
CS 787: Advanced Algorithms 10/06/04

Lecture 9: Linear Programming Duality

Instructor: Dieter van Melkebeek Scribe: Choudhary and Sinha

We begin by looking at some problems that can be cast as linear programming problems. The
ones that we are going to see have better algorithms but it will give us an idea of the range of
linear programming applications. Then we will look at the concept of duality and weak and strong
duality theorems. We will end with a study of the dual of Max-flow problem.

1 Examples of problems that can be cast as linear program

1.1 Max Flow

Recall the definition of network flow problem from Lecture 4. We have a directed graph G(V,E)
whose edges have capacity ce(e ∈ E). Two vertices of G are distinguished as source, s and sink,
t. If the flow through each edge is xe, then the Max Flow problem can be rephrased as a linear
programming problem as follows:

max
∑

e=(s,u)∈E

xe s.t.







∀v ∈ V \{s, t}
∑

e=(u,v)∈E xe =
∑

e=(v,w)∈E xe

∀e ∈ E xe ≤ ce

∀e ∈ E xe ≥ 0

(∗)

We try to maximize the net outward flow from the source under the constraints that the flow
going into any vertex (other than source and sink) is equal to the flow coming out of it, and the
flow through any edge is non-negative and less than (or equal to) the capacity of the edge.

1.2 Shortest Path

We can also convert the shortest path problem for graphs without a negative-weight cycle to a
linear programming problem. Our method is based on the Bellman-Ford algorithm for computing
shortest path. As before, we have a graph G(V,E) with edge weights w(u, v) and two vertices -
source s and destination t. We can write this as a linear program as follows:

max xt s.t.

{

∀(u, v) ∈ E xv ≤ xu + w(u, v)
xs = 0

For a proof, it is easy to see that the constraints are satisfied if, for all vertices v, xv is substituted
by the length of a shortest path from s to v. So, xt ≥ d where d is the shortest distance of
t from s. For the converse, simply consider any path (x, v1, v2, . . . , vk, t) of minimal length d

from s to t. Then, xv1
≤ w(s, v1), xv2

≤ xv1
+ w(v1, v2) ≤ w(x, v1) + w(v1, v2) and so on. So,

xt ≤ w(x, v1) + w(v1, v2) + · · · + w(vk, t) = d. So, the optimal value of xt is equal to the length of
a shortest path from s to t.
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1.3 Min-Cost Flow

Min-cost flow refers to the problem of computing the minimum cost of sending more than a threshold
amount of flow through a network. In this case, each edge of the network has a cost associated
with it which is linearly proportional to the amount of flow through that edge. We can cast this
into linear programming as follows:

min
∑

dexe s.t.

{

(∗) is satisfied and
v(f) ≥ goal

2 Duality

Consider the following Linear Program once again:

max x1 + x2 s.t.























−5x1 + 2x2 ≤ 2 (1)
4x1 − x2 ≤ 8 (2)
2x1 + x2 ≤ 10 (3)
x1 ≥ 0
x2 ≥ 0

The solution to the linear program, which is the maximum value of the objective function, is
8. Note that if we take linear combinations of the three equations judiciously we can get an upper
bound on the objective function. For instance:

1
9(1) + 0(2) + 7

9 (3) ⇒
x1 + x2 ≤ 8
This gives an upper bound on the objective function which we sought to maximize. In fact this

is a tight upper bound. Is it a coincidence? Duality explores these issues.
Let us associate a non negative variable with each of the three equations, say y1, y2, y3.
Now y1(1) + y2(2) + y3(3) ⇒
(−5y1 + 4y2 + 2y3)x1 + (y1 − y2 + y3)x2 ≤ 2y1 + 8y2 + 10y3

Since yis are non-negative we can get an upper bound on the objective function whenever:
(−5y1 + 4y2 + 2y3) ≥ 1
(y1 − y2 + y3) ≥ 1
and the upper bound is precisely 2y1 + 8y2 + 10y3

So we get a new linear program:

min 2y1 + 8y2 + 10y3 s.t.























−5y1 + 4y2 + 2y3 ≥ 1
y1 − y2 + y3 ≥ 1
y1 ≥ 0
y2 ≥ 0
y2 ≥ 0

As we will see the minimum, value of this linear program will give us an optimum upper bound
on the optimum value of the original linear program. We will soon see relations between them.The
original linear program is called the primal and the new one is called the dual. It is not difficult to
see that the dual of the dual is the primal itself. Note that the dual of the linear program (A, b, c),
is (−AT ,−c,−b). I.e.,
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If the primal is:

max cT x s.t.

{

Ax ≤ b

x ≥ 0

Then the dual is:

min bT y s.t.

{

AT y ≥ c

y ≥ 0

It immediately follows, from the definition of dual, that the dual of the dual is the primal itself.
Also note that if some variable can take negative values in the primal then in the dual we get
an equality constraint corresponding to that variable. Conversely whenever there is an equality
constraint in the primal then the corresponding variable in the dual can take negative values as
well.

Now we prove the following.

Theorem 1. Weak Duality Theorem: For every feasible solution x of the primal and y of the
dual: cT x ≤ bT y

Proof. Since y is a feasible solution of the dual, and x ≥ 0, AT y ≥ c ⇒ cT ≤ yT A ⇒ cT x ≤
(yT A)x ⇒ cT x ≤ yT (Ax). Since x is a feasible solution of the primal, and y ≥ 0, Ax ≤ b ⇒
yT (Ax) ≤ yT b = bT y.

