Linear Time-invariant Systems
with Random Inputs
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LTI

—| ht) }—>

X (1) Y (1)
Input X (t) :
output Y (t) = X()h(t! 1)d! convolution integral
Mean of Y (1)
T H
E[Y(t)] = E " XM)h(t! )d!
"y ! ! #

= h(t! DE[X )AL =(h" "x)(1)

Remarks

¥ Existence of E[Y (t)] when X (1) is wide sense stationary
L

E[Y(D] = “"x  h(t!
.

EIYOI # |"x| In(#)|d#

existence ofE[Y (t)] requires |[E[Y (t)]| <M , thus we need

|h(#)|d# <L bounded

or that the system be BIBO stable.
2
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Autocorrelation of Y ()

&, @)

ny(tl,tg) = E[X(tl)Y(tg)] = / h(tg — T)E[X(tl)X(T)]dT

— 00

_ / " Bty — T R x (. 7)dr

— 00

— /OO h(a)Rx x (t1,t2 — a)do

— 00

where we let @« = t5 — 7, dao = —d7. Notice that the convolution is with respect
to the second variable of the autocorrelation.

oo

Ryy(tl, tg) = E[Y(tl)Y(tQ)] = / h(tl — T)E[X(T)Y(tg)]dT

— 00

= /00 h(ti — T)Rxy (7,t2)dT

— 00

_ / T (B Ry (11 — By t2)dB

— 00

where we let § = t; — 7. Notice the convolution is with respect to the first
variable of the autocorrelation.
Replacing Rxy (.,.) in the last equation we get

Ryy (t1, t2) = / / h(a)h(B)Rxx (t1 — Btz — a)dBda
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Remarks

e Ryy(t1,t2) can be obtained directly
Ryy(ti,ty) = E[Y ()Y [ / / hts — ) X()X (a) | dads

= / / ty — a)h(ty — B)Rxx (o, B)dadf

e Let X(t) be strictly or w.s.s.
ny(tl,tQ) = / h(a);Rxx(tl,tQ —Ck)/dOé T:tQ —tl
> RXX?:'—Q)
= (h * RX)()(T)
Ryy(tl,tg) = / h(oz)\fﬂxy(tl — Oé,tz)/dOé
- RXYZ“FOC)
— | hB)Rxy (7 - 9)d8 = h(=7) + Ry (1)
so that
Ryvy (t) = h(t) * h(—t) x Rxx (t)

e The above results can be extended to the covariance by letting Y (t) =
Y (t) — ny (t) and using

Cyy (t1,t2) = Ry (t1,t2)
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LTI Discrete-time Systems with Random Inputs

LTI
—»| h(n) |—>»
X (n) Y (n)
Y(N)=  h(n! Kx(k)=  hk)x(n! k)
k k
Mean
|
E[Y(nN)]=  h(n! KE[X(K)]

k

X (n) wideI sense stationary |

E[Y(n)]=  h(KEX(n! K)]=!x  h(k)= H()!x
| k k

H@) =  hK)Z ¥z
k

Autocorrelation

#
|
Ryy (M,n) = EXM)Y(M]=E X(m) hKX(Nn! k)
| k
= h(k)Rxx (Mn! k)
k
| |
Ryy(m,n) = E[Y(m)Y(n)]= h(k)  h(")Rxx (m! k,n! ")
K #
| |
= E  h(kX(mM! KY() =  h(KRyy (m! k,n)
k k
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Special caseX (n) is w.s.s.
!
p=mlbn * h(K)Rxx (k! k) =(h(p) #Rxx (W) = Rxy (K)
| Kk

h()Rxy ("! )= h(" ") #Rxy (") = Ryv (")

So that
Ryy (") = h(' ") #Rxy (") = h(* ") #h(") #Rxx (")

