

Department of Mathematics University of Pittsburgh MATH 1050 (Combinatorics) Midterm 1 (Fall 2015)

Last Name:

Student Number:

First Name:

TIME ALLOWED: 50 MINUTES. TOTAL: 50+2 NO AIDS ALLOWED. WRITE SOLUTIONS ON THE SPACE PROVIDED.

Question	Mark
1	/10
2	/10
3	/10
4	/10
5	/10
6	/2
TOTAL	/50 + 2

1(a).[7 points] Give the definition of the following: (i) A tree (graph theory),(ii) A Hamiltonian graph (graph theory).

Hamiltonian graph: A graph that has a cycle which passes through all the vertices.

(b).[3 points] State the Pigeon Hole principle.

Let
$$X \approx Y$$
 be finite sets. Let $f: X \longrightarrow Y$ be any function.
If $|X| > |Y|$ then $\exists x_1, x_2 \in X$ such that $x_1 \neq x_2 \approx f(x_1) = f(x_2)$.

2.[10 points] How many lattice paths (in 3-dimensional space) are there from (0,0,0) to (5,5,5)? (There are 3 moves allowed in the lattice path: adding +1 to x-coordinate, adding +1 to y-coordinate and adding +1 to z-coordinate.)

$$\binom{15}{5,5,5} = \frac{15!}{5!5!5!}$$
 multinomial number

Let W.E.U denote west, east and up mover. Each lattice of length 15 Consisting of path from (0,0,0) to (5,5,5) Corresponds to a seq. of 5 W's. 5 E's & 5 U's. Number of such sequences is the multinomial number (¹⁵ 5.5,5). **3.**[10 points] A soccer team consists of 10 players (beside the goal keeper). There are three positions of defense, midfield and offense. Suppose there are $x_1 > 0$ players in defense, $x_2 > 0$ players in midfield and $x_3 > 0$ in offense. How many ways one can choose a formation for the team (i.e. a choice of $x_1, x_2, x_3 > 0$ with $x_1 + x_2 + x_3 = 10$)?

$$\begin{pmatrix} 9\\2 \end{pmatrix} = \frac{9!}{2!7!}$$

(Discussed several times in class).

4. For any $n \in \mathbb{N}$ consider the hypercube graph H_n as follows: the vertices of H_n are binary sequences of length n (i.e. a sequence (a_1, \ldots, a_n) where $a_i = 0, 1$). Two binary sequences $v = (a_1, \ldots, a_n)$, $w = (b_1, \ldots, b_n)$ are adjacent if and only if they differ exactly at one position (i.e. if there exists $1 \leq i \leq n$ such that $a_i \neq b_i$ and $a_j = b_j$ for all $j \neq i$).

(a).[3 points] Draw the graphs H_1 , H_2 and H_3 .

(b).[7 points] How many edges and vertices does H_n have?

of vertices = # of binary seq. of length
$$n = 2^n$$
.

Note that each vertex $v = (a_1 \dots a_n)$ can be changed in any of the n positions a_1, \dots, a_n . So degree of each vertex is n.

Thus $2|E| = n2^n \implies |E| = n2^{n-1}$

5.(a)[5 points] Let H_n be the hypercube graph as in the previous problem. Show that H_1 , H_2 and H_3 can be colored with 2 colors (vertex coloring).

(b).[5 points] Prove that for any $n \ge 1$ we have $\chi(H_n) = 2$, i.e. H_n can be colored with 2 colors (you can prove it directly or you can use induction).

Color each vertex v=(a1...an) based on its parity i.e. how many of its bits are 1. • If v has even number of 1's then color it black • If v . - odd -----[red] By the way the graph Hn is defined no two adjacent vertices

By the way the graph Hy is defined no two signatures have the same parity & hence the above is a valid vertex Coloring.

 ${\bf 6.}[2\ {\rm points}]$ (Bonus) Draw (cartoon of) Euler crossing one of Königsberg bridges!