}
& E[X(t)]=0 \\
& R_{X}(\tau)=\sigma_{X}^{2} \delta(\tau) \\
& S_{X}(\Omega)=\sigma_{X}^{2}
\end{aligned}
$$

i.e., just like white light, the spectrum of white noise has all possible frequencies.

Calculation of $R_{X}(\tau)$ from $S_{X}(\Omega)$
Remember that $R_{X}(\tau)=R_{X}(-\tau)$, i.e., even function of τ

$$
\begin{aligned}
S_{X}(\Omega)= & \left.S_{X}(s)\right|_{s=j \Omega} \\
S_{X}(s)= & \int_{-\infty}^{\infty} R_{X}(\tau) e^{-s \tau} d \tau=\underbrace{\int_{-\infty}^{0} R_{X}(\tau) e^{-s \tau} d \tau}_{S^{-}(s)=\mathcal{L}\left[R_{X}(\tau) u(-\tau)\right]}+\underbrace{\int_{0}^{\infty} R_{X}(\tau) e^{-s \tau} d \tau}_{S^{+}(\Omega)==\mathcal{L}\left[R_{X}(\tau) u(\tau)\right]} \\
R_{X}(\tau) u(\tau) \quad & \quad \text { causal component of } R_{X}(\tau) \\
R_{X}(\tau) u(-\tau) \quad & \quad \text { anti-causal component of } R_{X}(\tau)
\end{aligned}
$$

we have

$$
S^{-}(s)=\int_{-\infty}^{0} R_{X}(\tau) e^{-s \tau} d \tau=\int_{0}^{\infty} R_{X}(t) e^{s t} d t=S^{+}(-s)
$$

so that we have the following Fourier pairs

$$
S_{X}(\Omega)=S^{+}(s)+S^{+}(-s) \quad \leftrightarrow \quad R_{X}(\tau)=R_{X}(\tau) u(\tau)+R_{X}(\tau) u(-\tau)
$$

Example: first-order differential equation

$$
Y^{(1)}(t)+\alpha Y(t)=X(t) \quad \alpha>0,-\infty<t<\infty
$$

$X(t)$ is zero mean, unit variance stationary process. Calculate $S_{Y}(\Omega)$ and $R_{Y}(\tau)$.

Since $\eta_{x}=0$, then $C_{X}(\tau)=R_{X}(\tau)=\delta(\tau)$ and $S_{X}(\Omega)=1$. The spectral density of the output is

$$
S_{Y}(\Omega)=|H(j \Omega)|^{2} S_{X}(\Omega)=\left|\frac{1}{\alpha+j \Omega}\right|^{2}=\frac{1}{\alpha^{2}+\Omega^{2}}
$$

because the spectrum of $Y(t)$ has lost some of the higher frequency components, $Y(t)$ is called colored or brown noise.

To find $R_{Y}(\tau)$ we let $s=j \Omega\left(\Omega=s / j\right.$ and $\left.\Omega^{2}=-s^{2}\right)$ so that

$$
S_{Y}(s)=\frac{1}{\alpha^{2}-s^{2}}=\frac{1}{(s+\alpha)(\alpha-s)}=\frac{A}{s+\alpha}+\frac{B}{\alpha-s}
$$

where the pole in the left-hand s-plane corresponds to a causal component and the second term with pole in the right-hand s-plane corresponds to an anticausal component.

$$
\begin{aligned}
& A=\left.S_{Y}(s)(s+\alpha)\right|_{s=-\alpha}=\frac{1}{2 \alpha} \\
& S_{Y}^{+}(s)=\frac{1 /(2 \alpha)}{s+\alpha} \Rightarrow R_{Y}(\tau) u(\tau)=\frac{1}{2 \alpha} e^{-\alpha \tau} u(\tau)
\end{aligned}
$$

By symmetry, $R(-\tau)=R(\tau)$ so that

$$
R_{Y}(\tau)=\frac{1}{2 \alpha} e^{-\alpha|\tau|}
$$

To find the cross power density $S_{X Y}(\Omega)$ we have

$$
\begin{aligned}
S_{X Y}(\Omega) & =\mathcal{F}\left[h(\tau) * R_{X}(\tau)\right]=H(\Omega) S_{X}(\Omega)=H(\Omega) \\
& =\frac{1}{\alpha+j \Omega}
\end{aligned}
$$

and

$$
R_{X Y}(\tau)=e^{-\alpha \tau} u(\tau)
$$

which is not symmetric, and causal.