Dilerentiator
LTI
X (1) d(.) Y (1)
dt

_dX (1)
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Y (t) = dX(t)/dt defined in mean—square sense, find ny (t), Ryy (t1,t2). Is Y ()
w.s.s. if X (t) is w.s.s.?

ny(t) = E[Y(t)]=E i - =
Bxvitut) = EX()Y (k) ="E.X(t1)d)§g2) :dE[XfZZX(tzﬂ:dezgl,w)
Ryy (t1,t2) = E'd);vt(fl)Y(tz) sz[X(;;)Y(“)]:dRXZghtz)
So that
Ry (th. 1) = O*Rx x (t1,t2)

Ot1 0t
Note If we use
I n
' dX (t dRy x (t1,t
Ryy(t1,t2) = £ Y (t1) (t2) _ dByx(t1,t2)
dt2 dtQ

although correct, we cannot use equation Ryy (t1,t2) = dRxy (t1,t2)/dt; to get
Ryy (t1,t2).

If X(t) is w.s.s. then

nx(t) constant so 1y (t) =0

Rxx(tl,tg) = RXX<7') T=15! 4
dRXX(tQ! tl) _ dRXX(T) dr

Ry (b1, t2) = dts dr  dty
SO ny(’r) = dRX(T)

dr

dey(tQ ! tl) dey(T) dTr

Ry (tit2) = dt; T dr dty

dR T d?Rx (T
SO Ryy(T)Z!%():!d—j;()

7
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Moving averaging (MA) System

Is Y(n) ws.s. if X(n) is w.s.s.?
Mean
ElY(n)] = E[X(n)] = E[X(n —1)] = nx(n) —nx(n —1)

Autocorrelation

Rxy(m,n) = E[X(m)Y(n)] = E[X(m)X(n)— X(m)X(n—1)]
= Rxx(m,n) — Rxx(

Ryy(m,n) = E[Y(m)Y(n)] = E[(X(m)—X(m—1))(X(n) - X(n—1))]
= Rxx(m,n)— Rxx(m,n—1)— Rxx(m—1,n)+ Rxx(m—1,n—1)

m,n — 1)

If X(n) is w.s.s. then

ny (n) =0

Rxy(n—m)=Rxx(n—m)— Rxx(n—1—m)

Ezn—m, = ny(f):Rxx(f)—Rxxw—l)
Ryy(?l—??l):Rxx(n—m)—Rxx(n—l—m)—Rxx(n—m—l—l)—l—Rxx(n—m>
Ezn—m, = Ryy(g)IQRXXw)—Rxx(g—l)—RXXw—l—l)
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For the w.s.s. case, using that the impulse response of the MA system gn) =

I'(n)! I'(n! 1) we have

Rxy (M) = h(m)" Rxx (M) = Rxx (Mm)! Rxx (m! 1)

Ryv(m) = h(! m)" Rxy (m)=[!(m)! (m+1)] " Rxy (M) = Rxy (M)! Rxy (m+1)
= [Rxx (m)! Rxx (m! DI [Rxx (Mm+1) ! Rxx (m)]

= 2Rxx (m)' Rxx (m' 1)' Rxx (m+l)

Autoregressive (AR) Systen

LTI

(R
. -

W(n)
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Y(n)=1Y (n! 1)+@ ! "YW(n)

W(n) is w.s.s.

If we let z' ! be equivalent to a delay then we have that the transfer functior
of the system is

| I !II

=@ty 1nzmn
1

1! 1z o

h(ny=( ! ') "u(n)

H(z) =

The input/output dilerence equation is equivalent to

Y(N)=  hKW(n'! k)
k=0
Then
I" I"
E[Y(n)] = h(K)YE[W(n! k)]="w  h(k)="wH(1)

f:O k=0

Rwy (m#@ + m03/0 = h(k) Rww (m, M+ Mo ! kg/o

Rwy (mo) Ik | Rww (mo! k)
RYY(m#;Q + m03/0 = h(K)h(HRww (Mo ! k + #)

Ryy (myo)

