Biocatalysis

RNA Ligase

Trypsin

Aminotransferase

Amanda Garner
September 14, 2007

All enzyme structures from: http://www.ebi.ac.uk/thornton-srv/database/enzymes/
Enzymes

Responsible for the chemistry of life by catalyzing chemical transformations that make/break covalent bonds in cell
Enzyme Specificity and Efficiency

Enzymes exhibit remarkable specificity for substrate and large rate accelerations

- Chiral environment due to side chains (selectivity and specificity)
- Rate constant $\sim 10^6$-10^8 M$^{-1}$s$^{-1}$
- $k_{\text{cat}}/k_{\text{uncat}} \sim 10^6$-$10^{12}$ (up to 10^{17}!)
- Example: Acetylcholinesterase

\[
\text{Acetylcholine} + H_2O \rightarrow \text{Acetic acid} + \text{Choline}
\]

$\frac{k_{\text{cat}}}{k_{\text{uncat}}} = 1.6 \times 10^8$
Enzyme Kinetics

\[
E + S \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} ES \overset{k_{\text{cat}}}{\rightarrow} E + P
\]

\[V = k_{\text{cat}} [ES]\]

[ES] ~ constant so assume steady state: rate of ES breakdown = rate of ES formation

\[k_{-1} [ES] + k_{\text{cat}} [ES] = k_1 [E][S]\]

Several manipulations:

\[V = \frac{k_{\text{cat}} [E_0][S]}{K_m + [S]} = \frac{V_{\text{max}} [S]}{K_m + [S]}\]

Michaelis-Menten equation

\[K_m = \text{substrate affinity for enzyme ([S] at } V = 0.5 \text{ } V_{\text{max}});\]

(low \(K_m\) = tight binding; high \(K_m\) = weak binding)

\(k_{\text{cat}} = \text{turnover number}\)
Enzyme Efficiency

Fischer (1890) - “Lock and Key” model: binding of S results in its activation to effect catalysis

Pauling (1948) - Transition State model:

Lowering of E_a because has higher affinity for TS than GS

Other factors:

1. Increased local [S] to hold atoms in correct orientation
2. Capability for simultaneous acid and base catalysis
3. Capability for covalent catalysis (ex. Histidine residue)
Industrial Use of Enzymes: Biocatalysis

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

TRENDS in Biotechnology 2007, 25, 66-71
Generation of New Enzymes

GOAL - Discover enzymes with unique and enhanced properties
1. Improve enantioselectivity
2. Tune and alter substrate specificity
3. Enhance activity
4. Discover new activities
5. Improve stability (ex. temperature, structure)
6. Ability to function in organic solvent

Rational Design

In Nature, new enzymes evolved through minor modifications of the active site

Method: **Rational Design** (fine tune existing enzymes through site-directed mutagenesis)

Example: di-iron enzyme family
7 aa differ b/t H and D; can convert function through mutagenesis at 4/6 aa positions

Drawback: difficult to discern aa responsible for substrate preference, stability, activity

Evolution

Natural selection or *survival of the fittest* (Darwin, 1859): process by which favorable mutations are selected for over time.

In Nature, this is an uncontrolled process over millions of years.

Can evolutionary processes be directed towards a certain defined goal in an efficient manner (days/weeks)?
Directed Evolution = Irrational Design

“Breeding” of enzyme for certain properties
Involves iterative process of making random mutations (e.g. site mutagenesis, error-prone PCR) and screening the pool of mutants for the desired property

Example:

```
\begin{align*}
\text{R} & \quad \text{O} \\
\text{CH}_3 & \quad \text{NO}_2 \\
\text{R} & \quad \text{O} \\
\text{CH}_3 & \quad \text{H}_2\text{O} \\
\text{lipase} & \quad \text{R} \quad \text{O} \\
\text{CH}_3 & \quad \text{OH} \\
\text{parent enzyme - 0% ee} & \quad \text{mutant enzyme - 90% ee}
\end{align*}
```

DNA Shuffling

Nature uses both mutation and recombination to increase number of combinations of genes

DNA shuffling: homologous recombination of pools of selected mutant genes by random fragmentation and PCR reassembly (greatly increase # of mutations)

DNA Shuffling of Chimaeric Genes

Shuffling of gene family to accelerate evolution

Example: family of class C cephalosporinases
Test for moxalactam resistance by DNA shuffling
Single gene shuffling - 8-fold \(\uparrow \) in resistance
Multi-gene shuffling - 270-540-fold \(\uparrow \) in resistance
(best mutant contained segments from 3/4 genes shuffled)

Directed Evolution Toward New Catalytic Activity

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Change catalytic activity of existing protein scaffold glyoxalase (metallohydrolase) to β-lactamase with

\[k_{cat}/K_m = 1.8 \times 10^2 \text{ M}^{-1}\cdot\text{s}^{-1} \]

Use technique combining directed evolution with insertion, deletion, and substitution of gene segments

Jencks (1967): antibody raised against analog of TS of reaction to catalyze reaction by $\downarrow E_a$ by recognizing and binding to transient TS structure

First example in 1986 independently by Schultz and Lerner:
Raise hapten (antigen) mimicking TS against antibody to screen for catalytic activity

>100 reactions accelerated incl. new and disfavored reactions

Catalytic Antibodies - Transition State Analogs

Hapten mimics bond orders, lengths, angles, expanded valences, charge distribution, geometry, etc. of transition state.

