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3.15. Suppose that the augmenting path algorithm always chooses an aug
menting path having as few reverse arcs as possible. Prove that the number 
of augmentations will be O(mn). Give an Oem) algorithm for finding each 
augmentation. 

3.3 	 APPLICATIONS OF MAXIMUM FLOW AND MINIMUM 
CUT 

In this section we discuss a number of applications of maximum flow and 
minimum cut. Several more applications appear in later chapters. 

Bipartite Matchings and Covers 

We are given disjoint sets P of men and Q of women, and the pairs (p, q) 
that like each other. The marriage problem is to arrange as many (monoga
mous) marriages as possible with the restriction that 'married people should 
(at least initially!) like each other. We can associate with the input a graph 
G = (V,E) such that V =PUQ and E = {pq: pEP, q E Q}. Such graphs, 
that is, ones in which there is a partition of the nodes into two parts such 
that every edge has its ends in different parts, are called bipartite. (Sometimes 
{P, Q} is called a bipartition of G.) The marriage problem asks for a match
ing of G of maximum size, that is, a subset M of E such that no two edges 
in M share an end. A bipartite graph appears in Figure 3.5, and the thick 
edges constitute a matching of size 6; we shall see that there is no larger one. 
Although the problem of finding a maximum matching in a general graph is 
more difficult (and is treated in Chapter 5), that for bipartite graphs is an 
easy application of maximum flows. 
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Figure 3.5. A bipartite graph and a matching 

In fact, the bipartite matching problem was solved by Konig [1931] long 
before the development of network flow theory. He discovered a characteriza
tion of the maximum size of a matching that can be thought of as a prototype 
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of the Max~Flow Min-Cut Theorem. (He also introduced, in the restricted 
setting of bipartite matching, the notion of flow~augmenting path.) Again, 
the basic idea is a general method to provide bounds, in this case, an upper 
bound for the maximum size of a matching. A cover of a graph G is a set C of 
nodes such that every edge of G has at least one end in C. For any matching 
M and any cover C, each edge vw E M has an end in C, but because match
ing edges cannot have an end in common, the corresponding nodes of C are 
all distinct. Therefore, IMI ~ ICI. It follows that, if we can find a matching 
M and a cover C with 1M! = IC!, then we know that M is maximum. For the 
graph of Figure 3.5, the black nodes form a cover of size 6 and so the displayed 
matching is indeed of maximum size. Konig proved that, for bipartite graphs, 
it is always possible to make this kind of argument. 

Theorem 3.14 (Konig's Theorem) For a bipartite graph G, 

max{IMI ; M a matching} =min{lCI : C a cover}. 

We shall show how the Max-Flow Min-Cut Theorem implies Konig's The
orem, and how a maximum flow algorithm provides an efficient algorithm 
for constructing a maximum matching and a minimum cover. Given G with 
bipartition {P, Q}, we form a digraph G' with capacity vector u as follows. 
VI =V U {r, s}, where r, s are new nodes. For each edge pq of G with PEP, 
q E Q there is a (directed) arc pq of G' with capacity 00. For each pEP 
there is an arc rp of capacity 1. For each q E Q there is an arc qs of capacity 
1. For the graph of Figure 3.5 we show the corresponding flow network in 
Figure 3.6. 

Figure 3.6. Flow network for bipartite matching 

Let x be an integral feasible flow in Gt of value k. In fact, this implies that 
x is {O,l}-valued. (Why?) Define M ~ E by: pq EM if Xpq = 1 and pq f/. M 
if Xpq = O. Then M is a matching of G, and IMI = k. Now suppose that we 
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are given a matching M of G. Define (xvw : vw E E') by: If v E P, W E Q 
then Xuw = 1 if vw E M and 0 if vw ft !v!; if v = r, w E P, then Xvw 1 if 
there is an edge of Iv! incident with wand Xvw = 0 otherwise; if v E P, w = s, 
then XVU' = 1 if there is an edge of M incident with v and Xvw = 0 otherwise. 
Then x is an integral feasible flow of value IMI in G'. Hence we can find a 
maximum cardinality matching in G by solving the maximum flow problem on 
C'. There will be at most IPI :S n augmentations, by Theorem 3.9, since the 
maximum matching size is at most IPI. SO we get an algorithm for maximum 
bipartite matching having running time O(mn). 

