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1(a).[7 points] Give the definition of the following: (i) A tree (graph theory),
(ii) A Hamiltonian graph (graph theory).
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(b).[3 points| State the Pigeon Hole principle.

Ld' X % \/ ‘oe 'Pmi-\-e SCJ'S- Lnﬂ' -FX—»‘/ ‘oe_ ony -c\wo"'iov\-

B IXIZ1Y] Hen Tk x €KX Such Jhot X%,
“:(X\\f—;(’(ﬂ '



2.[10 points| How many lattice paths (in 3-dimensional space) are there from
(0,0,0) to (5,5,5)? (There are 3 moves allowed in the lattice path: adding +1
to z-coordinate, adding +1 to y-ccordinate and adding +1 to z-coordinate.)
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3.[10 points] A soccer team consists of 10 players (beside the goal keeper).
There are three positions of defense, midfield and offense. Suppose there are
x1 > 0 players in defense, x5 > 0 players in midfield and x5 > 0 in offense.
How many ways one can choose a formation for the team (i.e. a choice of
X1, T9, x3 > 0 with 21 + z9 + x3 = 10)7
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4. For any n € N consider the hypercube graph H, as follows: the vertices
of H, are binary sequences of length n (i.e. a sequence (ay,...,a,) where
a; = 0,1). Two binary sequences v = (ay,...,a,), w = (by,...,b,) are ad-
jacent if and only if they differ exactly at one position (i.e. if there exists
1 <i < nsuch that a; # b; and a; = b; for all j # 7).

(a).[3 points| Draw the graphs Hy, Hy and Hj.
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(b).[7 points] How many edges and vertices does H,, have?
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5.(a)[5 points|] Let H,, be the hypercube graph as in the previous problem.
Show that Hy, Hy and Hj can be colored with 2 colors (vertex coloring).
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(b).[5 points| Prove that for any n > 1 we have x(H,) = 2, i.e. H, can be
colored with 2 colors (you can prove it directly or you can use induction).
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6.[2 points] (Bonus) Draw (cartoon of) Euler crossing one of Konigsberg
bridges!