SupposeW (n) is white noise

Rww (m) = $(m)

Rwy (M) = h(k)¥m! k)= h(m)
K

Ryv(m) = h(! m)" Rwy (m)= h(! m)" h(m)

Notice that Ryy (m) is non-symmetric (zero for negativem) while Ryy (m) is
symmetric.

|0
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Dilerence equation for Ry vy (.) Consider the AR system
Y(nN)=1Y (n! 1)+(@! ')YW(n) (1)

such that if W (n) is w.s.s. the output Y (n) is also w.s.s. Multiply equation (1)
by Y(n+ m) to get

E[IY(N)Y(n+ m)]=E [Y(n! 1)Y(n+ m)]+(@ ! ')EW(N)Y(n+ m)]
Ryv(m)=IRyy(m! 1)+(1! !)Rwy (n,m+ n)

if W(n),Y (n) are jointly wide sense stationary, i.e., Rwy (n,m+ n) = Ryy (M)
then a dilerence equation to obtain the autocorrelation is

Ryy(m=Ryy(m! 1)+@ ! )Rwy (M)

Thursday, November 17, 11
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Continuous-time Stationary Processes
Autocorrelation: measures relation of X (¢) and X (¢t + 7) for a lag 7

Rx (1) = E[X(t)X(t +7)]

Properties

e Rx(7) is even function of lag 7

Rx(t)=EXt)X(t+7)]=FEX({t+717)X(t) = Rx(—71)

e |[Rx(7)] < Rx(0), indeed

0< E[(X(t+7)— X)) =E[X*(t+7)]+ E[X?*(t)] —2E[X(t +7)X(t)]
= 2Rx(0) — 2Rx(7') = Rx(()) > RX 7‘)

o If there is a T' > 0 such that Rx(0) = Rx(T') then Rx(7) is periodic.

e Rx(7) is a positive definite function.

Power Spectral Density — Continuous-time Random Processes
If Rx(7) is the autocorrelation of a w.s.s. process X (¢) then Sx(€2) (or Sx(f),
() = 27 f) is the power spectral density of X (¢) and given by

Sx(Q) = / Rx(r)e /¥ dr
1 > 10T
Rx(r) = o= [ Sx(@)e%d0
- / Sx (f)e’™ df
|2
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LTI

—| h(l) —

X (t) Y (1)
NXx Ny

Rx () Ry (7)
W.S.S. W.S.S

Cross power spectral density If Rxy (1) = E[X (f)Y (t+7)] is the cross-correlation
of jointly stationary processes X (t) and Y (¢) then

Sxy(Q2) = F|[Rxy ()]

is the cross power spectral density.

Power Spectral Density — Discrete-time Random Processes
If Rx(m) is the autocorrelation function of X (n) then its power spectral density

1S

Sx(e'¥) = Z Rx(m)e %™
k

and -
RX(m) — % ‘/7T SX(ejw)ejwmdw

|3
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Properties of Sy (!)
If X (t) is a real-valued process

¥ Sy (1) is a real function
b
Sx () = " Rx (1)e ' 'dl
! !! L
= Rx (!)cos(! !)d! I | Rx (!)sin(! !)d!
"l "l HB %
0

¥ Sy (1) is an even function of !
Sx ()= Sx(!'!) because cos(!!)=cos(!!!)
(If X (t) is not real-valued, then Sx (!) is not necessarily even.)

¥Sx () " 0, ie., it has the positive characteristics of a power densit
function,

Remarks

¥ The Fourier transform cannot be applied directly to X (t) because its FT
would not exist.

¥ Similar properties for Sx (€ ).