Example: Second-order system The input/output equation is given by

$$
Y^{(2)}(t)+3 Y^{(1)}(t)+2 Y(t)=5 X(t)
$$

$X(t)$ is stationary, white noise with zero mean, unit variance. Find $R_{Y}(\tau)$

$$
\begin{aligned}
& S_{Y}(s)=H(s) H(-s)=\frac{5}{s^{2}+3 s+2} \frac{5}{s^{2}-3 s+2} \\
& s^{2}+3 s+2=(s+1)(s+2) \\
& S_{Y}(s)=\frac{A}{s+1}+\frac{B}{s+2}+\frac{C}{s-1}+\frac{D}{s-2} \\
& A=\left.S_{Y}(s)(s+1)\right|_{s=-1}=\frac{25}{6} \\
& B=\left.S_{Y}(s)(s+2)\right|_{s=-2}=\frac{-25}{12}
\end{aligned}
$$

thus we have

$$
R_{Y}(\tau)=\frac{25}{6}\left(e^{-|\tau|}-0.5 e^{-2|\tau|}\right)
$$

Example: Analog averager Let the output of an analog averager be

$$
Y(t)=\frac{1}{T} \int_{t-T}^{t} X(\tau) d \tau
$$

where the input $X(t)$ has an autocorrelation function $R_{X}(\tau)=\sigma_{X}^{2} \delta(\tau)$. Determine $R_{Y}(\tau)$ and $S_{Y}(\Omega)$.

Impulse response: by change of variable $\mu=t-\tau$ we get

$$
Y(t)=\frac{1}{T} \int_{0}^{T} X(t-\mu) d \mu
$$

so that the impulse response is $h(t)=(1 / T)(u(t)-u(t-T))$

$$
\begin{aligned}
R_{Y}(\tau) & =h(-\tau) * \underbrace{h(\tau) * R_{X}(\tau)}_{h(\tau) * \sigma_{X}^{2} \delta(\tau)=\sigma_{X}^{2} h(\tau)} \\
& =\sigma_{X}^{2} h(\tau) * h(-\tau) \\
& =\left\{\begin{array}{ll}
\left(\sigma_{X}^{2} / T\right)(1-|\tau| / T) & |\tau| \leq T \\
0 & |\tau|>T
\end{array}=\frac{\sigma_{X}^{2}}{T}[r(\tau+T)-2 r(\tau)+r(\tau-T)]\right.
\end{aligned}
$$

To compute the power spectral density $S_{Y}(\Omega)$, take the second derivative of $R_{Y}(\tau)$ which gives

$$
\frac{d^{2} R_{Y}(\tau)}{d t^{2}}=\frac{\sigma_{X}^{2}}{T^{2}}[\delta(\tau+T)+\delta(\tau-T)-2 \delta(\tau)]
$$

so that

$$
\begin{aligned}
& (j \Omega)^{2} S_{Y}(\Omega)=\frac{2 \sigma_{X}^{2}}{T^{2}}(\cos (\Omega \tau)-1) \\
& S_{Y}(\Omega)=\frac{2 \sigma_{X}^{2}}{T^{2}} \frac{1-\cos (\Omega \tau)}{\Omega}=\sigma_{X}^{2}\left[\frac{\sin (\Omega T / 2)}{\Omega T / 2}\right]^{2}
\end{aligned}
$$

which is a real, positive even function.

Discrete-time Stationary Processes

$$
\begin{aligned}
& X(n), \text { w.s.s. process } \\
& E[X(n)]=m_{X} \\
& S_{X}\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} R_{X}(k) e^{-j \omega k} \\
& R_{X}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{X}\left(\left(e^{j \omega}\right) d \omega \quad \omega \mathrm{rad}\right.
\end{aligned}
$$

Discrete-time White Noise

$$
\begin{aligned}
& X(n), \text { w.s.s. process } \\
& E[X(n)]=0 \\
& R_{X}(k)=\sigma_{X}^{2} \delta(k)= \begin{cases}\sigma_{X}^{2} & k=0 \\
0 & \text { otherwise }\end{cases} \\
& S_{X}\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} \sigma_{X}^{2} \delta(k)=\sigma_{X}^{2} \quad-\pi \leq \omega \leq \pi
\end{aligned}
$$

Notice the difference with the continuous-time white noise where $R_{X}(\tau)=$ $\sigma_{X}^{2} \delta(\tau)$ cannot be define at $\tau=0$ because of $\delta(\tau)$. The power density $S_{X}\left(e^{j \omega}\right)$ is defined for all possible discrete frequencies ω.

Example: Discrete-time moving average

$$
Y(n)=X(n)+\alpha X(n-1)
$$

$X(n)$ is white noise with zero mean and variance σ^{2}. Find $E[Y(n)], R_{Y}(k)$ and $S_{Y}\left(e^{j \omega}\right)$.

$$
\begin{aligned}
E[Y(n)] & =E[X(n)]+\alpha E[X(n-1)]=0 \\
R_{Y}(k) & =E[Y(n) Y(n+k)]=E[(X(n)+\alpha X(n-1))(X(n+k)+\alpha X(n+k-1))] \\
& =\left(1+\alpha^{2}\right) R_{X}(k)+\alpha R_{X}(k+1)+\alpha R_{X}(k-1) \\
& = \begin{cases}\left(1+\alpha^{2}\right) \sigma^{2} & k=0 \\
\alpha \sigma^{2} & k=1,-1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The power density is then

$$
S_{Y}\left(e^{j \omega}\right)=\left(1+\alpha^{2}\right) \sigma^{2}+2 \alpha \sigma^{2} \cos (\omega)
$$