Now consider a minimum cut 0' ({r} U A) where A ~ ll. Since it has finite 
('apacity, there can be no edge of G from A n P to Q\A. Therefore, every 
l'dge of G is incident with an element of G ::: (P\A) U (Q n A). That is, G 
is a cover. Moreover, the capacity of the cut is IP\AI + IQ n AI = IGI, so 
C is a cover ofcardinality equal to the maximum size of a matching. This 
proves Konig's Theorem, and shows that the algorithm also finds a minimum
cardinality cover. 

There are many other related applications. Some of them are investigated 
ill the exercises. 

'Optimal Closure in a Digraph 

There are many applications in which we want to choose an optimal subset 
of "projects," where each project has a benefit. This benefit may be positive, 
negative, or zero. There is no restriction on the number of projects to be 
chosen, but there are restrictions of the form: If project v is to be chosen, 
then project w must be chosen also. If we model the projects as the nodes 
of a digraph G and the restrictions (v, w) as its arcs, then we must choose a 
maximum benefit set A ~ V such that o(A) = 0. We call such a subset A a 
closure of G. We remark that the problem is trivial if either all the benefits 
are nonnegative (V will be optimal) or all are nonpositive (0 will be optimal). 

A classical application of this form is in the design of an open-pit mine. Here 
the region under consideration is divided into 3-dimensional blocks. For each, 
block v there is a known estimated net profit bv associated with excavating 
block v. The constraints come from the fact that it is not possible to excavate 
a block without also excavating those above it. The definition of "above" will 
depend on restrictions on the steepness of the sides of the pit. 

It turns out that the optimal closure problem can be reduced to a minimum 
cut problem, an observation due to Picard [1976]; in earlier work, Rhys [1970] 
solved an important special case. Given G and b, define a digraph G' and 
capacity vector u as follows. Put v'/ V U {r, s} for new nodes r, s. For each 
v E V with bv > 0, G' has an arc rv with U rv ::: bu. For each v E V with 
bv < 0, G' has an arc vs with U vs = -bv. The remaining arcs of G' are just 
the arcs of G, each with capacity 00. Figure 3.7 summarizes this construction. 
It is easy to see that any finite-capacity (r, s )-cut 0' (R) in G ' will be such that 
R::: {r} U A, where A is a closure of G. (In particular, a minimum-capacity 
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cut will have this property.) Any closure A ~ V determines an (r, s)-cut 
O"(A U {r}) having capacity E(bv : v ¢ A, bv > 0) -- E(bv : v E A, bv < 0). 
By adding E(bv : v E A, bv 2: 0) to both terms, this can be rewritten as 

E(bv : v E V, bv 2: 0) -- b(A). 

Since the first term of the latter expression is constant, that is, does not de
pend on A, this expression is minimized when b(A) is maximized. In summary, 
we simply find a minimum cut 0" (A U {r}) of G', and A is a maximum-weight 
closure. 

, 4 

Figure 3.7. Flow network for the optimal closure problem 

Elimination of Sports Teams 

Sports writers are fond of using the term "mathematically eliminated" to 
refer to a team that cannot possibly finish the season in first place. More 
formally, let us say that the Buzzards are eliminated if, no matter what the 
outcome of the remaining games, they cannot finish with the most wins (even 
in a tie). For convenience, we assume that there are no tie games. 