If X (t), a w.s.s. random process, is the input of a LTI system with impuls
responseh(t), the output Y (t) is also w.s.s. random process with autocorrelatio

Ry(!)=h(! )#h(!) #Rx (! ) and power spectral density
Sy()= HO *HO Sx= HO I’Sx ()
| 4
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Remark

e For a discrete-time system
Sy(¢' )= |H(¢" )[*Sx (¢ )
e [Or cross-correlation

Rxy (!) = h(')*Rx(!)
Sxy () = H() Sx()

e Physical signibcance oSy (1)
Sx (1) is the distribution of the power over frequency

1t

ELY2(D] = Rvyv(©@= o5 Sv() e ‘d!
. !
_ Zi SO HO P

Let H (s) be the transfer function of an ideal bandpass Plter with frequenc
response

H()I

I'o o !
—! =
bandwidth of Hter

|5
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Sy(©) = Sx(Q[H(Q)?
{SX(QO) Q£ Q| <A/2
0

otherwise

Q

We thus have
E[Y?(t)] = Ry (0) = 2AS5%x (Q)

where the units of A are rad/sec and those of Ry (0) are power, so that Sx(.)
has as units power/(rad/sec) or power density over frequency. Notice also that

E[Y?(t)] = 2AS5% (Qg) > 0

indicating that as a density function Sx () > 0.
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Other properties of Sy ()

¥ Let Y(t) = aX1(t) + bXy(t) where X (t), i =1, 2 are orthogonal w.s.s.

Ry () = E[V({@)Y(t+ )= E[(aXa(t) + bXz(t))(aXy(t+ 1)+ bXa(t+1))]

= a’Rx,(!)+ PPRx,(!)
Sy() = a®Sx,()+ Sk, ()

¥ Let Y(t) = dxdt(t), which can be thought of X (t) being the input of a LTI

system with H(!) = j! then
Sy(M= li'IPSx (=" *Sx(!

This is equivalent to using the derivative property of the Fourier transform

Rx (!) ! Sx (1)
2
T Gy 2sam= 1 2s0)
2
Ry() = S s = s

¥ Consider the modulation process:X (t) input w.s.s. process, modulates a
complex exponentialé ' °' so that the output is

Y(t)= X(t)e'
which is a complex process

E[Y(®)Y*(t+ 1)]= E[X ()X (t+ !)e'ot=t=1)]
= Ry (!)el'®

Ry (!)

so that
Sy()= Sx(+! o)

l.e., shifted in frequency to ! 5. Sy (!) is not even because Y (t) is complex.
|7
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X(t) Y (1)

¥ If the modulation is done with a sinusoid,

Y (t)
Ry (!)

X (t) cos(! ot) | o constant
0.5Rx (1)e' ) " +0.5Rx (1)€'
= 0.5Ryx (!)cos(! o!)

Sy(!):O .58x(!+! 0)+0.5Sx(! ! !o)

¥ Let X (t) be zero-mean w.s.s. white noise so that

E[X ()] =0
Ry (1) = "3 #()
Sx()= "%

l.e., just like white light, the spectrum of white noise has all possible
frequencies.
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Calculation of Rx (!) from Sy ()
Remember that Ry (! ) = Rx (! !), i.e., even function of!

Sx () = Sx(9)ls=j
! I I 0 | !
Sx (s) = Rx (1)e d! = Rx (1)e s d! + Rx (1)e ¥ d!
"l 'l HE % n0 #4 oy
S' (s)=L[Rx (")u(" 1) S*()== LI[Rx (")u(!)]
Rx (Nu(!) causal component of Ry (!)
Rx (Nu(! 1) anti-causal component of Ry (!)
we have
N L
S (s)= Ry (1)e sd! = Ry (t)estdt = S* (! s)
"l 0
so that we have the following Fourier pairs
Sx(D= S"()+S"(!'s) " Rx(')=Rx(Mu()+ Rx()u(' 1)

Example: Pbrst-order dilerential equation

YO @)+ "Y (1)= X(t) "> 0% <t< #

X (t) is zero mean, unit variance stationary process. CalculateSy (!) and
Ry (1).