Corollary 1. MaxPrimal ≤ MinDual

When can the equality hold ? We need to look at the two inequalities we encountered in the
proof of Theorem 1. The first one is (cT − yT A)x ≤ 0. The other one is yT (Ax − b) ≤ 0. The two
conditions together are known as complementary slackness. If both of them are equalities we get
an equality. We will show that in ”good” cases, this is indeed true. In preparation, we prove the
following result.

Theorem 2. One of the following holds:
(1) Both Primal and Dual are infeasible
(2) Primal is unbounded and Dual is infeasible
(3) Primal is infeasible and Dual is unbounded
(4) Both are feasible and bounded

Proof. Note that Theorem 1 implies that every feasible solution implies an upper bound on the
solutions of the primal. As such, in the event primal is unbounded dual has to be infeasible.
Similarly every feasible solution of the primal implies a lower bound on the dual. As such the
unboundedness of the dual implies the infeasibility of the primal.

To exhibit that there are actually examples for each of the above cases is not difficult. (2)
and (3) are easy to demonstrate. a linear program which is infeasible and consider its dual. For
(2) we can take any unbounded primal and take its dual. In (3) we just need to take case (2)
and interchange the primal and the dual. We will discuss case (4) when we show that the dual of
MAX-FLOW is MIN-CUT.

Theorem 3. (Strong Duality Theorem)If both primal and dual are bounded and feasible then,
Max Primal = Min Dual.
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Figure 1: Outward Normals at the optimal vertex and c

Proof. As was observed, the equality cT x = bT y holds for some feasible solution, x of Primal, and
y of dual if and only if, (cT − yT A)x = 0 and yT (Ax − b) = 0. Also note that both x and y are
nonnegative. Therefore the equality occurs exactly when (ci − yT A·,i)xi = 0 ∀i1 ≤ i ≤ m and
(bj − Aj,·x)yj = 0 ∀j1 ≤ j ≤ n where A is an m × n matrix.

Now consider Figure 1. We claim that a vertex of the feasible region of a linear program is
optimal (we have already argued in the previous lecture about optimality of vertices) exactly when
the convex cone spanned by the outer normals to the binding constraints on that vertex contains c.
In the figure, on vertex O, the binding constraints are L1 and L2. The corresponding outer normals
are N1 and N2. Clearly the cone spanned by N1 and N2 spans c. We will not prove the claim; the
geometric intuition of the claim however is that when we move from O to any other point in the
feasible region, we move towards the inwards normals of the binding constraints on O and get a
negative contribution overall in the inner-product with c, which we seek to maximize.

It follows from the above claim that given an optimal solution x of the primal, we can write c

as:
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c =
∑

(i:Ai,·x=bi)
yi(Ai,·)

T −
∑

(j:xj=0) zjej ,
where each yi and zj is non-negative and ej is the unit vector in the direction of xj . The

first term comes from the contribution of the outward normals on the binding constraints and the
second one comes from the fact that we did not include the non-negativity constraints as binding
constraints. In the event of any of them being binding at the optimal vertex, we have to consider
positive contributions from the outwards normal in their direction, which are −ejs

Now define yi
∗ = yi if Ai,.x = bi and 0 otherwise.

We look once again at the observation we made in the beginning about when the inequality can
be an equality. Consider (ci − y∗A.,i)xi = 0. When xi = 0, we have nothing to prove. When it is
not zero then the only contribution in ci is from

∑

(i∋Ai,.x=bi)
y∗i(Ai,.)

T . Therefore (ci−y∗A.,i) = 0.
Henceforth we get an equality.

For the second condition, y∗T (Ax−b) = 0, consider (bj −Aj,.x)yj . By definition, yj
∗ is non-zero

exactly when bj −Aj,.x is zero. We again get an equality. Hence the result (bT )y∗ = bT x. Therefore
the Max Primal ≥ Min Dual. Combining it with Theorem 2 we get the result.

3 The Dual of Max Flow

In this section we will study the dual of the Max Flow problem and see that the Max Flow - Min
Cut theorem is a special case of the strong duality theorem. To get the dual, we have to consider
linear combinations of the inequalities in (∗). We use the variable yv for the vertex constraints and
ze for the edge capacity constraints. Now, the dual can be stated as:

min
∑

e∈E

ceze s.t. ∀(u, v) ∈ E















yv − yu + ze ≥ 0 if u 6= s, v 6= t

yv + ze ≥ 1 if u = s, v 6= t

−yu + ze ≥ 0 if u 6= s, v = t

ze ≥ 1 if u = s, v = t

If we add two new variables ys and yt with constraints that ys = 1 and yt = 0, all our inequalities
can be written in the form yv − yu + ze ≥ 0. This is exactly a Min-Cut problem.

Let us denote the optimal value of the linear programming problem by OPT .

Claim 1. OPT ≤ Min − Cut.

Proof. Given any cut (S, T ), we set ze to be 1 if e crosses the cut and zero otherwise. Also, yv is
set to 1 if v is in S and zero otherwise. It is easy to see that the constraints are satisfied in this
case and the value of the objective is equal to the size of the cut. The claim follows.

Claim 2. Min − Cut ≤ OPT .

Proof. Consider any feasible solution y∗, z∗. Pick ζ ∈ (0, 1] uniformly at random. Define

S = {v ∈ V |yv ≥ ζ}.

Note that this is a valid cut. Now, fix an edge e.

Pr[e is in the cut] = Pr(ζ ∈ (yv, yu])

≤ max(yu, yv, 0).
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Hence,

E(capacity of the cut) =
∑

ce Pr[e is in the cut]

≤
∑

ceze.

Thus, there must be a cut of capacity less that or equal to
∑

ceze. The claims follows.
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