Mach 27 Zoom
Last time: - Every ire. var. birat. to a hypersur.

- Nakayama's lemma
- Spanning set for $\frac{\mathrm{m}}{\mathrm{m}^{2}}$ gen. for m
- Completion of a Noetherian ring

Milne Sec.4.C \& non-sing.
Quick example $X=V(F(x, y)) \subset \mathbb{A}^{2}$

$$
\begin{aligned}
&(0,0)=p \in X \quad m=(x, y) \subset k[x, y] \\
& m / m^{2}=\frac{(x, y)}{\left(x^{2}, x y, y^{2}, F(x, y)\right)} \quad m^{2}=\left(x^{2}, x y, y^{2}\right) \\
&(F F(0,0)=0
\end{aligned}
$$

$f x+g y \in m \leadsto$ reduce $\bmod \left(x^{2}, x y, y^{2}\right)$
$c x+d y \leadsto$ If $F_{l}=$ lin. part of $F=0 x+0 y$
$(0,0) \longrightarrow$ sing. $F_{l}=0 \longrightarrow \frac{m}{m^{2}}=$ All lin poly $\alpha-\frac{m}{m^{2}}=2$

$$
\begin{array}{rl}
\text { non -sig } F_{l} \neq 0 & m / m^{2}
\end{array}=\text { Allyn poly mod } \operatorname{Fl}
$$

Completion of a Noetherion ring
Many ref. e.g. Chap. 10 of Atiyah-Macdonald

Ex.
$\mathbb{Z} \supset(p)$ max ideal
$v_{p}(x)=$ order of p in $x=$ how many tines x div- by p

$$
\begin{array}{lll}
v_{p}: \mathbb{Z} \backslash\{0\} & \longrightarrow \mathbb{Z} \geqslant 0 & u_{p}: \mathbb{Q} \longrightarrow \mathbb{Z} u\{\infty\} \\
v_{p}(0):=\infty & v_{p}: \mathbb{Z} \longrightarrow \mathbb{Z}_{\geq 0} \cup\{\infty\}
\end{array}
$$

$v_{t}(f)=$ ord of t in $f=$ how many times f div. by t

$$
\begin{aligned}
a=v_{t}(f) \quad f & =0 t^{a}+0 t^{a+1}+\cdots \\
& =t^{a}(0+0 t+\cdots)
\end{aligned}
$$

order of vanishing of f at $0=$ Zerolocms of (t).

$$
\begin{aligned}
& \mathbb{Z} \xrightarrow{\text { Completion w.r.t. (} P \text {) }} \mathbb{Z}_{p}=\text { P-adic numbers } \\
& x=a_{0}+a_{1} p+\cdots+a_{n} p^{n} \quad\left(\text { base }{ }^{x} p\right. \text { in } \\
& \text { formal } \\
& \mathbb{Z}_{p}=\left\{a_{0}+a_{1} p+a_{2} p^{2}+\cdots|r| r a_{i}<p\right\} \quad \text { all power } p
\end{aligned}
$$

Completion wont. (t)
don't care about Cons.
$k[[t]]=$ lir of formal power series in t

$$
=\left\{a_{0}+a_{1} t+a_{2} t^{2}+\cdots \mid a_{i} \in k\right\}
$$

These constructions generalize to arbitrang Noetherian ring A \& ideal I $I \leadsto$ a top. on A called I-adic top. $\forall n>0 \quad I^{n}=$ an open neighborhood of $0 \in A$

$$
x+I^{n}=\ldots-\cdots \quad x \in A
$$

$x, y \in A \quad x \& y$ are "close" if $x-y \in I$ "
for "large" n.

- Same way one construct r completion of a metric space, one defines \hat{A} completion of A (w.r.t. I)

$$
\hat{A}:=\lim _{\hookleftarrow} A / I^{n} \quad A / I \rightarrow \frac{A}{I^{2}} \rightarrow A / I^{3} \rightarrow \cdots
$$

Atiyah-mac. Chap 10
Cohen structure the
A a regular local ring, m max. ideal

$$
\sin A=r \text {. }
$$

then $\hat{A} \cong k\left[\left[x_{1}, \ldots, x_{r}\right]\right]$.
k-all.

$$
x_{1}, \ldots, x_{r} \longleftrightarrow a \text { set of gen. }
$$

Quick question: $k\left[\left[x_{1}, \ldots, x_{r}\right]\right]$ local ring? Yes
$m=\left(x_{1}, \ldots, x_{r}\right) \leadsto$ If Cont. term of f is nonzero then f unit (Newton's method)

Meaning: $p \in X$

$$
A=O_{p}
$$

local ring
formal series
ponder sing
nine
Ex. plane curve $x=\left\{y^{2}=x^{3}+1\right\}$

$$
\begin{aligned}
& p=(0,1) \\
& m_{p}=(x, y-1) \text { max ideal in } e_{p}=\binom{k[x, y]}{\left(y^{2}-x^{3}-1\right)}_{p}
\end{aligned}
$$

Exercise Verify that $m_{p}=(x) \leadsto$ i.e. principal ideal.