Since# =0,then Cx (!) = Rx (') = $(!) and Sx (!) = 1. The spectral density
of the output is

Se() = HGY PSx()= %%.g%

because the spectrum o¥ (t) has lost some of the higher frequency components,
Y (t) is called colored or brown noise

19
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TobndRy(!)welets=jl(!= s/fj and!? =1 s°) so that

1 1 A B
A i R GRS BT

where the pole in the left-hand s-plane corresponds to a causal component &
the second term with pole in the right-hand s-plane corresponds to an anticaus
component.

A= Sy(9)(s+ " leer1 = 5
Si9)= 22 Reu)= e T u)
By symmetry, R(! ') = R(!) so that
Ry (1) = e T

To bnd the cross power densitySxy (!) we have

Sxy () =  Fh()#Rx (N]=H(®) Sx ()= H()
1
T

and "
Rxy (1)=¢€ " u(!)

which is not symmetric, and causal.

20
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Example: Second-order system  The input/output equation is given by
YO ) +3YD () +2Y () =5X (1)
X (1) is stationary, white noise with zero mean, unit variance. Find Ry (!)
5 5
$2+3s+2s?! 3s+2

s?+3s+2=(s+1)(s+2)
A N B C D

Sy(s)= H()H(! s) =

= + +
SO = T sy atstit s 2
25
A=5Sy(s)(s+1)[s=-1= 3
I 25
B = F2) e p= =22
Sy (s)(s+2)[s= -2 1
thus we have
Ry(!)= %S(e‘“ 't 05e72!)

Example: Analog averager Let the output of an analog averager be

I
t

Y(t) = X (1)d!

1!
T t—T
where the input X (t) has an autocorrelation function Rx (!) = "2 #(! ). Deter-

mine Ry (1) and Sy (!).

Impulse response: by change of variablg = t! ! we get

D g

Y(t) = % . X(t! pwdu

so that the impulse response i1 (t) = (1 /T )(u(t) ! u(t! T))
21
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Rv() = h(t1)" p()Rx ()

h(!)! )2( #(1)= )2( h(!)

= "Zh(l)"h(! ")
%("ZIT LU YT | #T "%
- (()x YA T H>T = [+ T 2r()+ (! T

To compute the power spectral density Sy (!), take the second derivative of
Ry (!') which gives

d*Ry (1) _ "%
F;\tfz(') — sz [#(! + T)+ #(' ! T)! 2#(1)]

so that

2o mo 2X
() 2Sv()= TE(cos( ! 1)

& ]
L 2211 cos(l!) _,, sin(T/2) °
()= 4 ! - X T2

which is a real, positive even function.

22
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Discrete-time Stationary Processes

X (n), w.s.s. process

E[X(n)] = mx
|!
Sx(¢' )= Rx(ke ™
k="
Ry (k) = 2—1|  Sx (¢ )yd " rad

Discrete-time White Noise

X(n), w.s.s. process

E[X(n)]=0
s B k=0
Rx (k)= #8K) = 57 Sinerwise
!!
Sy (') = #e (k) = #5 SR
k="

Notice the dilerence with the continuous-time white noise where Ry (% =

#2 $(% cannot be debne at%= 0 because of$(%. The power density Sy (&' )
Is debPned for all possible discrete frequencies.

23
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Example: Discrete-time moving average
Y(n)=Xn)+aX(n-—1)

X (n) is white noise with zero mean and variance 2. Find E[Y (n)], Ry (k) and
Sy(@jw>.

ElY(n)] = E[X(n)]+aEX(n—-1)]=0
Ry(k) = EYn)Y(n+k)]=FE/(Xn)+aX(n—1)(X(n+k)+aX(n+k—1))]
= (1—|—042)Rx(]€)—|—OéRx(]€—|-1)—|—Osz(]€—1)
(1+a?)o? k=0
= ao? k=1,-1
0 otherwise

The power density is then

Sy (') = (1 + a?)o? + 2a0” cos(w)

24
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