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1.[20 points] Find the point on the line r(t) = (t, 1− t, 2+ t) which has min-
imum distance to the point P = (1, 0, 2). Calculate this minimum distance.

(Hint: if Q is a point on the line, look at the vector !PQ.)
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2. [20 points] Show that the function

f(x, y) =

{
x2y

x6+y2
(x, y) "= (0, 0)

0 (x, y) = (0, 0)

is not continuous at (0, 0). (Hint: Look at two different curves passing
through the origin.)
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3. Consider the curve:

r(t) = sin(t)i+ sin(t)j+
√
2 cos(t)k, 0 ≤ t ≤ 2π

(a) [15 points] Find the unit tangent and unit normal vectors T(t) and
N(t) to r(t).

(b) [5 points] Find the curvature κ at any point r(t).

4



4. [20 points] Find local maximum, local minimum and saddle point(s) of
the function

f(x, y) = x4 + y3 − 3y + 4x+ 5.
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5.

(a) [10 points] Find the derivative of the function f(x, y, z) = (y ln(z))+x2

in the direction of the unit vector u = 1√
3
(1,−1, 1) at the point (2, 1, 1).

6



(b) [10 points] Consider the quadric surface:

(x− 1)2 + 3y2 − z2 = 1.

By looking at the cross sections/traces (along xy, or yz or xz coordinate
planes) determine what type it is (i.e. an ellipsoid, hyperboloid, elliptic
paraboloid, hyperbolic paraboloid or a cone). Next find the equation
of tangent plane to this surface at the point (1,−1,

√
2).
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6. [1 point] Draw a cartoon showing yourself writing this test!
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