The simplest situation in which the Buzzards are eliminated (and the only 
one of which sportswriters seem to be aware!) is illustrated in Table 3.I. 
In this case even if the Buzzards win all their remaining games, they will 
have fewer wins than the Anteaters already have. Notice that in this case we . 
can see that the Buzzards are eliminated, no matter what pairs of teams are 
involved in the remaining games. A more interesting situation involves the 
data of Table 3.2. (The additional columns of the table indicate the number of 
remaining games against various opponents. Notice that there may be other 
teams that we have not included in the table.) Here it is possible for the 
Buzzards to finish with as many wins as the Anteaters, if the Anteaters lose 
all of their remaining games and the Buzzards win all of theirs. However, in 
this case the Banana Slugs must finish with more wins than the Buzzards, . 
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since they win their remaining games against the Anteaters. Thus, although 
we cannot be sure which team will finish first, we can see that the Buzzards 
are eliminated. 

Team Wins To Play 

Anteaters 33 8 
Buzzards 28 4 

Table 3.1. A simple example of elimination 

Team Wins To Play A. B. B.S. R. 

Anteaters 33 8 1 6 1 
Buzzards 29 4 1 0 3 
Banana Slugs 28 .8 X 6 0 1 
Fighting Ducks 27 5 1 3 1 

Table 3.2. A second example of elimination 

We will show that in any situatio\l in which a team is eliminated, there 
is a simple reason, as in the previous examples. Let T denote the set of 
teams other than the Buzzards. For each i E T, let Wi denote the number 
of wins for team i, and for i,j E T with i ::j:: j, let Tij denote the number of 
remaining games between teams i and j. We will need also a notation for the 
set Hi,j}: {i,j} ~ T, i ::j:: j, Tij > O}; we denote it by P. Finally, let M 
denote the number of wins for the Buzzards at the end of the season if they 
win all their remaining games. 

Let A be a subset of T. Since every game between two teams in A is won 
by one of them, the total number of wins for teams in A at the end of the 
season is at least w(A) + E(Tij: {i, j} ~ A, {i, j} E P). If this number is 
bigger than MIA/, then the average number of wins of teams in A at the end 
of the season is more than M. But M is the most wins that the Buzzards 
can hope to have, so at least one team in A will finish with more wins than 
the Buzzards. In summary, the Buzzards are eliminated if there exists A ~ T 
such that 

w(,4) + z)r;j: {i,j} ~ A, {i,j} E P) > MIA/. (3.5) 

rhis criterion for elimination is general enough to include the arguments used 
n the examples above. In the first example, A consists of the Anteaters alone, 
n the second, of the Anteaters and the Banana Slugs. 

We will show that if the Buzzards have been eliminated there is a set A with 
)fOperty (3.5). To prove this we make use of the fact that, if the Bu.zzards 
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are not eliminated, there is a set of possible outcomes of the remaining games 
so that the Buzzards finish with the most wins. Let Yij denote the (unknown) 
number of wins for team i over team j in the remaining games between them. 
Then if the Buzzards are not eliminated, there must exist values for the Yij 
satisfying 

Yij + Yji = rij, for all {i,i} E P (3.6) 

Wi + L(Yij : JET, j f:. i) =:; M, for all i E T 

Yij ~ 0, for all {i,j} E P 

Yij integral, for all {i, j} E P. 

We create.a flow network G = (V, E) as follows. V =T uP U {r, s}. For 
each i E T, there is an arc (r, i) having capacity M - Wi' For each i E T and 
JET with {i,i} E P, there are arcs (i, {i,j}) and (j, {i,j}) with capacity 
00, and there is an arc ({i,j},s) with capacity rij. The network arising from 
the data of Table 3.2 is illustrated in Figure 3.8. Now suppose that in this 
network there is an integral feasible (r,s)-flow of value L(rij: {i,j} E P). 
Then if we put Yij equal to the flow on arc (i, {i,j}), we get a soiution to 
(3.6). Conversely, a solution to (3.6) yieids such an integral feasible flow, by 
assigning flow Yij to arc (i, {i,j}) and then defining the flows on arcs incident 
to the source and sink to satisfy conservation of flow. 