Answer:

$$
\begin{align*}
& y^{2}=x^{3}+1 \quad p=(0,1) \\
& (y-1)(y+1)=x^{3} \quad y+1 \text { is inv. in } O_{p} \\
& y-1=\frac{x^{3}}{y+1} \in(x) \subset O_{p}
\end{align*}
$$ agrees with Cohen st. th.

Calculus exercise $) \quad O_{p} \cong k[[x]]$

$$
y=1+\frac{x^{3}}{2}-\frac{x^{6}}{8}+\frac{x^{9}}{16}+\cdots
$$

y a power series in x $y^{2}=x^{3}+1 \leadsto$ solve y in terms of x

Ex. $y^{2}=x^{3} \leadsto$ sing. at $p=(0,0)$ cusp If you solve y in terms of $x \quad y=x^{3 / 2}$ power series!

Aside $k((t))$ Laumentseries in t

$$
\begin{aligned}
k(c t)] & =\left\{f=\delta t^{-m}+0 t^{-m+1}+\cdots\right\} \\
& =k[[t]]\left[t^{-1}\right] .
\end{aligned}
$$

Exencise: $k((t))$ is a field.
Thy (Newton-Puiseux)

$$
\overline{k((t))}=\left\{S^{-m / k}+\text { higher term }\right\}
$$

\rightarrow Field of Puisenx series

Local ring of pts of curves
Def. $\sim: K \backslash\{0\} \longrightarrow \mathbb{Z} K$ field
(Discrete valuation) \leadsto gen. of notion of ord of div. or vanishing \mathbb{Z} is discrete
a) $v(x y)=v(x)+v(y)$ $\forall \begin{aligned} & 0 \neq 1 \\ & x, y \in K\end{aligned}$
b) $v(x+y) \geqslant \min \{v(x), v(y)\}$

$$
v(0):=\infty
$$

$$
\begin{aligned}
& \text { Ex. of } A=\mathbb{Z} \quad v=v_{p} \quad a \leqslant b \\
& x=p^{a} x^{\prime} \quad y=p^{b} y^{\prime} \quad a=\min (a, b) \\
& x+y=p^{a}(\underbrace{x^{\prime}+p^{b-a} y^{\prime}})
\end{aligned}
$$

If $a=b$ still maghe div. by p

$$
\begin{aligned}
& v_{p}(x+y)=\min (v(x), v(y)) \text { if } a \neq b \\
& v_{p}(x+y) \geqslant \min (v(x), v(y)) \text { if } a=b
\end{aligned}
$$

Def. valuation ring of $v=$

$$
O_{v}=\{x \in K \quad \mid \quad v(x) \geqslant 0\}
$$

It is a local ring.

$$
m_{v}=\max \text { ideal }=\{x \in K \mid v(x)>0\}
$$

x in \bigcup_{v} is a unit $\Longleftrightarrow v(x)=0$

$$
v\left(x^{-1}\right)=-v(x)
$$

$$
K=\operatorname{Frac}(A)
$$

Def. Let A be a local domain. A is a DVR (discrete val. ring) if $\exists v: K \backslash\{0\} \longrightarrow \mathbb{Z}$ discrete val.

$$
\begin{array}{r}
\text { s.t. } A=e_{v}=\{x \in K \mid v(x) \geqslant 0\} \\
m=m_{v}=\{x \in K \mid v(x)>0\}
\end{array}
$$

Complete description of regular local rings in dir 1 (ie. local rings of non-sing. pts on affine curves)

Chap. 9 Prop. 9.2
The (see for example Atiyah-Macdonald)
Let A be a Noetherign domain of tiv 1 . TFAE m max ideal
(1) A is a regular local rios $m o d i m / \mathrm{m}^{2}=1$
(2) A is DVR
(6) $\exists_{0 \times \in} \forall a \subset A \quad a=(x)^{n} \quad \exists>0$
(3) A is integrally closed (in its field of)
(4) m is principal
(5) $\forall a \subset A$ ideal

$$
a=m^{n} \quad \exists n>0
$$

Suppose A is reg. local domain. we define a val. ${ }^{\text {on }} A(\& K=\operatorname{Frac}(A))$
Let $0 \neq x \in A$
Take $n>0$ st.

$$
\begin{aligned}
& \text { all elements } \\
& \text { vomishin of } \\
& x \notin m^{n} \text { ord } \geqslant n \\
& n+1
\end{aligned}
$$

(This n exists by Krull's intersec. the)

$$
\bigcap_{n>0} m^{n}=\{0\}
$$

proof: $m \supset m^{2} \supset m^{3} \supset \ldots$
Let $\left.M=\bigcap_{n>0} m^{n} \Rightarrow m M=M \Rightarrow M=\{0\}\right)$
Then define $v(x):=n$.
One checks that v is a valuation.
Let $A=\bigcup_{p} \quad p \in X \quad \alpha \sim X=1$
Suppose A is a DVR
If $v(x)=1$ then $m=(x)$ \&
hence x is a parameter near $p \in X$