Example:

Phosphonamidate mimics tetrahedral intermediate

Catalytic Antibodies - “Bait-and-Switch”

Place point charge (bait) in close proximity to or in direct substitution for functional group expected to transform substrate (switch)

Example:

Catalytic Antibodies - Reactive Immunization

Highly reactive hapten that undergoes reaction in antibody-combining site during immunization

Enzymes vs. Catalytic Antibodies

Enzymes:
- Rate constant $\sim 10^6$-10^8 L/mol•s
- $k_{\text{cat}}/k_{\text{uncat}} \sim 10^6$-$10^{12}$

Catalytic Antibodies:
- Rate constant $\sim 10^2$-10^4 L/mol•s
- $k_{\text{cat}}/k_{\text{uncat}} \sim 10^3$-$10^5$

Best antibody = poor enzyme; why?
- Antibody raised for tight binding not catalytic efficiency (may tightly bind pdt if structurally similar)
- Hapten binding site solvent accessible
- Smaller time scale of evolution (weeks to months)
- Immunoglobulin fold not common structure in enzymes

Szostak Method: mRNA Display

Main barrier to protein evolution is difficulty of recovering information encoding protein sequence after protein is translated

mRNA Display: mRNA directly attached to protein it encodes via stable covalent linkage

Allows for generation of large complex libraries (>10^{12}) \textit{in vitro}

Example:

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

\begin{align*}
&\text{Sequene to initiate translation} \\
&\text{mRNA ORF} \\
&\text{DNA linker} \\
&\text{P = puromycin to stop translation}
\end{align*}

mRNA Display

Puromycin

CPG-Puromycin
(CPG = controlled glass pore)

RNA synthesis; ligation

P = puromycin; antibiotic that mimics aminoacyl end of tRNA to inhibit translation

mRNA Display

1. Ribosome initiates translation on mRNA and translocates to end of template
2. Ribosome reaches end of ORF and translation stalls at RNA/DNA junction (no stop codon)
3. Linker loops around ribosome and P enters A site to attach to newly formed protein
4. Incubate with complementary linker sequence attached to biotin and isolate on streptavidin beads

Enzyme from Non-Catalytic Scaffold

Current protein evolution requires extensive knowledge of enzyme’s mechanism of activity (not random)

De novo creation of enzymatic active from naïve protein library of very high diversity ($>10^{12}$ unique sequences) using mRNA display

Screen for enzymes catalyzing RNA ligation:

Use 2 loops of retinoid-X-receptor (RXRα) (prev. used to isolate ATP-binding proteins)

Enzyme from Non-Catalytic Scaffold

1. **In vitro** selection of catalytic activity
 - 9 rounds: 0.01→0.3% selected
 - 12 rounds: 2.3% selected

2. Directed evolution
 - After round 8, subject to recombination and random mutagenesis + error-prone PCR amplification (9*-17*)
 - ↑ selection pressure by ↓ time allowed for reaction (select for most efficient enzyme)

Enzyme from Non-Catalytic Scaffold

Loop 1 (12 aa): DYKXXD at varying positions in 57% (resembles recognition site for antibody used for purification; may not be important)

Loop 2 (9 aa): 4 aa conserved 100%, 4 aa conserved 86-90%, 1 aa conserved 50%

Non-loop region: low conservation of C used to coordinate Zn$^{2+}$ in original structure, 2 large deletions observed (may indicate large structural rearrangement of evolved enzymes)

Chose Ligase 4 (most active) to characterize:
 Incubate fusion enzyme + PPP-substrate
 + HO-substrate + splint

1. **Test for presence of pyrophosphate:**
 Label with 32P to detect

Enzyme from Non-Catalytic Scaffold

2. Test for requirements of the reaction:

- Incubation time: Lane 1 = 1h, Lane 2 = 3h, Lane 3 = 10h
- No splint: Lane 4
- 5’-P (not PPP): Lane 5
- 5’-OH (not PPP): Lane 6
- Wild-type RXRα: Lane 7
- All nucleobases successful at 3’ of HO-substrate

Enzyme from Non-Catalytic Scaffold

3. Effect of metals on activity:
 Requires Zn$^{2+}$ and Na$^+$/K$^+$ (not only 2+ metals)
 2.6 Zn$^{2+}$/enzyme (required for structure or catalysis)

4. pH effect:
 Strong pH dependence with optimum pH = 7.6 (could rely on acid/base catalysis from aa residues)

Enzyme from Non-Catalytic Scaffold

5. Rate acceleration:

Uncatalyzed reaction only takes place with Mg\(^{2+}\) but catalyzed faster without Mg\(^{2+}\)

Measure \(k\) in absence of Mg\(^{2+}\):

\[k_{\text{obs(noncat)}} < 3 \times 10^{-7} \, \text{h}^{-1} \]
\[k_{\text{obs(cat)}} = 0.65 \pm 0.11 \, \text{h}^{-1} \, (2 \times 10^{6}\text{-fold faster!}) \]

Observe multiple turnover:

Enzyme from Non-Catalytic Scaffold

No natural enzyme known to catalyze ligation reaction of 5’ PPP-substrate to 3’ HO-substrate except ribozyme
First use of mRNA-display to select for new enzyme activity
Isolated enzyme with rate enhancement of 2 million-fold