A IA,BSI 

R {BS,R} 

Figure 3.8. Flow network for the elimina.tion problem 

It follows that we can determine whether the Buzzards are eliminated by 
solving a maximum (integral) flow problem. If they are not eliminated, 8 

maximum flow will determine a set of outcomes for the remaining games iu 
which the Buzzards finish first. Now we show that if the Buzzards are elim· 
inated, then a minimum cut will determine a set A satisfying (3.5). Lei 
6(8) be a minimum (r,s)-cut. By the Max-Flow Min-Cut Theorem its ca 
pacity is less than L(r,j: {i,i} E P). Let A = T\8. We claim tha" 
8 = {r} U (T\A) U {{i,i} E P: i or j f/: A}. First, if i or j is not in A bu 
{i,i} f/: 8, then 6(8) has capacity 00. Second, if {i,j} E 8 and i,j E A, thel 
deleting {i,j} from 8 decreases the capacity of 6(8) by rij. In either CasE 
6(8) is not a minimum cut, a contradiction. Now it is easy to compute tb 
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capacity of O(S). It is 

MIAI- w(A) + l)rij: {i,j} E P, {i,j} rJ: A). 

This is less than l:(rij: {i,j} E P) if and only if A satisfies (3.5), and we 
are done. 

Flow Feasibility Problems 

An example of what might be called a flow feasibility problem is that of 
deciding, given (G, u, r, s, k), whether there exists a feasible flow from r to s of 
value at least k. Of course, this is essentially a restatement of the maximum 
flow problem. We have solved this problem in two senses. First, we have 
given a good algorithm that will construct such a flow if one exists. Second, 
we have given a good characterization for its existence. (Such a flow exists 
if and only if every (r, s)-cut has capacity at least k.) A number of useful 
and interesting flow feasibility problems will be solved here. Although some 
of them appear to be significantly more general, all of them can be reduced 
to the above problem, and solved (in the two senses) by the maximum flow 
algorithm and the Max-Flow Min-Cut Theorem. 

As a first example, consider the problem of deciding whether the trans
portation model mentioned at the beginning of this chapter has a feasible so
lution. This problem can be restated as: Given a bipartite graph G = (V, E) 
with bipartition {P,Q} and vectors a E Z~, b E Z~, to find x E RE satisfying 

l:(Xpq : q E Q, pq E E) :::; ap, for all pEP (3.7) 

l:(xpq : pEP, pq E E) = bq , for all q E Q 

Xpq ~ 0, for all pq E E 

Xpq integral, for all pq E E. 

The method for converting this to a flow problem is similar to the one used 
for bipartite matching. Form digraph G' with V' = V U {r,s}. Each pq E E 
gives rise to an arc pq of G' with u pq = 00. For each pEP there is an arc 
rp with u rp = ap. For each q E Q, there is an arc qs with u qs = bq • This 
construction is illustrated in Figure 3.9. It is easy to see that there exists 
x E ZE satisfying (3.7) if and only if there is an integral feasible flow in G' 
from r to s of value 'E(bq : q E Q). Thus we can find such a solution, if one 
exists, with a maximum flow algorithm. The Max-Flow Min-Cut Theorem 
tells us that (3.7) has a solution if and only if every (r, 8 )-cut of G' has 
capacity at least 'E(bq : q E Q). The capacity of a cut o'(A u B U {r}) where 
A <;; P, B <;; Q, is 'E(ai : i E P\A) + 'E(bj : j E B). assuming there is no arc 
pq for PEA, q E Q\B. (Otherwise the cut capacity is 00.) This capacity 
Is at least E(bj : j E Q) if and only if E(ai : i E P\A) ~ E(bj : j E Q\B). 
It is clear that it is enough to check this condition for the sets A such that 


