Solutions

Department of Mathematics
 University of Pittsburgh
 MATH 1050 (Combinatorics)

Midterm 1 (Fall 2015)
Last Name:
Student Number:
First Name:
TIME ALLOWED: 50 MINUTES. TOTAL: 50+2
NO AIDS ALLOWED. WRITE SOLUTIONS ON THE SPACE PROVIDED.

Question	Mark
1	$/ 10$
2	$/ 10$
3	$/ 10$
4	$/ 10$
5	$/ 10$
6	$/ 50+2$
TOTAL	

$\mathbf{1 (a) . [7 ~ p o i n t s] ~ G i v e ~ t h e ~ d e f i n i t i o n ~ o f ~ t h e ~ f o l l o w i n g : ~ (i) ~ A ~ t r e e ~ (g r a p h ~ t h e o r y) , ~}$
(ii) A Hamiltonian graph (graph theory).

Tree: A connected graph without any cycles.

Hamiltonian graph: A graph that has a cycle which passes through all the vertices.
(b). [3 points] State the Pigeon Hole principle.

Let $X \& Y$ be finite sets. Let $f: X \rightarrow Y$ be any function. If $|X|>|y|$ then $\exists x_{1}, x_{2} \in X$ such that $x_{1} \neq x_{2}$ \& $f\left(x_{1}\right)=f\left(x_{2}\right)$.
2.[10 points] How many lattice paths (in 3-dimensional space) are there from $(0,0,0)$ to $(5,5,5)$? (There are 3 moves allowed in the lattice path: adding +1 to x-coordinate, adding +1 to y-coordinate and adding +1 to z-coordinate.)

$$
\binom{15}{5,5,5}=\frac{15!}{5!5!5!} \text { maltinomial number }
$$

Let W,E,U denote west, east and up moves. Each lattice of length 15 Consisting of path from $(0,0,0)$ to $(5,5,5)$ corresponds to a seq.. of 5 W's. 5 E's \& 5 U's. Number of such sequences is the multinomial number $\binom{15}{5,5,5}$.
3. [10 points] A soccer team consists of 10 players (beside the goal keeper). There are three positions of defense, midfield and offense. Suppose there are $x_{1}>0$ players in defense, $x_{2}>0$ players in midfield and $x_{3}>0$ in offense. How many ways one can choose a formation for the team (i.e. a choice of $x_{1}, x_{2}, x_{3}>0$ with $\left.x_{1}+x_{2}+x_{3}=10\right) ?$

$$
\binom{9}{2}=\frac{9!}{2!7!}
$$

(Discussed several times in class).
4. For any $n \in \mathbb{N}$ consider the hypercube graph H_{n} as follows: the vertices of H_{n} are binary sequences of length n (i.e. a sequence $\left(a_{1}, \ldots, a_{n}\right)$ where $\left.a_{i}=0,1\right)$. Two binary sequences $v=\left(a_{1}, \ldots, a_{n}\right), w=\left(b_{1}, \ldots, b_{n}\right)$ are adjacent if and only if they differ exactly at one position (i.e. if there exists $1 \leq i \leq n$ such that $a_{i} \neq b_{i}$ and $a_{j}=b_{j}$ for all $j \neq i$).
(a). [3 points] Draw the graphs H_{1}, H_{2} and H_{3}.

(b).[7 points] How many edges and vertices does H_{n} have?
\# of vertices $=\#$ of binary seq. of length $n=2^{n}$.
Note that each vertex $v=\left(a_{1} \cdots a_{n}\right)$ Can be changed in any of the n positions $a_{1} \ldots, a_{n}$. So degree of each vertex is n. Thus $2|E|=n 2^{n} \Rightarrow|E|=n_{2}{ }^{n-1}$.
5.(a)[5 points] Let H_{n} be the hypercube graph as in the previous problem. Show that H_{1}, H_{2} and H_{3} can be colored with 2 colors (vertex coloring).

(b).[5 points] Prove that for any $n \geq 1$ we have $\chi\left(H_{n}\right)=2$, i.e. H_{n} can be colored with 2 colors (you can prove it directly or you can use induction).
Color each vertex $v=\left(a_{1} \cdots a_{n}\right)$ based on its parity ie. how many of its bits are 1 .

- If v has even number of 1 's then cobrit black
- If v

By the way the graph H_{n} is defined no two adjacent vertices have the same parity \& hence the above is a valid vertex Coloring.
6. [2 points] (Bonus) Draw (cartoon of) Euler crossing one of Königsberg bridges!

