APPLICATIONS OF MAXIMUM FLOW AND MINIMUM CUT 47

3.15. Suppose that the augmenting path algorithm always chooses an aug-
menting path having as few reverse arcs as possible. Prove that the number
of augmentations will be O(mn). Give an O(m) algorithm for finding each
augmentation.

3.3 APPLICATIONS OF MAXIMUM FLOW AND MINIMUM
CcuT

In this section we discuss a number of applications of maximum flow and
minimum cut. Several more applications appear in later chapters.

Bipartite Matchings and Covers

We are given disjoint sets P of men and @ of women, and the pairs (p,¢q)
that like each other. The marriage problem is to arrange as many (monoga-
mous) marriages as possible with the restriction that married people should
{at least initially!) like each other. We can associate with the input a graph
G=(V,E)such that V=PUQand E = {pg: p€ P, g € Q}. Such graphs,
that is, ones in which there is a partition of the nodes into two parts such
that every edge has its ends in different parts, are called bipartite. (Sometimes
{P,@Q} is called a bipartition of G.) The marriage problem asks for a match-
ing of G of maximum size, that is, a subset M of E such that no two edges
in M share an end. A bipartite graph appears in Figure 3.5, and the thick
edges constitute a matching of size 6; we shall see that there is no larger one.
Although the problem of finding a maximum matching in a general graph is
more difficult (and is treated in Chapter 5), that for bipartite graphs is an
easy application of maximum flows.

Figure 3.5. A bipartite graph and a matching

In fact, the bipartite matching problem was solved by Ké&nig [1931] long
before the development of network flow theory. He discovered a characteriza-
tion of the maximum size of a matching that can be thought of as a prototype

48 MAXIMUM FLOW PROBLEMS

of the Max-Flow Min-Cut Theorem. {He also introduced, in the restricted
setting of bipartite matching, the notion of flow-augmenting path.) Again,
the basic idea is a general method to provide bounds, in this case, an upper
bound for the maximumm size of a matching. A cover of a graph G is a set C of
nodes such that every edge of G has at least one end in C. For any matching
M and any cover C, each edge vw € M has an end in C, but because match-
ing edges cannot have an end in common, the corresponding nodes of C are
all distinct. Therefore, |M| < |C|. Tt follows that, if we can find a matching
M and a cover C with |M| = |C|, then we know that M is maximum. For the
graph of Figure 3.5, the black nodes form a cover of size 6 and so the displayed
matching is indeed of maximum size. Kénig proved that, for bipartite graphs,
it is always possible to make this kind of argument.

Theorem 3.14 (Kénig’s Theorem) For a bipartite graph G,
max{|M|: M a matching} = min{|C|: C a cover}.

We shall show how the Max-Flow Min-Cut Theorem implies Kénig’s The-
orem, and how a maximum flow algorithm provides an efficient algorithm
for constructing a maximum matching and a minimum cover. Given G with
bipartition {P,Q}, we form a digraph G’ with capacity vector u as follows.
V! =V U {r, s}, where r, s are new nodes. For each edge pg of G with p € P,
g € @ there is a {directed) arc pg of ' with capacity oo. For each p € P
there is an arc rp of capacity 1. For each ¢ € @ there is an arc gs of capacity
1. For the graph of Figure 3.5 we show the corresponding flow network in
Figure 3.6.

Figure 3.6. Flow network for bipartite matching

Let 2 be an integral feasible flow in G' of value k. In fact, this implies that

z is {0,1}-valued. (Why?) Define M C E by: pg€ M ifz,, = land pg ¢ M _
if zpg = 0. Then M is a matching of G, and |M| = k. Now suppose that we

APPLICATIONS OF MAXIMUM FLOW AND MINIMUM CUT 49

are given a matching M of G. Define (zyy, :vw € E') by: f v € P, w € Q
then Tow = 1 ifvw € Mand Oifvw ¢ M; ifv =r, w € P, then x4, = 1 if
there is an edge of M incident with w and z,., = 0 otherwise; if v € P, w = s,
then Zyw = 1 if there is an edge of M incident with v and z,,, = 0 otherwise.
Then z is an integral feasible flow of value [M| in G'. Hence we can find a
maximum cardinality matching in G by solving the maximum flow problem on
G'. There will be at most | P} < n augmentations, by Theorem 3.9, since the
maximum matching size is at most |P]. So we get an algorithm for maximum
hipartite matching having running time O(mn).

Now consider a minimum cut §'{{r} U A) where A C V. Since it has finite
capacity, there can be no edge of G from 4 N P to Q\A4. Therefore, every
edge of G is incident with an element of ¢' = (P\A)U (@ N A). That is,
is a cover. Moreover, the capacity of the cut is |[P\A| + @ N 4] = |C], so
(" is a cover of cardinality equal to the maximum size of a matching. This
proves Koénig’s Theorem, and shows that the algorithm also finds a minimum-
cardinality cover.

There are many other related applications. Some of them are investigated
in the exercises.

