March 30 Zoom
last time: irs.
$p \in C$ curve O_{p} local ring

$$
\left(\operatorname{din} e_{p}=d i c=1\right)
$$

- P non -sing. $\Longleftrightarrow e_{p}$ is a DVR $v_{p}(f)=$ order of vomishing of f at p. rational function on C
- We stated a comm. alg. the. giving several equiv. Lond. on local domain of 1-1 to be regular.

Rem Suppose X is an ier. var. \& $d=X>1$. O_{p} local rigs of $p \in X$.
Subrarietien $Y \subset X \quad p \in Y$ give ideals in e_{p}.

$$
I(y) \subset \bigodot_{p}
$$

Subvariety defined by m or its powers m^{n} are $\{p\}$.

$$
V\left(m^{n}\right)=
$$

If $1=x>1$ we have subvar. $p \in Y \subset X$ so \exists many ideals $\{P\} \neq Y$ that are NOT power of maximal ideal.

Rem $a \subset O_{p} \leadsto V(C l)$ lines in a neigh. of $p \in X$. (germ of subwar.)

Rem If $d-X=1$ (curve)
but $p \in X$ is a singular pt. ie.
O_{P} NOT a reg. local ring/ DVR.
Then one may have ideals that are not power of max. ideal.
Exercise (1) In $x=V\left(y^{2}-x^{3}\right) \subset \mathbb{A}^{2}$ $p=(0,0)$, find an ideal in \bigcup_{p} that is not power of max. ideal.
(2) Same question for $x=V\left(y^{2}-x^{2}(x+1)\right)$

$$
m=(x, y) \neq(y) \quad \neq(x) \quad\left(\frac{\left.k[x, y] / y^{2}-x^{3}\right)}{}\right)^{\text {bcalized }} \begin{gathered}
\text { at } p
\end{gathered}
$$

Show (x) or (y) are not powers of max- ideal.

$$
\begin{aligned}
\cdot y_{p}^{\omega} c x
\end{aligned} \longrightarrow k[x] \rightarrow k[y]
$$

Aside (Local rig of a sub-var.) $Y \subset X$ subvariety (suppose X is ir.) $O_{Y, X}=$ local ring of Y in X
$=$ subring/subring of $k(X)$ field of rational functions

$$
\begin{gathered}
=\left\{(f, U) \left\lvert\, \begin{array}{l}
f \in U(U), \cup \subset X \\
U \cap Y \neq \varnothing
\end{array}\right.\right\} \\
((f, U) \sim(g, V) \Leftrightarrow f=g \text { on } \cup \cap V)
\end{gathered}
$$

One can show: affine
$Y \subset X \quad p=I(Y) \quad i r r$ subvariety

$$
\begin{aligned}
& \int_{y, x} \cong k[x]_{p} \\
& \operatorname{dig} O_{y, x}=\operatorname{dox}-\operatorname{di} y
\end{aligned}
$$

 normalization
(domain)

$$
X \text { affine } A=k[X]=\text { coos. ring }
$$

$$
K=k(X)=\text { field of rat. functions }
$$

field
$\bar{A} \subset K$ int. Closure of A in $K \supset A$

$$
\bar{A}=\left\{f \in K \left\lvert\, \begin{array}{c}
f \text { satisfies am int. equ. } \\
f^{m}+a_{m-1} f^{m-1}+\cdots+a_{\sigma}=0 \\
a_{i} \in A
\end{array}\right.\right\}
$$

Example from number theory
$K=$ number field
(ie. finite ext. of (\mathbb{D})
e.g. $K=Q(\sqrt{-1})$ or $Q(\sqrt{2})$
$\mathbb{Z} \subset \mathbb{Q} \leadsto \bigcup_{K}=$ int. Closure of \mathbb{Z} in K
algebraic integers
\rightarrow Famous the. of Noether
The (finitenen of int. clasme)
$\begin{aligned} & \text { fig. } k \text {-alg. } \\ & \text { domain }\end{aligned} \quad K=\operatorname{Frac}(A)$
Let A dom
L / K finite ext.
Then int. Clasme of A in L is a finite module over A (in pant. is a f.g. k-alg. itself).
(Unfortunately I skip the proof) ref. Atiyah-macdonald, samuel-Zariski...

Construct

- It is used to a resolution of sing. of curves.
- In higher din. it is used to construct normalization of varieties.

Recall res. of sing.
X given variety, we wont (a res. of sing. of X) $+\pi$: orphism
st. (1) \tilde{X} non -sing.
(2) π gives a birat. iso. i.e.

$$
\left(\begin{array}{ccc}
\exists \tilde{U} \subset \tilde{X} \quad \& \quad U \subset X & \text { open } \\
\pi: \widetilde{U} \longrightarrow U \text { is iso ism }
\end{array}\right)
$$

Big the (Hironaka, Fields medal) char $k=0$ then \forall variety has a res. of sing.

- char $k=p>0$ open problem.
X affine

$$
\begin{aligned}
& A=k[X] \\
& K=k(X)
\end{aligned}
$$

let $\bar{A}=$ int. clasme of A in K (it is a fig. k-alg.)

- $A \subset \bar{A}$ \& \bar{A} is a finite A-module. (Noether's finite of) int. clanme)
- Remember fig. k-domains $\stackrel{1-1}{\longleftrightarrow}$ inn. affine var.

A

$$
k[x] \longleftrightarrow X
$$

$$
A \longmapsto \operatorname{Spec}(A)
$$

$$
A=k\left[f_{1}, \ldots, f_{n}\right] \quad \operatorname{spec}(A):=V(I) \subset \mathbb{A}^{n}
$$

$I=$ ideal of rel. between ${ }^{\text {the }}$ gen. f_{i}

$$
\begin{aligned}
& k\left[x_{1} \cdots-x_{n}\right] \longrightarrow A \quad A \cong k\left[x_{1} \cdots x_{n}\right] / I \\
& x_{i} \longmapsto f_{i} \\
& I=k e r
\end{aligned}
$$

Def.

- Normalization of $X:=\operatorname{Spec}(\bar{A})$.

Rem If X not affine, Cover X with finite nobler of affine neigh. \& do normalization for each neigh. then glue these normalization together.

Rem

$$
A \stackrel{i}{\longrightarrow} \bar{A} \subset \operatorname{Frac}(A)=\operatorname{Frac}(\bar{A})=K
$$

$$
\pi=i^{*}: k[\tilde{X}] \longrightarrow k[X] \quad \begin{aligned}
& \mathbb{X}=\operatorname{spec}(A) \\
& \widetilde{X}=\operatorname{spec}(\bar{A})
\end{aligned}
$$

finite map
i ing. $\Longrightarrow \pi$ is dominant.
dominant + finite \Longrightarrow sup.
So π is surg.
Exercise Show π is birational iso ism (became $k(X)=k(\tilde{x})$) Ex.

$$
x=V\left(y^{2}-x^{2}(x+1)\right)
$$

Suppose
X is an in. affine curve.
One shows that localization commuter with taking int. clasme.
Prop. $A \subseteq B$ rings \& B integral over A. If S is a multiplicative set in A (e.g. $S=A l p$ where p is a prime ideal) then $S^{-1} B$ is integral over $S^{-1} A$.
(proof of prop- com be found in Prop. 5.6. Atiyah-macdonald)
Conclusion: If A is int. lased $(\bar{A}=A)$ then all local rings O_{p} are also int. claned.

But $\sin X=1$ then O_{p} int. cloned means p non-sing. $p t$. (the. from last time)
Cor. Normalization of an affine curve is non-sing. (every point).