'Optimal Closure in a Digraph

There are many applications in which we want to choose an optimal subset
of “projects,” where each project has a benefit. This benefit may be positive,
negative, or zero. There is no restriction on the number of projects to be
chosen, but there are restrictions of the form: If project v is to be chosen,
then project w must be chosen also. If we model the projects as the nodes
of a digraph G and the restrictions (v, w) as its arcs, then we must choose a
maximum benefit set 4 C V such that §{4) = @. We call such a subset 4 a
closure of G. We remark that the problem is trivial if either all the benefits
are nonnegative (V will be optimal} or all are nonpositive {(§ will be optimal).

A classical application of this form is in the design of an open-pit mine. Here
the region under consideration is divided into 3-dimensional blocks. For each,
block v there is a known estimated net profit b, associated with excavating
black ». The constraints come from the fact that it is not possible to excavate
a block without also excavating those above it. The definition of “above” will
depend on restrictions on the steepness of the sides of the pit.

It turns out that the optimal closure problem can be reduced to a minimum
cut problem, an observation due to Picard [1976]; in earlier work, Rhys [1870]
solved an important special case. Given & and b, define a digraph G’ and
capacity vector u as follows. Put V' = V U {r, s} for new nodes r,s. For each
v € V with b, > 0, G’ has an arc rv with u,, = b,. For each v € V with
b, < 0, G' has an arc vs with u,; = ~b,. The remaining arcs of G’ are just
the arcs of (7, each with capacity co. Figure 3.7 summarizes this construction.
It is easy to see that any finite-capacity (r, s)-cut §'(R) in G’ will be such that
R = {r} U A, where A is a closure of G. (In particular, a minimum-capacity

50 MAXIMUM FLOW PROBLEMS

cut will have this property.) Any closure A C V determines an (r, s)-cut
§'(A U {r}) having capacity L(b, : v ¢ A, b, > 0) - Z(b, : v € A, b, < 0).
By adding £(b, : v € A, by, > 0) to both terms, this can be rewritten as

Eby:veV, by 20)~ b(4).

Since the first term of the latter expression is constant, that is, does not de-
pend on A, this expression is minimized when b{4) is maximized. In summary,
we simply find a minimum cut §'(AU {r}) of G', and A is a maximum-weight
closure.

Figure 3.7. Flow network for the optimal closure problem

Elimination of Sports Teams

Sports writers are fond of using the term “mathematically eliminated” to
refer to a team that cannot possibly finish the season in first place. More
formally, let us say that the Buzzards are eliminated if, no matter what the 1
outcome of the remaining games, they cannot finish with the most wins (even
in a tie). For convenience, we assume that there are no tie games. ;

The simplest situation in which the Buzzards are eliminated (and the only
one of which sportswriters seem to be aware!) is illustrated in Table 3.1.
In this case even if the Buzzards win all their remaining games, they will -
have fewer wins than the Anteaters already have. Notice that in this case we
can see that the Buzzards are eliminated, no matter what pairs of teams are
involved in the remaining games. A more interesting situation involves the
data of Table 3.2. (The additional columns of the table indicate the number of ;
remaining games against various opponents. Notice that there may be other |
teams that we have not included in the table.) Here it is possible for the !
Buzzards to finish with as many wins as the Anteaters, if the Anteaters lose :
all of their remaining games and the Buzzards win all of theirs. However, in]
this case the Banana Slugs must finish with more wins than the Bugzards,

APRPLICATIONS OF MAXIMUM FLOW AND MINIMUM CUT 51

since they win their remaining games against the Anteaters. Thus, although
we cannot be sure which team will finish first, we can see that the Buzzards
are eliminated.

Team Wins To Play
Anteaters 33 8
Buzzards 28 4

Table 3.1. A simple example of elimination

Team Wins ToPlay A. B. BS R
Anteaters 33 8 - 1 6 1
Buzzards 29 1 J 0 3
Banana Slugs 28 84 6 0 - 1
Fighting Ducks 27 5 1 3 1 -

Table 3.2. A second example of elimination

We will show that in any situatiop in which a team is eliminated, there
is a simple reason, as in the previous examples. Let T denote the set of
tearns other than the Buzzards. For each i € T, let w; denote the number
of wins for team 4, and for i,j € T with i # j, let r;; denote the number of
remaining games between teams ¢ and j. We will need also a notation for the
set {{i,7}: {i,7} C T, i # j, rij > 0}; we denote it by P. Finally, let M
denote the number of wins for the Buzzards at the end of the season if they
win all their remaining games.

Let A be a subset of T. Since every game between two teams in A is won
by one of them, the total number of wins for teams in A at the end of the
seasen is at least w(A) + 3. (ri; ¢ {i,7} € A4, {i,7} € P). If this number is
bigger than M|A|, then the average number of wins of teams in A at the end
of the season is more than M. But M is the most wins that the Buzzards
can hope to have, so at least one team in A will finish with more wins than

the Buzzards. In summary, the Buzzards are eliminated if there exists AC T
such that

w(A) +) (ry: {i,5} € A, {i,5} € P) > M|A]. (3.5)

This criterion for elimination is general enough to include the arguments used
n the examples above. In the first example, A consists of the Anteaters alone,
I the second, of the Anteaters and the Banana Slugs. \

We will show that if the Buzzards have been eliminated there is a set A with
roperty (3.5). To prove this we make use of the fact that, if the Buzzards

ATRWA R e

52 MAXIMUM FLOW PROBLEMS

are not eliminated, there is a set of possible outcomes of the remaining games
so that the Buzzards finish with the most wins. Let y;; denote the (unknown)
number of wins for team i over team j in the remaining games between them.
Then if the Buzzards are not eliminated, there must exist values for the y;;

satisfying

yij + yji = rij, for all {i,j} € P (3.6)
wi+ Yy JET, j#9) <M, forallieT
yij > 0, for all {¢{,j}€P
yi; integral, for all {i,j} € P.

We create a flow network G = (V, E) as follows. V =T U PU {r,s}. For
each ¢ € T, there is an arc {r,i) having capacity M — w;. For each i € T and
j € T with {¢,j} € P, there are arcs (2, {i,7}) and (j, {¢,j}) with capacity
o0, and there is an arc ({4, 7}, s) with capacity r;;. The network arising from
the data of Table 3.2 is illustrated in Figure 3.8. Now suppose that in this
network there is an integral feasible (r, s)-flow of value > (ri; : {i,7} € P).
Then if we put y;; equal to the flow on arc (4, {i,7}), we get a solution to
(3.6). Conversely, a solution to (3.6) yields such an integral feasible flow, by
assigning flow y;; to arc (i, {¢,j}) and then defining the flows on arcs incident
to the source and sink to satisfy conservation of flow.

Figure 8.8. Flow network for the elimination problem

It follows that we can determine whether the Buzzards are eliminated by
solving a maximum (integral}) flow problem. If they are not eliminated, s
maximum flow will determine a set of outcomes for the remaining games in
which the Buzzards finish first. Now we show that if the Buzzards are elim-
inated, then a minimum cut will determine a set A4 satisfying (3.5). Le
4(S) be a minimum {r, s)-cut. By the Max-Flow Min-Cut Theorem its ca
pacity is less than Y (ri; : {i,j} € P). Let A = T\S. We claim tha
S={r}u(M\A)u{{i,j} € P: iorj¢ A}. First,if i or j is not in 4 bu
{i,7} ¢ S, then 8(S) has capacity oo. Second, if {i,5} € S and 4,5 € A, ther
deleting {i,j} from § decreases the capacity of §(S) by r;;. In either case
4(S) is not a minimum cut, a contradiction. Now it is easy to compute th

APPLICATIONS OF MAXIMUM FLOW AND MINIMUM CUT 53

capacity of 6(S). It is
MIA| - w(A) + 3 (ri; : {iri} € P, {i,5} Z A).

This is less than Y (ri; : {i,7} € P) if and only if A satisfies (3.5), and we
are done.

Flow Feasibility Problems

An example of what might be called a flow feasibility problem is that of
deciding, given (G, u, r, s, k), whether there exists a feasible flow from r o s of
value at least k. Of course, this is essentially a restatement of the maximum
fiow problem. We have solved this problem in two senses. First, we have
given a good algorithm that will construct such a flow if one exists. Second,
we have given a good characterization for its existence. (Such a flow exists
if and only if every (r,s)-cut has capacity at least k.) A number of useful
and interesting flow feasibility problems will be solved here. Although some
of them appear to be significantly more general, all of them can be reduced
to the above problem, and solved (in the two senses} by the maximum flow
algorithm and the Max-Flow Min-Cut Theorem.

As a first example, consider the problem of deciding whether the trans-
portation model mentioned at the beginning of this chapter has a feasible so-
lution. This problem can be restated as: Given a bipartite graph G = (V, E)
with bipartition {P, Q} and vectors a € ZF, b € Z%, to find z € RF satisfying

S(tpg:q€Q, pg€ E)Y<ap, forallpe P (3.7
S (@pg:p€ P, pg€ E)=by, forall ge Q
Tpg 20, forallpge F
Zpq integral, for all pg € E.

The method for converting this to a flow problem is similar to the one used
for bipartite matching. Form digraph G’ with V' = VU {r,s}. Each pg € E
gives rise to an arc pg of G' with upq = oo, For each p € P there is an arc
rp with u.p, = a,. For each ¢ € Q, there is an arc gs with ugs = b,. This
construction is illustrated in Figure 3.9. It is easy to see that there exists
z € ZF satisfying (3.7) if and only if there is an integral feasible flow in G'
from r to s of value £(b, : ¢ € Q). Thus we can find such a solution, if one
exists, with a maximum flow algorithm. The Max-Flow Min-Cut Theorem
tells us that (3.7) has a solution if and only if every (r,s)-cut of G' has
capacity at least L(b, : ¢ € Q). The capacity of a cut §'(4 U B U {r}) where
ACP, BCQ,isS(a;:i€ P\A) + E(b; : j € B), assuming there is no arc
pgforpe A g € Q\B. (Otherwise the cut capacity is co.) This capacity
I8 at least £(b; : j € Q) if and only if £(a; : i € P\A) > I(b; : j € Q\B).
It is clear that it is enough to check this condition for the sets A such that

